US3897524A - Carburetor secondary throttle shaft construction - Google Patents

Carburetor secondary throttle shaft construction Download PDF

Info

Publication number
US3897524A
US3897524A US430823A US43082374A US3897524A US 3897524 A US3897524 A US 3897524A US 430823 A US430823 A US 430823A US 43082374 A US43082374 A US 43082374A US 3897524 A US3897524 A US 3897524A
Authority
US
United States
Prior art keywords
primary
shaft
valves
secondary throttle
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US430823A
Inventor
Richard J Freismuth
Joseph F Lopiccola
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Motor Co
Original Assignee
Ford Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Motor Co filed Critical Ford Motor Co
Priority to US430823A priority Critical patent/US3897524A/en
Application granted granted Critical
Publication of US3897524A publication Critical patent/US3897524A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M11/00Multi-stage carburettors, Register-type carburettors, i.e. with slidable or rotatable throttling valves in which a plurality of fuel nozzles, other than only an idling nozzle and a main one, are sequentially exposed to air stream by throttling valve
    • F02M11/02Multi-stage carburettors, Register-type carburettors, i.e. with slidable or rotatable throttling valves in which a plurality of fuel nozzles, other than only an idling nozzle and a main one, are sequentially exposed to air stream by throttling valve with throttling valve, e.g. of flap or butterfly type, in a later stage opening automatically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/109Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps having two or more flaps
    • F02D9/1095Rotating on a common axis, e.g. having a common shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87265Dividing into parallel flow paths with recombining
    • Y10T137/8741With common operator
    • Y10T137/87442Rotary valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87265Dividing into parallel flow paths with recombining
    • Y10T137/87523Rotary valve
    • Y10T137/87531Butterfly valve

