US3897039A - Variable inside diameter blowout preventer - Google Patents

Variable inside diameter blowout preventer Download PDF

Info

Publication number
US3897039A
US3897039A US412677A US41267773A US3897039A US 3897039 A US3897039 A US 3897039A US 412677 A US412677 A US 412677A US 41267773 A US41267773 A US 41267773A US 3897039 A US3897039 A US 3897039A
Authority
US
United States
Prior art keywords
extrusion
sealing
ram
segments
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US412677A
Inventor
Rouax Robert K Le
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydril LLC
Original Assignee
Hydril LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydril LLC filed Critical Hydril LLC
Priority to US412677A priority Critical patent/US3897039A/en
Application granted granted Critical
Publication of US3897039A publication Critical patent/US3897039A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/06Blow-out preventers, i.e. apparatus closing around a drill pipe, e.g. annular blow-out preventers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/06Blow-out preventers, i.e. apparatus closing around a drill pipe, e.g. annular blow-out preventers
    • E21B33/061Ram-type blow-out preventers, e.g. with pivoting rams
    • E21B33/062Ram-type blow-out preventers, e.g. with pivoting rams with sliding rams

Definitions

  • ABSTRACT A variable inside diameter blowout preventer, wherein each of a pair of blowout preventer rams has antiextrusion means, preferably metallic, for preventing any substantial longitudinal extrusion of yieldable sealing material such as rubber when the inside diameter of the preventer is reduced to seal with a pipe or other object in a well bore or with the opposite ram, whereby sealing off of the well bore may be accomplished even at high well pressures and with the elimination of one or more of the conventional blowout preventers customarily arranged in a stack at a well head.
  • antiextrusion means preferably metallic
  • the blowout preventer also provides a convenient means for hanging off pipe on the rams during certain conditions and well operations, and it further makes possible high pressure stripping of tubing or well pipe as it is withdrawn from a well.
  • upper and lower anti-extrusion means are provided for each ram, each of which is independently operable for effecting a seal with a tubing or other object that has different diameters or external dimensions in the length thereof which is sealingly engaged by the rams.
  • the field of this invention is blowout preventers for oil wells and the like.
  • Such blowout preventers provide a fully-open bore therethrough so that drill bits, reamers, casing hangers and other large diameter tools can freely pass therethrough, but when actuated to the closed position, such preventers are forced inwardly to reduce its bore and automatically adjust its size and shape in sealing contact with whatever object happens to then be in the bore of the preventer, thereby closing off the annular space around such object to prevent a blowout of the well pressure from below. If no tool is in the well, the bore of the preventer can be fully closed to prevent a blowout.
  • Hydril blowout preventers are very satisfactory for relatively low well pressures in the range of from about 2,000 p.s.i. to 5,000 p.s.i., it is generally desirable to use a ram type blowout preventer above such pressures, and above 10,000 p.s.i. well pressure, it is generally considered essential to use a ram type blowout preventer.
  • Ram type preventers heretofore known have had to be stacked, usually in a vertical group of at least three, to seal off a well bore from the fully closed bore position to relatively large diameter pipe which might be in the bore when it is necessary to close off the bore.
  • the three blowout preventers have been required because one had to be a blind ram for fully closing the bore by the rams itself and the other two had to specifically fit the outside diameter of at least two pipe strings or tool sizes used in the well. If the inside diameter of one of the blowout preventers did not conform to the outside diameter of the pipe or tool in the well, then there was the danger of the well blowing out, unless of course the Hydrill preventer could seal around the object and hold the amount of well pressure involved.
  • the present invention relates to a blowout preventer of the ram type which has the advantages of both the ram type and the Hydril annular blowout preventer in providing a variable inside diameter as in the Hydril preventer and at the same time providing for sealing the well bore even at thehigh pressures normally handled by ram type preventers.
  • the blowout preventer of this invention the number of blowout preventers in a stack may normally be reduced by at least one, and by more than that in some instances.
  • the blowout preventer of the present invention has anti-extrusion means for preventing longitudinal extrusion of the resilient sealing material of the preventer over a variable range of inside diameters.
  • upper and lower anti-extrusion means are provided, each of which is independently movable to effect a seal with a tubing or other object that has different diameters or external dimensions in the length thereof which is sealingly engaged by the rams.
  • the present invention provides a convenient means for hanging off pipe on the rarns during certain conditions and well operations, and it additionally makes possible high pressure stripping of tubing or well pipe as it is withdrawn from a well.
  • FIG. 1 is a vertical sectional view, partly in elevation, illustrating the blowout preventer of this invention, and in particular the blowout preventer ram construction of this invention;
  • FIG. 2 is a partial plan view of the blowout preventer of FIG. 1, illustrating the rams in the open position so that the full normal bore through the housing of the blowout preventer is open;
  • FIG. 3 is a view taken on line 3-3 of FIG. 1 to illustrate the rams in the inner stop position prior to sealing with the pipe or other object in the bore of the preventer;
  • FIG. 4 is view similar to FIG. 3, but illustrating the rams in the sealing position with respect to the pipe or other object extending through the bore of the preventer;
  • FIG. 4A is a view illustrating the sealing action which occurs with a Kelly or other object having a crosssectional area which is not circular;
  • FIG. 5A is a plan view, partly in section and with certain parts removed for purposes of illustration, showing a ram of this invention in detail;
  • FIG. 5B is a view of a portion of the ram of FIG. 5B, or the ram opposite thereto, but showing the yieldable sealing member and the non-extrusion elements in the innermost position for that particular form of the invention;
  • FIG. 6 is a view taken on line 6-6 to illustrate details of the end mounting of the ram of FIG. 58;
  • FIG. 7 is a view taken on line 7--7 to further illustrate details of the ram of this invention.