Definitions

  • a four-barrel (4V) carburetor has a primary throttle plate shaft mounting two primary bore throttle plates, and two secondary throttle plate shafts each mounting a secondary throttle plate, the two secondary shafts having a limited interconnection in one embodiment, and being completely independently mounted in a second embodiment, to assure secondary throttle plate seating repeatability minimizing leakage of air past the plates.
  • SHEET CARBURETOR SECONDARY THROTTLE SHAFT CONSTRUCTION This invention relates in general to a motor vehicle type carburetor. More particularly, it relates to a carburetor of the four barrel type having primary and secondary induction passages each with a pair of throttle plates.
  • All known 4V commercial carburetors contain primary and secondary throttle shafts each of which mount a pair of throttle plates.
  • the two shafts usually each are one piece constructions, with the two throttle plates bolted or screwed to the shaft.
  • the bores controlled by the throttle plates may be as large as two inches or larger in diameter, which means the throttle plate seats are approximately the same size. Since it is virtually impossible to manufacture both seats perfectly, it often occurs that the two seats are not identical. That is, the attitude of one may be very slightly off with respect to the other because of manufacturing tolerance stackups. Therefore, when one plate seats in the throttle bore to a closed throttle position, the other plate may be cracked open slightly.
  • FIG. 1 is a plan view of a 4V carburetor throttle body
  • FIG. 2 is an enlarged cross sectional view taken on a plane indicated by and viewed in the direction of the arrows 2-2 of FIG. 1;
  • FIG. 3 is a side elevational view of the carburetor shown in FIG. 1;
  • FIG. 4 is a view corresponding to that shown by FIG. 2 and illustrating another embodiment.
  • FIG. 1 shows the throttle body portion 10 of a four barrel (4V) carburetor of the downdraft type. It has a pair of primary induction passages 12 and a pair of secondary induction passages or bores 14.
  • the bores would extend out of the plane of FIG. 1 to the main and upper body portions of the carburetor that contain the usual fuel metering systems, fuel bowl, etc. for passage of an air/fuel mixture through each of the bores.
  • the opposite side of the bores passing into the plane of FIG. 1 are adapted to be connected to the intake manifold of an internal combustion engine so as to be subjected to the varying intake manifold vacuum levels in response to speed and load changes.
  • the primary throttle bores 12 each contain an annular throttle plate 16 bolted or otherwise secured to a primary throttle shaft 18.
  • the shaft 18 is a single member that extends rotatably through a bore 20 in the throttle body.
  • the primary shaft 18 is fixed to a lever 22.
  • the lever has1a tang portion 24 at one end adapted to cooperate with an adjustable screw 26 mounted on the carburetor to provide a positive stop or closing position for the primary throttle plates.
  • the opposite end of lever 22 is adapted to abut the end 28 of a solenoid actuated throttle plate positioner 30. The latter is adjustably mounted on the throttle body flange 32 by a bracket construction 34.
  • the solenoid operated positioner 30 is of a known construction and its details of construction and operation are not given since they are believed to be unnecessary for an understanding of the invention. Suffice it to say that the solenoid would be connected to the engine ignition system so that upon starting of the vehicle, the solenoid is energized to move the plunger 28 rightwardly to a position preventing the throttle shaft 18 from completely closing the primary throttle plates upon return movement of the vehicle accelerator pedal to an engine idle speed position. When the engine ignition is shut off, the solenoid plunger 28 is retracted to permit complete closing of the primary throttle plate, to prevent engine dieseling, or after-run, in a known manner.
  • Primary throttle shaft 18 has a mechanical lost motion type connection between the primary throttle plates and the secondary throttle plates 35.
  • each of the secondary throttle plates 35 is mounted on a separate shaft 36, 38, the shafts, however, being axially aligned and interconnected by a loose tongue and groove connection 40.
  • the throttle plates are mounted on a single shaft with an articulated joint.
  • the sloppy interconnection permits a limited rotation of each of the shafts 36, 38 relative to the other so that each of the throttle plates can seat independently of the other.
  • torque applied to one of the shafts will] not cause an unseating of the other throttle plate until the lost motion is taken up, at which point continued torque will move both shafts as a unit.
  • closing repeatability is afforded by this construction as compared to one having a single shaft supporting both secondary throttle plates.
  • a coiled spring 42 Wound around the primary throttle shaft at its rightward end is a coiled spring 42 having opposite ends abutting opposite edges of a tang 48 projecting from a lever 50.
  • Lever 50 is rotatably mounted on the primary throttle shaft and is connected by a link 52 to a lever 54.
  • Lever 54 in turn is fixed on the rightward end of the secondary throttle shaft 38.
  • Lever 54 is biased in a clockwise direction or closed by a further coiled spring 58 anchored at one end under a stationary portion 60 of the carburetor and its other end 62 engaging lever 54. This is repeated on the left side.
  • FIG. 4 shows a modified construction in which each of the secondary throttle shafts 38', 36' are completely independently mounted with no connection between the two.
  • each shaft would have a suitable linkage 52 to the primary throttle shaft for concurrent actuation of the secondary shafts after a predetermined opening of the primary shafts, in a manner previously described.
  • the invention provides a secondary throttle shaft construction for a 4V carburetor that provides good closing repeatability of the throttle plates to minimize secondary throttle plate leakage, to improve emissions and engine efficiency.
  • the FIG. 2 embodiment permits a slight or limited independent rotation of each throttle plate shaft relative to the other, for seating purposes. However, a continued rotation of shaft 38 by the primary shaft accelerator linkage will interengage the tongue and groove parts of connection 40 to rotate shaft 36 I with shaft 38 as a unit to assure essentially simultaneous opening of the secondary throttle plates.
  • the FIG. 4 construction provides independent but concurrent rotation of each of the secondary shafts by the separate linkages.
  • a carburetor having a pair of primary and a pair of secondary induction passages, a pair of primary and a pair of secondary throttle valves mounted for rotation in the respective passages, linkage means interconnecting the secondary throttle valves to the primary throttle valves for subsequent opening of the secondary throttle valves by the primary valves, and means mounting the secondary throttle valves on axially aligned shaft portions for an independent movement relative to each other to minimize leakage past the secondary throttle valves when closed.
  • a carburetor as in claim 1 including a single primary throttle valve shaft, means fixing the pair of primary throttle valves to the shaft, and means connecting the linkage to the shaft.
  • a carburetor as in claim 1 including a single primary throttle valve shaft, means fixedly mounting the primary throttle valves on the primary shaft, a pair of axially aligned secondary throttle valve shafts, means fixedly mounting a secondary throttle valve on each of the secondary shafts, the linkage means including means connecting each secondary shaft to the primary shaft.
  • a carburetor as in claim 2 including a secondary throttle valve shaft, means fixing the secondary throttle valves to the secondary shaft, the secondary shaft hav ing a loose tongue and groove connection located between the secondary throttle valves to permit the independent movement.
  • a carburetor having a pair of primary induction passages, a primary throttle valve shaft rotatably mounted in the primary induction passage, a pair of pri mary throttle valves secured to the shaft for conjoint movement to open or close the passage, a pair of secondary induction passages, a pair of secondary throttle valves each mounted for rotation in the secondary passages to open and close the same, a secondary throttle valve shaft rotatably mounted in each secondary induction passage and fixed to one of the secondary throttle valves, the secondary throttle shafts being axially aligned, a linkage means interconnecting the primary shaft to the secondary shafts for movement in a sequential manner to open the secondary throttle valve subsequent to the primary valves, and means mounting the secondary shafts for an independent movement of the secondary throttle valves relative to each other for minimizing leakage of airflow past the valves when the secondary valves are maintained in a closed position during opening movement of the primary valves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

A four-barrel (4V) carburetor has a primary throttle plate shaft mounting two primary bore throttle plates, and two secondary throttle plate shafts each mounting a secondary throttle plate, the two secondary shafts having a limited interconnection in one embodiment, and being completely independently mounted in a second embodiment, to assure secondary throttle plate seating repeatability minimizing leakage of air past the plates.

Description

United States Patent [191 Freismuth et al.
[ 1 July 29, 1975 1 CARBURETOR SECONDARY THROTTLE SHAFT CONSTRUCTION {75] Inventors: Richard J. Freismuth, Mt. Clemens;
Joseph F. Lopiccola, Warren, both of Mich.
[73] Assignee: Ford Motor Company, Dearborn,
Mich.
[22] Filed: Jan. 4, 1974 211 Appl. No.: 430,823
[52] US. Cl. 261/23 A; 137/601 [51] Int. Cl. F02M 11/02 {58] Field of Search 261/23 A; 137/601 [56] References Cited UNITED STATES PATENTS 1,096,482 5/1914 Winton 261/23 A 2,317,625 4/1943 Mallory... 261/23 A 2,954,022 9/1960 Mick 261/23 A 3,013,778 10/1974 Carlson et a1 261/23 A 3,205,879 9/1965 Von Seggern et al. 261/23 A 3,328,008 6/1967 Gordon 261/23 A 3,523,680 8/1970 Bartholomew 261/23 A Primary Examiner-Tim R. Miles Attorney, Agent, or Firm-Robert E. McCollum; Keith L. Zerschling ABSTRACT A four-barrel (4V) carburetor has a primary throttle plate shaft mounting two primary bore throttle plates, and two secondary throttle plate shafts each mounting a secondary throttle plate, the two secondary shafts having a limited interconnection in one embodiment, and being completely independently mounted in a second embodiment, to assure secondary throttle plate seating repeatability minimizing leakage of air past the plates.
8 Claims, 4 Drawing Figures JUL29I9Y5 PATENTED 97, 524
SHEET CARBURETOR SECONDARY THROTTLE SHAFT CONSTRUCTION This invention relates in general to a motor vehicle type carburetor. More particularly, it relates to a carburetor of the four barrel type having primary and secondary induction passages each with a pair of throttle plates.
All known 4V commercial carburetors contain primary and secondary throttle shafts each of which mount a pair of throttle plates. The two shafts usually each are one piece constructions, with the two throttle plates bolted or screwed to the shaft. In the case of the secondary throttle plates, the bores controlled by the throttle plates may be as large as two inches or larger in diameter, which means the throttle plate seats are approximately the same size. Since it is virtually impossible to manufacture both seats perfectly, it often occurs that the two seats are not identical. That is, the attitude of one may be very slightly off with respect to the other because of manufacturing tolerance stackups. Therefore, when one plate seats in the throttle bore to a closed throttle position, the other plate may be cracked open slightly.
Another problem with a metal shaft is flexing or torquing of the shaft. When the throttle plates are bolted to the shaft, they may not always be torqued down with the same force. This may flex or torque the shaft causing one plate to be at a slightly different angle than the other. Also, during operation, high manifold vacuum acting on the throttle plates tends to bow the shaft. The bowing may be cumulative to be more at one bore than another. This again may cause misalignment of the throttle plates with respect to each other. Accordingly, one of the plates may not seat properly when the throttle plates are returned to their closed positions. This leakage of air past the unseated plate causes changes in the idle speed and off idle speed mixtures and therefore deteriorates control of undesirable emissions.
It is an object of this invention to provide a carburetor secondary throttle shaft construction that provides good repeatability of seating function of a pair of secondary throttle plates and in so doing reduces leakage past the plates to improve operating efficiency.
It is another object of the invention to provide a 4V carburetor construction with a secondary throttle plate shaft that consists of a pair of shafts interconnected to provide a limited relative rotation between the two so that each of the secondary throttle plates will seat independently of the other to reduce leakage past the plates to a minimum.
It is a further object of the invention to provide a 4V carburetor with a pair of independently mounted secondary throttle plate shafts each mounting a secondary throttle plate for independent movement with respect to the other. to assure closure repeatability minimizing leakage of air past the throttle plates.
Other objects, features and advantages of the invention will become more apparent upon reference to the succeeding detailed description thereof, and to the drawings illustrating preferred embodiments thereof, wherein;