  • FIG. 8 is a vertical sectional view taken on line 88 of FIG. 5A and it further illustrates details of the ram;
  • FIG. 9 is a sectional view taken on line 9-9 of FIG. 1, illustrating one of the rams of the preventer in the stop position with the ram carrier at its innermost point of travel but with the rubber or other yieldable sealing means still undistorted with the non-extrusion segments still in their retracted position;
  • FIG. 10 is a view corresponding to FIG. 9, but showing the rubber or sealing material after it has been urged inwardly and distorted into sealing engagement with the external surface of a pipe disposed in the bore of the preventer, and also illustrating the position of adjacent segments for the anti-extrusion means with the sealing means of the ram.
  • the letter B refers generally to the blowout preventer of this invention which is formed with a pair of rams R of this invention.
  • the rams R are disposed in a conventional blowout preventer body or housing 10 having a longitudinal bore 10a therethrough, through which well pipe P or other objects such as well tools may pass in the normal operations conducted with the blowout preventer B in the fully open position (FIG. 2).
  • Each of the rams R is suitably connected to a conventional power means generally indicated by the letter M (FIG. 1), the details of which will be explained hereinafter.
  • each ram B provides for a sealing with the opposite ram R and with an object such as the well pipe P which is disposed in the bore of the preventer B.
  • an object such as the well pipe P which is disposed in the bore of the preventer B.
  • the blowout preventer housing of this invention may be constructed in any manner suitable for receiving each of the rams R, as best seen in FIG. 1, the housing 10 has a lateral opening or recess 10b for each of the rams R.
  • the ram housing 10 is preferably made with an upper annular flange 10c (FIGS. 1 and 2) having bolt openings 10d therethrough and a lower flange 10e having similar openings therethrough so that such housing 10 may be connected in a stack of blowout preventers or in the string of well casing or pipe in the conventional manner.
  • a conventional head or bonnet 12 is connected to each side of the body or housing 10, and each of such heads or bonnets has a recess 12a (one of which is shown in FIG. 1), and each of which is aligned with the lateral openings 10b in the housing or body 10 so as to form a continuation thereof.
  • the rams R are received in their respective recesses 120 when they are in the retracted position.
  • a piston rod 14 extends through a suitable seal in an opening 12b of each head or bonnet 12.
  • Each piston rod 14 extends to a piston 16 of conventional construction which is disposed in a cylinder 17 having an end cap or closure 18 therewith in any known manner.
  • a fluid inlet line 18a is shown for introducing air, hydraulic fluid or other operating fluid into the cylinder 17 for moving the piston 16 inwardly towards the center of the bore 10a.
  • Another fluid line 12c is provided for introducing air, hydraulic fluid or other fluid into the cylinder 17 for moving the piston 16 outwardly (to the right as viewed, in FIG. 1) to retract the ram R connected therewith through the piston rod 14.
  • various systems for the power means M may be employed and the invention is not limited to the specific form illustrated in FIG. 1.
  • a power means is provided for the lefthand ram R as viewed in FIG. 1, in the same manner as the power means illustrated for the right-hand ram R in FIG. 1.
  • the details of only one of the rams R will be described hereinafter, at least for the most part, and only when it is necessary to show the interaction of the two rams will the other ram be specifically identified.
  • the two rams R are preferably made in the same manner, but they are provided with interfitting portions as will be more evident hereinafter so that they fit together and cooperate with each other in the sealing action.
  • each ram R has a ram carrier 20 which is connected to the piston rod or stem 14, preferably in the conventional releasable manner, utilizing a button 14a on the rod 14 fitting into a suitable slot in the ram carrier 20.
  • the ram carrier 20 is formed of steel or other relatively rigid material and is preferably substantially semi-cylindrical in cross-sectional shape (FIGS. 9 and 10).
  • the ram carrier 20 is provided with an internal recess or surface 20a which is likewise substantially semi-cylindrical in crosssectional shape and which is adapted to receive a seal element 21, preferably having an external convex surface 21a which substantially conforms with the internal surface or recess 20a (FIGS. 9 and 10).
  • the seal member 21 is formed of rubber or other yieldable material and it has therewith side anti-extrusion plates 22 formed of steel or other metal which are adapted to engage the inside surface of an inwardly extending lip 10h on the housing or body recess 10b.
  • side anti-extrusion plates 22 formed of steel or other metal which are adapted to engage the inside surface of an inwardly extending lip 10h on the housing or body recess 10b.
  • the seal member 21 is confined at its upper end be tween the ram carrier 20 and an upper ram confining and alignment plate 24 (FIG. 1) which plate 24 is secured to the carrier 20 by one or more cap screws 26 or other suitable securing means.
  • the upper surface 20b of the ram carrier 20 engages and slides relative to the upper surface of the recess 10b and the recess 12a.
  • the upper surface 21b of the seal member 21 engages and seals with the wall or upper surface of recess 10b.
  • the configuration of the upper alignment plate 24 can be seen in FIGS. 1 and 3 and it includes an alignment finger 24a which is adapted to interfit with a corresponding alignment recess 24b on the opposite ram R when the rams R are in their innermost stop position, as will be more evident hereinafter.
  • the ram R also has a lower ram confining and alignment plate 25 which preferably extends for the full depth of the ram and which is provided with an alignment finger 25a which fits into an alignment recess 25b on the opposite alignment plate 25 of the other ram R in the same manner as illustrated with respect to the upper alignment plate 24.
  • the lower alignment plate 25 is engaged by the ram carrier 20 by means of a shoulder 250 or other suitable engaging means for enabling the carrier 20 to retract the plate 25 outwardly therewith,
  • the vertical or longitudinal area between the upper alignment plate 24 and the lower alignment 25, and inwardly of the seal member 21, forms a pocket or recess which is generally semicylindrical for receiving the parts of the ram R of this invention which are normally the primary replaceable parts.