FIG. 1 is a plan view of a 4V carburetor throttle body;
FIG. 2 is an enlarged cross sectional view taken on a plane indicated by and viewed in the direction of the arrows 2-2 of FIG. 1;
FIG. 3 is a side elevational view of the carburetor shown in FIG. 1; and,
FIG. 4 is a view corresponding to that shown by FIG. 2 and illustrating another embodiment.
As stated above, FIG. 1 shows the throttle body portion 10 of a four barrel (4V) carburetor of the downdraft type. It has a pair of primary induction passages 12 and a pair of secondary induction passages or bores 14. The bores would extend out of the plane of FIG. 1 to the main and upper body portions of the carburetor that contain the usual fuel metering systems, fuel bowl, etc. for passage of an air/fuel mixture through each of the bores. The opposite side of the bores passing into the plane of FIG. 1 are adapted to be connected to the intake manifold of an internal combustion engine so as to be subjected to the varying intake manifold vacuum levels in response to speed and load changes.
The primary throttle bores 12 each contain an annular throttle plate 16 bolted or otherwise secured to a primary throttle shaft 18. The shaft 18 is a single member that extends rotatably through a bore 20 in the throttle body. At its rightward end, as seen in FIG. 1, the primary shaft 18 is fixed to a lever 22. As best seen in FIG. 3, the lever has1a tang portion 24 at one end adapted to cooperate with an adjustable screw 26 mounted on the carburetor to provide a positive stop or closing position for the primary throttle plates. The opposite end of lever 22 is adapted to abut the end 28 of a solenoid actuated throttle plate positioner 30. The latter is adjustably mounted on the throttle body flange 32 by a bracket construction 34.
The solenoid operated positioner 30 is of a known construction and its details of construction and operation are not given since they are believed to be unnecessary for an understanding of the invention. Suffice it to say that the solenoid would be connected to the engine ignition system so that upon starting of the vehicle, the solenoid is energized to move the plunger 28 rightwardly to a position preventing the throttle shaft 18 from completely closing the primary throttle plates upon return movement of the vehicle accelerator pedal to an engine idle speed position. When the engine ignition is shut off, the solenoid plunger 28 is retracted to permit complete closing of the primary throttle plate, to prevent engine dieseling, or after-run, in a known manner.
Primary throttle shaft 18 has a mechanical lost motion type connection between the primary throttle plates and the secondary throttle plates 35. In this case, as best seen in FIGS. 1 and 2, each of the secondary throttle plates 35 is mounted on a separate shaft 36, 38, the shafts, however, being axially aligned and interconnected by a loose tongue and groove connection 40. In effect, the throttle plates are mounted on a single shaft with an articulated joint. The sloppy interconnection permits a limited rotation of each of the shafts 36, 38 relative to the other so that each of the throttle plates can seat independently of the other. Thus, torque applied to one of the shafts will] not cause an unseating of the other throttle plate until the lost motion is taken up, at which point continued torque will move both shafts as a unit. Likewise, closing repeatability is afforded by this construction as compared to one having a single shaft supporting both secondary throttle plates.
Wound around the primary throttle shaft at its rightward end is a coiled spring 42 having opposite ends abutting opposite edges of a tang 48 projecting from a lever 50. Lever 50 is rotatably mounted on the primary throttle shaft and is connected by a link 52 to a lever 54. Lever 54in turn is fixed on the rightward end of the secondary throttle shaft 38. Lever 54 is biased in a clockwise direction or closed by a further coiled spring 58 anchored at one end under a stationary portion 60 of the carburetor and its other end 62 engaging lever 54. This is repeated on the left side.
It will be clear that rotation of the primary throttle shaft from a closed position will not rotate the secondary throttle shafts until the tang portion 64 of lever 22 engages the extended end 46 of spring 42. At this time, continued opening of the primary throttle shafts will cause movement of lever 50 by the spring end 44 bearing against the tank 48 to thereby through linkage 52 and 54 open the secondary throttle shafts.
FIG. 4 shows a modified construction in which each of the secondary throttle shafts 38', 36' are completely independently mounted with no connection between the two. In this case, each shaft would have a suitable linkage 52 to the primary throttle shaft for concurrent actuation of the secondary shafts after a predetermined opening of the primary shafts, in a manner previously described.
From the foregoing, therefore, it will be seen that the invention provides a secondary throttle shaft construction for a 4V carburetor that provides good closing repeatability of the throttle plates to minimize secondary throttle plate leakage, to improve emissions and engine efficiency. The FIG. 2 embodiment permits a slight or limited independent rotation of each throttle plate shaft relative to the other, for seating purposes. However, a continued rotation of shaft 38 by the primary shaft accelerator linkage will interengage the tongue and groove parts of connection 40 to rotate shaft 36 I with shaft 38 as a unit to assure essentially simultaneous opening of the secondary throttle plates. The FIG. 4 construction provides independent but concurrent rotation of each of the secondary shafts by the separate linkages.
While the invention has been shown and described in its preferred embodiments, it will be clear to those skilled in the arts to which it pertains, that many changes and modifications may be made thereto with out departing from the scope of the invention.
We claim:
1. A carburetor having a pair of primary and a pair of secondary induction passages, a pair of primary and a pair of secondary throttle valves mounted for rotation in the respective passages, linkage means interconnecting the secondary throttle valves to the primary throttle valves for subsequent opening of the secondary throttle valves by the primary valves, and means mounting the secondary throttle valves on axially aligned shaft portions for an independent movement relative to each other to minimize leakage past the secondary throttle valves when closed.
2. A carburetor as in claim 1, including a single primary throttle valve shaft, means fixing the pair of primary throttle valves to the shaft, and means connecting the linkage to the shaft.
3. A carburetor as in claim 1, including a secondary throttle valve shaft to which are fixed the secondary throttle valves, the shaft having a pair of axially aligned portions each mounting a secondary throttle valve, and means providing a limited lost motion connection between the portions.
4. A carburetor as in claim 1, including a single primary throttle valve shaft, means fixedly mounting the primary throttle valves on the primary shaft, a pair of axially aligned secondary throttle valve shafts, means fixedly mounting a secondary throttle valve on each of the secondary shafts, the linkage means including means connecting each secondary shaft to the primary shaft.
5. A carburetor as in claim 2, including a secondary throttle valve shaft, means fixing the secondary throttle valves to the secondary shaft, the secondary shaft hav ing a loose tongue and groove connection located between the secondary throttle valves to permit the independent movement.
6. A carburetor having a pair of primary induction passages, a primary throttle valve shaft rotatably mounted in the primary induction passage, a pair of pri mary throttle valves secured to the shaft for conjoint movement to open or close the passage, a pair of secondary induction passages, a pair of secondary throttle valves each mounted for rotation in the secondary passages to open and close the same, a secondary throttle valve shaft rotatably mounted in each secondary induction passage and fixed to one of the secondary throttle valves, the secondary throttle shafts being axially aligned, a linkage means interconnecting the primary shaft to the secondary shafts for movement in a sequential manner to open the secondary throttle valve subsequent to the primary valves, and means mounting the secondary shafts for an independent movement of the secondary throttle valves relative to each other for minimizing leakage of airflow past the valves when the secondary valves are maintained in a closed position during opening movement of the primary valves.
7. A carburetor as in claim 6, including means providing a limited interconnection between the secondary throttle valve shafts for a limited independent movement of one secondary throttle valve relative to the other secondary throttle valve shaft to provide good simultaneous seating of both secondary throttle valves.
8. A carburetor as in claim 6, the means mounting the secondary throttle valve shafts mounting each of the secondary shafts for separate independent rotation, the linkage means including a separate linkage between the primary shaft and each of the secondary shafts.