  • Such parts may be preassembled and inserted initially into position, as will be more evident hereinafter. Also, replacement assemblies including such parts may be used when necessary.
  • Such replaceable assembly of the ram R includes a yieldable sealing element or member 30 formed of rubber or other similar yieldable material.
  • An upper antiextrusion means 31 is provided with the seal member 30, and a lower anti-extrusion means 32 is also provided with the seal member 30, as will be more fully explained.
  • the seal member 30 is actually a part of the entire sealing means for providing sealing engagement with the pipe P, or other object in the well bore or with the opposite ram R.
  • Such seal member 30 is distorted in coaction with the seal member 21 and therefore the two seal members 21 and 30 together form the sealing means, as will be more fully explained.
  • the upper anti-extrusion means 31 is identical to the lower anti-extrusion means 32 in the preferred form of the invention, except that they are upside down with respect to each other. Therefore, the details of the antiextrusion means 31 will be hereinafter explained and the same parts will be identified and explained briefly with respect to the anti-extrusion means 32.
  • the upper anti-extrusion means 31 includes a plurality of primary segments 35 formed of metal or other similar relatively rigid material which are secured to the upper part of the rubber or other yieldable material of the sealing member 30.
  • primary segments 35 are embedded and are molded into the rubber or other yeidable material of the sealing member 30.
  • the sealing member 30 is preferably formed with an inner surface 30a which is generally semicylindrical in shape although it is also prferably dished out as best seen in FIG. 1. Such dished out surface 30a is merely illustrative, as will be more fully explained.
  • the primary segments 35 are arranged in a generally semi-circular manner as best seen in FIG.
  • each of the primary segments 35 is adapted to engage the pipe or other object P when the yieldable material of the seal member 30 has been moved into sealing position so as to prevent upward longitudinal extrusion of the yieldable material (FIG. Since the primary segments 35 are secured to and are preferably molded with the seal member 30, they move radially inwardly and outwardly as the seal member 30 is urged or distorted inwardly and outwardly as will be more fully explained.
  • each segment 35 may have various configurations, the preferred configuration is shown in detail in FIG. 8 and it includes a plurality of grooves 35b which facilitate the embedding and holding action of each of the segments 35 in the rubber or other yieldable material of the seal member 30.
  • the outer portion of each segment 35 is formed with an enlargement 350 having a key-receiving pocket 35d formed therein for receiving one leg of a generally T-shaped key 36 (FIGS. 5A and 8).
  • Each primary segment 35 is also formed with a threaded opening 35e for receiving a retaining screw or bolt 37 having an enlarged head 37a, the purpose of which will be explained.
  • the anit-extrusion means 31 further includes a plurality of guide members 38 which are generally coincidental with the primary segments 35 therebelow, but of a slightly smaller size so as to receive therebetween secondary segments 40 in overlapping relationship with the edges of the adjacent primary segments 35.
  • guide members 38 which are generally coincidental with the primary segments 35 therebelow, but of a slightly smaller size so as to receive therebetween secondary segments 40 in overlapping relationship with the edges of the adjacent primary segments 35.
  • parts of the segments 40 and the guide members 38 have been removed in FIG. 5A.
  • the vertical sides 40a of each of the secondary segments 40 extend beyond the side edges 35f of the adjacent primary segments 35, at all times, and as the segments 35 and 40 move from the retracted position (FIG. 5A) to the sealing position (FIG. 5B), the overlap of the secondary segments 40 with the adjacent edges of the primary segments 35 increases.
  • a generally semi-circular or semi-cylindrical upper retainer plate 41 is disposed above the upper guide wedges 38 and the upper secondary segments 40.
  • Such upper retainer plate 41 is preferably formed of steel or other metal and its shape is substantially coincidental with the upper alignment plat-e 24, at least at its inner semi-cylindrical surface 41a which is likewise generally coincidental with the alignment of the inner edges 35a of the primary segments 35.
  • the ends 41b of each upper retainer plate 41 are adapted to contact each other to limit the travel of the rams R inwardly with respect to each other, which occurs when the rams reach the position essentially shown in FIGS. 1 and 9, and as will be more fully explained.
  • the two upper retainer plates 41 together form a circular plate when they are in the position in contact with each other.
  • the retainer plate 41 is keyed or is otherwise connected to the alignment plate 24 by suitable key 42 or other connecting means.
  • the guide members 38 are connected to the upper retainer plate 41 by a plurality of dowel pins 43 (FIGS. 5A and 8), and also aplurality of cap screws 44.
  • the dowel pins 43 take substantially all of the forces involved during the movements of the parts of the ram R to and from the sealing position.
  • the retainer plate 41 is a unitary member and its movement is stopped when the rams R reach the point at which the plates 41 engage each other, the wedge guide members 38 are likewise moved with the retainer plate 41 until the retainer plate 41 is stopped, and at that time, the wedge members 38 are prevented from further movements inwardly.
  • the primary segments 35 and the secondary segments 40 are free to move inwardly even after the retainer plate 41 and the guide members 38 have been stopped in their inward movement, which results in the yieldable material of the seal member 30 moving inwardly to engage the pipe or other object within the bore of the preventer and with the primary and secondary segments 35 and 40 moving with the yieldable material of the sealing member 30 to prevent longitudinal extrusion of the yieldable material when it is in the sealing engagement with the pipe or'other object.
  • the sides 40a of each secondary segment 40 engage the sides 38a of each wedge member 38 so that the radial inward movement of the secondary segments 40 is assured.
  • each key 36 connects the primary segments 35 to the secondary segments 40.