Claims (8)

1. A CARBURETOR HAVING A PAIR OF PRIMARY AND A PAIR OF SECONDARY INDUCTION PASSAGE, A PAIR OF PRIMARY AND A PAIR OF SECONDARY THROTTLE VALVES MOUNTED FOR ROTATION IN THE RESPECTINE PASSAGES, LINKAGE MEANS INTERCONNECTING THE SECONDARY THROTTLE VALVES TO THE PRIMARY THROTTLE VALVES FOR SUBSEQUENT OPENING OF THE SECONDARY THROTTLE VALVES BY THE PRIMARY VALVES, AND MEANS MOUNTING THE SECONDARY THROTTLE VALVES ON AXIALLY ALIGNED SHAFT PORTIONS FOR AN INDEPENDENT MOVEMENT RELATIVE TO EACH OTHER TO MINIMIZE LEAKAGE PAST THE SECONDARY THROTTLE VALVES WHEN CLOSED.
2. A carburetor as in claim 1, including a single primary throttle valve shaft, means fixing the pair of primary throttle valves to the shaft, and means connecting the linkage to the shaft.
3. A carburetor as in claim 1, including a secondary throttle valve shaft to which are fixed the secondary throttle valves, the shaft having a pair of axially aligned portions each mounting a secondary throttle valve, and means providing a limited lost motion connection between the portions.
4. A carburetor as in claim 1, including a single primary throttle valve shaft, means fixedly mounting the primary throttle valves on the primary shaft, a pair of axially aligned secondary throttle valve shafts, means fixedly mounting a secondary throttle valve on each of the secondary shafts, the linkage means including means connecting each secondary shaft to the primary shaft.
5. A carburetor as in claim 2, including a secondary throttle valve shaft, means fixing the secondary throttle valves to the secondary shaft, the secondary shaft having a loose tongue and groove connection located between the seconDary throttle valves to permit the independent movement.
6. A carburetor having a pair of primary induction passages, a primary throttle valve shaft rotatably mounted in the primary induction passage, a pair of primary throttle valves secured to the shaft for conjoint movement to open or close the passage, a pair of secondary induction passages, a pair of secondary throttle valves each mounted for rotation in the secondary passages to open and close the same, a secondary throttle valve shaft rotatably mounted in each secondary induction passage and fixed to one of the secondary throttle valves, the secondary throttle shafts being axially aligned, a linkage means interconnecting the primary shaft to the secondary shafts for movement in a sequential manner to open the secondary throttle valve subsequent to the primary valves, and means mounting the secondary shafts for an independent movement of the secondary throttle valves relative to each other for minimizing leakage of airflow past the valves when the secondary valves are maintained in a closed position during opening movement of the primary valves.
7. A carburetor as in claim 6, including means providing a limited interconnection between the secondary throttle valve shafts for a limited independent movement of one secondary throttle valve relative to the other secondary throttle valve shaft to provide good simultaneous seating of both secondary throttle valves.
8. A carburetor as in claim 6, the means mounting the secondary throttle valve shafts mounting each of the secondary shafts for separate independent rotation, the linkage means including a separate linkage between the primary shaft and each of the secondary shafts.
US430823A 1974-01-04 1974-01-04 Carburetor secondary throttle shaft construction Expired - Lifetime US3897524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US430823A US3897524A (en) 1974-01-04 1974-01-04 Carburetor secondary throttle shaft construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US430823A US3897524A (en) 1974-01-04 1974-01-04 Carburetor secondary throttle shaft construction

Publications (1)

Publication Number Publication Date
US3897524A true US3897524A (en) 1975-07-29

Family

ID=23709200

Family Applications (1)

Application Number Title Priority Date Filing Date
US430823A Expired - Lifetime US3897524A (en) 1974-01-04 1974-01-04 Carburetor secondary throttle shaft construction

Country Status (1)