  • each key 36 is substantially T-shaped with its vertical portion 36a extending upwardly into a suitable slot 40b (FIG. 8) in the secondary segment 40 thereaboove.
  • each key 36 extends into the slots 35d of the adjacent primary segments 35 (FIGS. A and 8).
  • the retainer screw 37 which are threaded into the primary segments 35 extend upwardly into slots 38b having a shoulder 38c over which the head 37a extends.
  • Such slidable connection between each primary segment 35 and its wedge member 38 thereabove serves to interconnect the primary segments 35 to the wedge members 38 and thus to the retainer plate 41 so that in the event damage occurs in the well to the rubber or other yieldable material of the seal member 30, the segments 35 will not fall into the well.
  • each of the primary segments 35 has a radius which would perfectly engage only one external radius of a pipe P disposed in the bore of the preventer.
  • the inner surfaces 35a of the segments 35 may be coated with Teflon or other yieldable material so that they can more accurately conform to the external surface of pipes P of different diameters.
  • Teflon or other yieldable material so that they can more accurately conform to the external surface of pipes P of different diameters.
  • the variations in such surfaces is not sufficient to be concerned about so that there is essentially a steel to steel contact between the segments 35 and the external surface of the pipe P when the rams R are in the sealing position with the yieldable material of the seal member 30 in sealing engagement with the external surface of the pipe P.
  • a half width secondary segment 40' is disposed in sliding engagement with the adjacent wedge member 38.
  • the end secondary segment 40 has a slot 40a through which extends a retaining screw 45 which is threaded or is otherwise connected to the adjacent guide member 38(FIG. 5A).
  • the end key 36 (FIG. 7) is only a half key, having only one of the legs 36b and it is secured to the end secondary segment 40' by an additional pin 46.
  • the lower anti-extrusion means 32 is not illustrated in-detail since the parts thereof are preferably identical to those described heretofore in connection with the upper anti-extrusion means 31, except that they are upside down with respect to each other.
  • the lower anti-extrusion means 32 has its parts identified with the same letters and numerals as the upper anti-extrusion means 31, except that the prefix 1" is placed in front of the numbers for the lower anti-extrusion means 32.
  • the same general arrangement for the lower primary segments 135 is provided as is provided for the upper primary segments 35, and they are interconnected with suitable keys 136 to secondary segments 140.
  • a plurality of wedge guide members corresponding to the guide members 38 are provided between the secondary segments 140 and these are connected to the lower retainer plate 141 which corresponds with the upper retainer plate 41.
  • the lower retainer plate 141 is keyed or is otherwise removably connected to the lower alignment plate 25 by keys or pins 142, or other suitable connecting means.
  • each of the rams R is adapted to be retracted to a fully open position, wherein the bore 10a of the blowout preventer body or housing 10 is fully open as illustrated in FIG. 2.
  • This is of course accomplished in a conventional way by moving the piston 16 or other power means outwardly to retract the rams R into the recesses 10b and 12a.
  • the depth of the recesses 12a in the head or bonnet 12 may be deep enough to receive the entire ram R, as will be well understood, so that when the head or bonnet 12 is removed from the preventer body 10, the ram R may be exposed for the replacement or repair of the ram parts.
  • the details of such construction are not illustrated since they form no specific part of this invention, but are to be understood to be useful in connection herewith.
  • the power means P for each of the rams R is actuated to move the piston 16 inwardly towards each other to bring the alignment plates 24 and 25 together into the closed or stop position illustrated in FIG. 3.
  • the retainer plates 41 and 141 of the pair of rams R are also in engagement with each other at their ends so that they form generally cylindrical or circular plates above and below the wedge members 38 and 138.
  • the primary segments 35 and as well as the secondary segments 40 and move radially inwardly until they engage the external surface of the pipe P.
  • the rubber or other yieldable material of the seal member 30 is confined and is prevented from extruding longitudinally along the length of the pipe P. This makes it possible to hold extremely high pressures above and below the preventer.
  • the pistons 16 When it is desired to release the seal members 30 from their sealing position, the pistons 16 are retracted and are moved outwardly to relieve the pressure on the seal members 21 and 30.
  • the elasticity of the materials such as rubber of the seal members 21 and 30 cause them to return to their normal undistorted condition (FIG. 1) as the pressure from the power means M is relieved.
  • the retraction of the seal member 30 causes the primary segments 35 to also retract radially to their non-sealing position (FIG. 9).
  • the secondary segments 40 and 140 are forced to retract with the primary segments 35 and 135 because of the interconnections of the keys 36 and 136, respectively, as previously explained.
  • FIG. 4 illustrates the metal-tometal contact of the secondary segments 40 with the external surface of the pipe P when the seal member 30 of each of the rams R is in sealing engagement with the external surface of the pipe P.
  • the secondary segments 40 have been shown in their extreme innermost position, which is the limit of travel and effective sealing action with the particular ram R illustrated in the drawings. It will be understood that effective sealing action may be accomplished from such innermost position of FIG. 4 to any pipe diameter outwardly to the diameter formed by the 24 surfaces 24c of the upper alignment plates 25 (FIG. 4).
  • FIG. 4 illustrates the metal-tometal contact of the secondary segments 40 with the external surface of the pipe P when the seal member 30 of each of the rams R is in sealing engagement with the external surface of the pipe P.
  • the secondary segments 40 have been shown in their extreme innermost position, which is the limit of travel and effective sealing action with the particular ram R illustrated in the drawings. It will be understood that effective sealing action may be accomplished from such innermost position of FIG. 4 to any pipe diameter outwardly
  • the arrangement of the primary and secondary segments of both of the anti-extrusion means 31 and 32 may be constructed so that the diameter of the opening formed by such segments in their innermost sealing position is small enough so that there is sealing and anti-extrusion protection even when nothing is in the bore of the preventer and the sealing is accomplished by the rams themselves as in the case ofblind rams.
  • FIG. 4A illustrates the effectiveness of the antiextrusion means of this invention when sealing with a kelly K or other object which does not have a cylindrical external surface.
  • the rubber or other yieldable material of the seal members 30 is distorted into sealing engagement with the external surface of the kelly K, and the anti-extrusion segments move into contact at some parts of the external surface of the kelly K, but because of the circular arrangement thereof, they cannot contact fully throughout the external surface of the kelly K.
  • the area which is left exposed as seen in FIG. 4A is relatively small and therefore the antiextrusion means 40 provides support throughout substantially the full area in which the seal elements 30 extend for the sealing action.
  • FIGS. 9 and illustrate the movement of the upper primary segments 35 from the open or stop position (FIG. 9) to the sealing position (FIG. 10) where the inner edges 35a are in metal to metal contact with the external surface of the pipe P to prevent longitudinal extrusion of the rubber or other sealing material of the seal member 30. It will be understood that the lower primary segments 135 move similarly and effect a metal to metal contact with the pipe P also.
  • the upper segments 35 and 40 may move independently of the lower segments 135 and 140 from the stop position of FIGS. 3 and 9 to the sealing position of FIGS. 4 and 10, so that sealing and metal to metal contact by the segments may be effected at a pipe or object even though the diameter of the object is different in proximity to the upper segments than it is in proximity to the lower segments.
  • a pipe joint or collar is disposed in the bore of the preventer when it is desired to close off the bore, and with the upper edge of the joint or collar below the upper segments 35 and 40 but above the lower segments I35 and 140, distortion and sealing of the seal member 30 with the pipe and collar is effected, metal to metal contact of the upper segments 35 and 40 with the pipe is effected for preventing upward longitudinal extrusion of the seal member 30, and metal to metal contact of the lower segments and with the collar is effected for preventing downward longitudinal extrusion of the seal member 30.
  • FIG. 10 is merely illustrative and may be varied. If desired to provide a blind ram with the anti-extrusion action of this invention the inner edges of all of the segments would essentially meet at the innermost sealing position so that there would essentially be no central opening.
  • the shape of the surface 30a or other portions of the sealing member 30 may be modified, or recesses or the like in the member 30 may be provided, the purpose of which is to compensate, or partially compensate, for the smaller volume of the space available for the rubber of the member 30 when it is in its sealing position (FIG. 10) as compared to the volume of the space available for such member 30 in its retracted position (FIGS. 1 and 9).
  • a blowout preventer ram comprising:
  • a ram carrier having an internal longitudinally extending ram sealing means recess
  • yieldable sealing means adapted to fit in said ram sealing means recess and having an inner bore opening with a curved inner surface adapted to engage a well pipe or the like extending longitudinally and disposed inwardly of the sealing means
  • variable inner diameter upper anti-extrusion means disposed at the upper end] of said yieldable sealing means
  • said anti-extrusion means including pipe engaging means secured to said sealing means and movable radially with said sealing means for providing a variable inner diameter thereof for engagement with the external surfaces of well pipes of varying diameters to prevent upward extrusion of said sealing means at each of the varying diameters of the pipes.
  • lower anti'extrusion means disposed below said yieldable sealing means and including pipe engaging means secured to said sealing means and movable radially therewith for providing a variable inner diameter thereof for engagement with the external surfaces of well pipes of varying diameters to prevent downward extrusion of said sealing means at each of the varying diameters of the pipes.
  • said upper anti-extrusion means includes:
  • said lower anti-extrusion means includes:
  • said internal recess is substantially semicylindrical
  • said outer surface of said sealing means is a convex substantially semicylindrical surface.
  • said upper anti-extrusion means includes:
  • upper guide means disposed above said upper primary segments and between and in guiding contact 7 with each pair of said upper secondary segments.
  • said lower anti-extrusion means includes:
  • lower guide means disposed below said lower primary segments and between and in guiding contact with each pair of said lower secondary segments.
  • an upper ram retainer plate secured to said ram carrier and to said upper guide means.
  • a lower ram retainer plate secured to said ram carrier and to said lower guide means.
  • upper connector means connecting said upper primary and secondary segments together to effect a retraction of said secondary segments with said primary segments when said yieldable material is moved outwardly from said sealing position.
  • lower connector means connecting said lower primary and secondary segments together to effect a retraction of said secondary segments with said primary segments when said yieldable material is moved outwardly from said sealing position.
  • said primary and secondary segments of said upper and lower anti-extrusion means are disposed substantially semicircularly.
  • sealing means comprises:
  • an inner yieldable member engaged with said outer yieldable member and having said inner surface for engaging and conforming to an object or another ram inwardly thereof.
  • each ram includes:
  • a ram carrier adapted to engage the other ram carrier at the innermost limit of travel thereof;
  • sealing means carried with said ram carrier from an open position wherein the carriers are spaced from each other to a stop position wherein the carriers are engaging each other;
  • anti-extrusion means including means for contacting the anti-extrusion means of the other ram or the object therebetween when said sealing means are in the sealing position for substantially preventing longitudinal extrusion of said sealing means in at least one longitudinal direction while said sealing means are in said sealing position.
  • said anti-extrusion means includes means for substantially preventing longitudinal extrusion of said sealing means in both upward and downward longitudinal directions.