Country Link
US (1) US3897524A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294205A (en) * 1978-06-15 1981-10-13 Honda Giken Kogyo Kabushiki Kaisha Internal combustion engine
EP0388505A2 (en) * 1989-03-23 1990-09-26 VDO Adolf Schindling AG Load control apparatus
US5427141A (en) * 1994-09-19 1995-06-27 Fuji Oozx Inc. Pressure fluid control valve device
US5901745A (en) * 1997-06-19 1999-05-11 The Hoover Company Multi-solution dispensing valve
WO2000065214A1 (en) * 1999-04-24 2000-11-02 Filterwerk Mann+Hummel Gmbh Control valve assembly consisting of control valves or valve modules injection-moulded at the time of mounting
FR2836516A1 (en) * 2002-02-25 2003-08-29 Stihl Ag & Co Kg Andreas Diaphragm carburetor for internal combustion engine, has coupling mechanism which couples air valve to butterfly valve such that coupling mechanism includes spring and compensates for axial and radial tolerances
US20060237136A1 (en) * 2005-04-26 2006-10-26 Andrew Nguyen O-ringless tandem throttle valve for a plasma reactor chamber
US20090151352A1 (en) * 2006-05-31 2009-06-18 Mcewan Jim Turbocharger with dual wastegate
EP2557298A1 (en) * 2011-08-12 2013-02-13 Röchling Automotive AG & Co. KG Flap device with at least two separately produced flaps fitted together for joint motion
WO2016096838A1 (en) * 2014-12-19 2016-06-23 Continental Automotive Gmbh Method for producing a shaft for a valve device, and valve device having a shaft which is produced according to the method
US20200056552A1 (en) * 2018-08-17 2020-02-20 United Technologies Corporation Dual valve system with mechanical linkage
US20220228524A1 (en) * 2019-05-31 2022-07-21 Caterpillar Energy Solutions Gmbh Wastegate with reduced leakage current

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1096482A (en) * 1908-03-18 1914-05-12 Winton Gas Engine And Mfg Company Carbureter.
US2317625A (en) * 1940-10-07 1943-04-27 Mallory Marion Carburetor for internal combustion engines
US2954022A (en) * 1958-05-21 1960-09-27 Gen Motors Corp Split engine
US3013778A (en) * 1959-05-27 1961-12-19 Acf Ind Inc Multi-barrel carburetor
US3205879A (en) * 1963-05-24 1965-09-14 Seggern Ernest A Von Dual fuel supply means for excess air cycle engine
US3328008A (en) * 1965-09-23 1967-06-27 Acf Ind Inc Carburetor
US3523680A (en) * 1966-07-21 1970-08-11 Ethyl Corp Carburetor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1096482A (en) * 1908-03-18 1914-05-12 Winton Gas Engine And Mfg Company Carbureter.
US2317625A (en) * 1940-10-07 1943-04-27 Mallory Marion Carburetor for internal combustion engines
US2954022A (en) * 1958-05-21 1960-09-27 Gen Motors Corp Split engine
US3013778A (en) * 1959-05-27 1961-12-19 Acf Ind Inc Multi-barrel carburetor
US3205879A (en) * 1963-05-24 1965-09-14 Seggern Ernest A Von Dual fuel supply means for excess air cycle engine
US3328008A (en) * 1965-09-23 1967-06-27 Acf Ind Inc Carburetor
US3523680A (en) * 1966-07-21 1970-08-11 Ethyl Corp Carburetor