  • blowout preventer has a housing with a recess for receiving each of said rams, and including:
  • said housing includes:
  • anti-extrusion means outwardly of said sealing means of each of said rams for substantially preventing outward extrusion of said sealing means.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

A variable inside diameter blowout preventer, wherein each of a pair of blowout preventer rams has anti-extrusion means, preferably metallic, for preventing any substantial longitudinal extrusion of yieldable sealing material such as rubber when the inside diameter of the preventer is reduced to seal with a pipe or other object in a well bore or with the opposite ram, whereby sealing off of the well bore may be accomplished even at high well pressures and with the elimination of one or more of the conventional blowout preventers customarily arranged in a stack at a well head. The blowout preventer also provides a convenient means for hanging off pipe on the rams during certain conditions and well operations, and it further makes possible high pressure stripping of tubing or well pipe as it is withdrawn from a well. In the preferred embodiment, upper and lower anti-extrusion means are provided for each ram, each of which is independently operable for effecting a seal with a tubing or other object that has different diameters or external dimensions in the length thereof which is sealingly engaged by the rams.

Description

United States Patent [1 1 Le Rouax [111 3,897,039 [45] July 29,1975
1 1 VARIABLE INSIDE DIAMETER BLOWOUT PREVENTER [75] Inventor: Robert K. Le Ronax, Houston, Tex.
[73] Assignee: ll-lydril Company [22] Filed: Nov. 5, 1973 [211 App]. No.: 412,677
Related U.S. Application Data [63] Continuatiomin-part of Ser. No. 190,972, Oct. 20,
1971, abandoned.
[52] U.S. Cl 251/1; 277/127 [51] Int. Cl E21b 33/06 [58] Field of Search 251/1, 212; 277/73, 126,
[56] References Cited UNITED STATES PATENTS 778,591 12/1904 Layne 1. 251/1 X 2,035,925 3/1936 Seamark 277/34 2,218,093 10/1940 Penick et a1 251/1 X 2,246,709 6/1941 Allen 277/129 2,368,928 2/1949 King 166/10 2,609,836 9/1952 Knox 1 277/73 2,780,294 2/1957 Loomis 166/203 2,846,178 8/1958 Minor 251/229 X 3,038,542 6/1962 Loomis 166/204 3,416,767 12/1968 Blagg 251/1 3,572,628 3/1971 Jones 251/1 25b 4& 25 M0 Primary Examiner--Martin P. Schwadron Assistant Examiner-Richard Gerard Attorney, Agent, or Firm-Pravel & Wilson [57] ABSTRACT A variable inside diameter blowout preventer, wherein each of a pair of blowout preventer rams has antiextrusion means, preferably metallic, for preventing any substantial longitudinal extrusion of yieldable sealing material such as rubber when the inside diameter of the preventer is reduced to seal with a pipe or other object in a well bore or with the opposite ram, whereby sealing off of the well bore may be accomplished even at high well pressures and with the elimination of one or more of the conventional blowout preventers customarily arranged in a stack at a well head. The blowout preventer also provides a convenient means for hanging off pipe on the rams during certain conditions and well operations, and it further makes possible high pressure stripping of tubing or well pipe as it is withdrawn from a well. In the preferred embodiment, upper and lower anti-extrusion means are provided for each ram, each of which is independently operable for effecting a seal with a tubing or other object that has different diameters or external dimensions in the length thereof which is sealingly engaged by the rams.
20 Claims, 12 Drawing Figures PATENTEBJUL29IEI75 897, 039
sum 2 VARIABLE INSIDE DIAMETER BLOWOU PREVENTER.
CROSS-REFERENCETO RELATED APPLICATION This application is a continuation-in-part of US. application Ser. No. 190,972 filed Oct. 20, 1971 copending herewith and now abandoned.-
BACKGROUND OF THE INVENTION The field of this invention is blowout preventers for oil wells and the like.
Annular blowout preventers made by the Hydril Company an example of which is shown on page 2745 of the Composite Catalog for 197071, have been in extensive commercial use for a number of years. Such blowout preventers provide a fully-open bore therethrough so that drill bits, reamers, casing hangers and other large diameter tools can freely pass therethrough, but when actuated to the closed position, such preventers are forced inwardly to reduce its bore and automatically adjust its size and shape in sealing contact with whatever object happens to then be in the bore of the preventer, thereby closing off the annular space around such object to prevent a blowout of the well pressure from below. If no tool is in the well, the bore of the preventer can be fully closed to prevent a blowout.
Although such Hydril blowout preventers are very satisfactory for relatively low well pressures in the range of from about 2,000 p.s.i. to 5,000 p.s.i., it is generally desirable to use a ram type blowout preventer above such pressures, and above 10,000 p.s.i. well pressure, it is generally considered essential to use a ram type blowout preventer. Ram type preventers heretofore known have had to be stacked, usually in a vertical group of at least three, to seal off a well bore from the fully closed bore position to relatively large diameter pipe which might be in the bore when it is necessary to close off the bore. The three blowout preventers have been required because one had to be a blind ram for fully closing the bore by the rams itself and the other two had to specifically fit the outside diameter of at least two pipe strings or tool sizes used in the well. If the inside diameter of one of the blowout preventers did not conform to the outside diameter of the pipe or tool in the well, then there was the danger of the well blowing out, unless of course the Hydrill preventer could seal around the object and hold the amount of well pressure involved.
SUMMARY OF THE INVENTION The present invention relates to a blowout preventer of the ram type which has the advantages of both the ram type and the Hydril annular blowout preventer in providing a variable inside diameter as in the Hydril preventer and at the same time providing for sealing the well bore even at thehigh pressures normally handled by ram type preventers. With the blowout preventer of this invention, the number of blowout preventers in a stack may normally be reduced by at least one, and by more than that in some instances.
The blowout preventer of the present invention has anti-extrusion means for preventing longitudinal extrusion of the resilient sealing material of the preventer over a variable range of inside diameters. In the preferred embodiment, upper and lower anti-extrusion means are provided, each of which is independently movable to effect a seal with a tubing or other object that has different diameters or external dimensions in the length thereof which is sealingly engaged by the rams.
Further, the present invention provides a convenient means for hanging off pipe on the rarns during certain conditions and well operations, and it additionally makes possible high pressure stripping of tubing or well pipe as it is withdrawn from a well.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical sectional view, partly in elevation, illustrating the blowout preventer of this invention, and in particular the blowout preventer ram construction of this invention;
FIG. 2 is a partial plan view of the blowout preventer of FIG. 1, illustrating the rams in the open position so that the full normal bore through the housing of the blowout preventer is open;
FIG. 3 is a view taken on line 3-3 of FIG. 1 to illustrate the rams in the inner stop position prior to sealing with the pipe or other object in the bore of the preventer;
FIG. 4 is view similar to FIG. 3, but illustrating the rams in the sealing position with respect to the pipe or other object extending through the bore of the preventer;
FIG. 4A is a view illustrating the sealing action which occurs with a Kelly or other object having a crosssectional area which is not circular;
FIG. 5A is a plan view, partly in section and with certain parts removed for purposes of illustration, showing a ram of this invention in detail;
FIG. 5B is a view of a portion of the ram of FIG. 5B, or the ram opposite thereto, but showing the yieldable sealing member and the non-extrusion elements in the innermost position for that particular form of the invention;
FIG. 6 is a view taken on line 6-6 to illustrate details of the end mounting of the ram of FIG. 58;
FIG. 7 is a view taken on line 7--7 to further illustrate details of the ram of this invention;
FIG. 8 is a vertical sectional view taken on line 88 of FIG. 5A and it further illustrates details of the ram;
FIG. 9 is a sectional view taken on line 9-9 of FIG. 1, illustrating one of the rams of the preventer in the stop position with the ram carrier at its innermost point of travel but with the rubber or other yieldable sealing means still undistorted with the non-extrusion segments still in their retracted position; and
FIG. 10 is a view corresponding to FIG. 9, but showing the rubber or sealing material after it has been urged inwardly and distorted into sealing engagement with the external surface of a pipe disposed in the bore of the preventer, and also illustrating the position of adjacent segments for the anti-extrusion means with the sealing means of the ram.
DESCRIPTION OF THE PREFERRED EMBODIMENT In the drawing, the letter B refers generally to the blowout preventer of this invention which is formed with a pair of rams R of this invention. The rams R are disposed in a conventional blowout preventer body or housing 10 having a longitudinal bore 10a therethrough, through which well pipe P or other objects such as well tools may pass in the normal operations conducted with the blowout preventer B in the fully open position (FIG. 2). Each of the rams R is suitably connected to a conventional power means generally indicated by the letter M (FIG. 1), the details of which will be explained hereinafter.
Briefly, the construction of each ram B provides for a sealing with the opposite ram R and with an object such as the well pipe P which is disposed in the bore of the preventer B. By reason of the particular construction of the present invention, extrusion of the yieldable sealing means is prevented throughout a variable inside diameter range of sealing positions, whereby the benefits of both the ram type and the annular type of preventer are made possible with the preventer of this invention.
Although the blowout preventer housing of this invention may be constructed in any manner suitable for receiving each of the rams R, as best seen in FIG. 1, the housing 10 has a lateral opening or recess 10b for each of the rams R. The ram housing 10 is preferably made with an upper annular flange 10c (FIGS. 1 and 2) having bolt openings 10d therethrough and a lower flange 10e having similar openings therethrough so that such housing 10 may be connected in a stack of blowout preventers or in the string of well casing or pipe in the conventional manner. A seal ring groove 10fis provided in the flange 10c and a similar seal ring groove 10g is provided in the flange 10e for receiving seal rings which serve to seal with the adjacent well casing or other blowout preventer to which the housing 10 is connected, as will be well understood.
A conventional head or bonnet 12 is connected to each side of the body or housing 10, and each of such heads or bonnets has a recess 12a (one of which is shown in FIG. 1), and each of which is aligned with the lateral openings 10b in the housing or body 10 so as to form a continuation thereof. The rams R are received in their respective recesses 120 when they are in the retracted position. A piston rod 14 extends through a suitable seal in an opening 12b of each head or bonnet 12. Each piston rod 14 extends to a piston 16 of conventional construction which is disposed in a cylinder 17 having an end cap or closure 18 therewith in any known manner. For purposes of illustration, a fluid inlet line 18a is shown for introducing air, hydraulic fluid or other operating fluid into the cylinder 17 for moving the piston 16 inwardly towards the center of the bore 10a. Another fluid line 12c is provided for introducing air, hydraulic fluid or other fluid into the cylinder 17 for moving the piston 16 outwardly (to the right as viewed, in FIG. 1) to retract the ram R connected therewith through the piston rod 14. It will be understood that various systems for the power means M may be employed and the invention is not limited to the specific form illustrated in FIG. 1. It should also be understood that a power means is provided for the lefthand ram R as viewed in FIG. 1, in the same manner as the power means illustrated for the right-hand ram R in FIG. 1.
For ease of description, the details of only one of the rams R will be described hereinafter, at least for the most part, and only when it is necessary to show the interaction of the two rams will the other ram be specifically identified. However, it will be understood that the two rams R are preferably made in the same manner, but they are provided with interfitting portions as will be more evident hereinafter so that they fit together and cooperate with each other in the sealing action.