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294205A (en) * 1978-06-15 1981-10-13 Honda Giken Kogyo Kabushiki Kaisha Internal combustion engine
US4333429A (en) * 1978-06-15 1982-06-08 Honda Giken Kogyo Kabushiki Kaisha Internal combustion engine
EP0388505A2 (en) * 1989-03-23 1990-09-26 VDO Adolf Schindling AG Load control apparatus
EP0388505A3 (en) * 1989-03-23 1990-10-24 Vdo Adolf Schindling Ag Load control apparatus
US5036816A (en) * 1989-03-23 1991-08-06 Vdo Adolf Schindling Ag Load adjustment device
US5427141A (en) * 1994-09-19 1995-06-27 Fuji Oozx Inc. Pressure fluid control valve device
US5901745A (en) * 1997-06-19 1999-05-11 The Hoover Company Multi-solution dispensing valve
WO2000065214A1 (en) * 1999-04-24 2000-11-02 Filterwerk Mann+Hummel Gmbh Control valve assembly consisting of control valves or valve modules injection-moulded at the time of mounting
US6612325B2 (en) 1999-04-24 2003-09-02 Filterwerk Mann & Hummel Gmbh Control valve assembly of valve assembly-injection-molded control valves or modules
US20040003841A1 (en) * 1999-04-24 2004-01-08 Filterwerk Mann & Hummel Gmbh Control valve assembly of valve assembly-injection-molded control valves or modules
US6837261B2 (en) 1999-04-24 2005-01-04 Filterwerk Mann & Hummel Gmbh Control valve assembly of valve assembly-injection-molded control valves or modules
KR100776424B1 (en) * 1999-04-24 2007-11-16 필터벨크 만 운트 훔멜 게엠베하 Control valve assembly consisting of control valves or valve modules injection-moulded at the time of mounting
FR2836516A1 (en) * 2002-02-25 2003-08-29 Stihl Ag & Co Kg Andreas Diaphragm carburetor for internal combustion engine, has coupling mechanism which couples air valve to butterfly valve such that coupling mechanism includes spring and compensates for axial and radial tolerances
US20060237136A1 (en) * 2005-04-26 2006-10-26 Andrew Nguyen O-ringless tandem throttle valve for a plasma reactor chamber
US7428915B2 (en) * 2005-04-26 2008-09-30 Applied Materials, Inc. O-ringless tandem throttle valve for a plasma reactor chamber
US20090151352A1 (en) * 2006-05-31 2009-06-18 Mcewan Jim Turbocharger with dual wastegate
US8336309B2 (en) * 2006-05-31 2012-12-25 Cummins Turbo Technologies Limited Turbocharger with dual wastegate
EP2557298A1 (en) * 2011-08-12 2013-02-13 Röchling Automotive AG & Co. KG Flap device with at least two separately produced flaps fitted together for joint motion
CN103061896A (en) * 2011-08-12 2013-04-24 劳士领汽车股份公司及两合公司 Flap device with at least two separately produced flaps fitted together for joint motion
US8739761B2 (en) 2011-08-12 2014-06-03 Rochling Automotive Ag & Co. Kg Valve device with at least two separately produced valves assembled together for joint movement
WO2016096838A1 (en) * 2014-12-19 2016-06-23 Continental Automotive Gmbh Method for producing a shaft for a valve device, and valve device having a shaft which is produced according to the method
US20200056552A1 (en) * 2018-08-17 2020-02-20 United Technologies Corporation Dual valve system with mechanical linkage
US10683812B2 (en) * 2018-08-17 2020-06-16 Raytheon Technologies Corporation Dual valve system with mechanical linkage
US20220228524A1 (en) * 2019-05-31 2022-07-21 Caterpillar Energy Solutions Gmbh Wastegate with reduced leakage current
US11773768B2 (en) * 2019-05-31 2023-10-03 Caterpillar Energy Solutions Gmbh Wastegate with reduced leakage current

Similar Documents

Publication Publication Date Title
US3897524A (en) Carburetor secondary throttle shaft construction
US3765394A (en) Split engine operation
US3842810A (en) Carburetor
US4582653A (en) Double coil throttle return spring
GB2339850A (en) A throttle valve for an internal combustion engine with a limp home position
US3744471A (en) Carburetor emission control
US3606983A (en) Carburetor having an automatic choke
US3741178A (en) Anti dieseling carburetor structures
US2988074A (en) Engine device for reducing unburned hydrocarbons
US3465736A (en) Exhaust recycle control mechanism
US3744470A (en) Engine anti-diesel control
US4411233A (en) Carburation devices for internal combustion engines
US4492198A (en) Advancing mechanism for internal combustion engines
US4200083A (en) Split operation type multi-cylinder internal combustion engine
US3515105A (en) Ignition system
US3810452A (en) Engine spark timing system control
US4282846A (en) Exhaust gas recirculating device
US4577608A (en) Carburetion system including an adjustable throttle linkage
US3699936A (en) Accelerator pump controlled engine spark timing
US3269711A (en) Carburetor
US3272483A (en) Carburetor
US3670708A (en) Integrated anti-stall and idle-speed adjustment mechanism
US2749100A (en) Throttle control for two-stage carburetor
US3081757A (en) Multi-stage governed fuel device
US2853064A (en) Vacuum controlled device for engines