Thus, each ram R has a ram carrier 20 which is connected to the piston rod or stem 14, preferably in the conventional releasable manner, utilizing a button 14a on the rod 14 fitting into a suitable slot in the ram carrier 20. In the preferred form of the invention, the ram carrier 20 is formed of steel or other relatively rigid material and is preferably substantially semi-cylindrical in cross-sectional shape (FIGS. 9 and 10). The ram carrier 20 is provided with an internal recess or surface 20a which is likewise substantially semi-cylindrical in crosssectional shape and which is adapted to receive a seal element 21, preferably having an external convex surface 21a which substantially conforms with the internal surface or recess 20a (FIGS. 9 and 10). The seal member 21 is formed of rubber or other yieldable material and it has therewith side anti-extrusion plates 22 formed of steel or other metal which are adapted to engage the inside surface of an inwardly extending lip 10h on the housing or body recess 10b. During movement of the carrier 20 from the position of FIG. 9 (stop position) to the sealing position of FIG. 10, there is also a sliding movement between the carrier 20 and the side plates 10h as is evident from a comparison of FIGS. 9 and 10 and as will be more evident hereinafter.
The seal member 21 is confined at its upper end be tween the ram carrier 20 and an upper ram confining and alignment plate 24 (FIG. 1) which plate 24 is secured to the carrier 20 by one or more cap screws 26 or other suitable securing means. It is to be noted that the upper surface 20b of the ram carrier 20 engages and slides relative to the upper surface of the recess 10b and the recess 12a. Similarly, the upper surface 21b of the seal member 21 engages and seals with the wall or upper surface of recess 10b. The configuration of the upper alignment plate 24 can be seen in FIGS. 1 and 3 and it includes an alignment finger 24a which is adapted to interfit with a corresponding alignment recess 24b on the opposite ram R when the rams R are in their innermost stop position, as will be more evident hereinafter. I Y
The ram R also has a lower ram confining and alignment plate 25 which preferably extends for the full depth of the ram and which is provided with an alignment finger 25a which fits into an alignment recess 25b on the opposite alignment plate 25 of the other ram R in the same manner as illustrated with respect to the upper alignment plate 24. The lower alignment plate 25 is engaged by the ram carrier 20 by means of a shoulder 250 or other suitable engaging means for enabling the carrier 20 to retract the plate 25 outwardly therewith,
but permitting inward movement of the carrier 20 relative to the plate 25 after the inward movement of the plate 25 is stopped by engagement with the opposite plate 25.
It is to be noted that the vertical or longitudinal area between the upper alignment plate 24 and the lower alignment 25, and inwardly of the seal member 21, forms a pocket or recess which is generally semicylindrical for receiving the parts of the ram R of this invention which are normally the primary replaceable parts. Such parts may be preassembled and inserted initially into position, as will be more evident hereinafter. Also, replacement assemblies including such parts may be used when necessary.
Such replaceable assembly of the ram R includes a yieldable sealing element or member 30 formed of rubber or other similar yieldable material. An upper antiextrusion means 31 is provided with the seal member 30, and a lower anti-extrusion means 32 is also provided with the seal member 30, as will be more fully explained. The seal member 30 is actually a part of the entire sealing means for providing sealing engagement with the pipe P, or other object in the well bore or with the opposite ram R. Such seal member 30 is distorted in coaction with the seal member 21 and therefore the two seal members 21 and 30 together form the sealing means, as will be more fully explained.
The upper anti-extrusion means 31 is identical to the lower anti-extrusion means 32 in the preferred form of the invention, except that they are upside down with respect to each other. Therefore, the details of the antiextrusion means 31 will be hereinafter explained and the same parts will be identified and explained briefly with respect to the anti-extrusion means 32.
The upper anti-extrusion means 31 includes a plurality of primary segments 35 formed of metal or other similar relatively rigid material which are secured to the upper part of the rubber or other yieldable material of the sealing member 30. Preferably, such primary segments 35 are embedded and are molded into the rubber or other yeidable material of the sealing member 30. The sealing member 30 is preferably formed with an inner surface 30a which is generally semicylindrical in shape although it is also prferably dished out as best seen in FIG. 1. Such dished out surface 30a is merely illustrative, as will be more fully explained. The primary segments 35 are arranged in a generally semi-circular manner as best seen in FIG. 9 and they are positioned so that their inner ends 35a are arranged in a semi-cylindrical manner of alignment with the semi-cylindrical surface 30a therebelow. The radius of such semi-cylindrical surface which is thus formed may be varied, depending upon a particular range of well pipe or objects which are to be sealed, as will be more evident hereinafter. The inner surface 350 of each of the primary segments 35 is adapted to engage the pipe or other object P when the yieldable material of the seal member 30 has been moved into sealing position so as to prevent upward longitudinal extrusion of the yieldable material (FIG. Since the primary segments 35 are secured to and are preferably molded with the seal member 30, they move radially inwardly and outwardly as the seal member 30 is urged or distorted inwardly and outwardly as will be more fully explained.
Although the primary segments 35 may have various configurations, the preferred configuration is shown in detail in FIG. 8 and it includes a plurality of grooves 35b which facilitate the embedding and holding action of each of the segments 35 in the rubber or other yieldable material of the seal member 30. The outer portion of each segment 35 is formed with an enlargement 350 having a key-receiving pocket 35d formed therein for receiving one leg of a generally T-shaped key 36 (FIGS. 5A and 8). Each primary segment 35 is also formed with a threaded opening 35e for receiving a retaining screw or bolt 37 having an enlarged head 37a, the purpose of which will be explained.
The anit-extrusion means 31 further includes a plurality of guide members 38 which are generally coincidental with the primary segments 35 therebelow, but of a slightly smaller size so as to receive therebetween secondary segments 40 in overlapping relationship with the edges of the adjacent primary segments 35. For the purposes of illustration, parts of the segments 40 and the guide members 38 have been removed in FIG. 5A. It is to be noted that the vertical sides 40a of each of the secondary segments 40 extend beyond the side edges 35f of the adjacent primary segments 35, at all times, and as the segments 35 and 40 move from the retracted position (FIG. 5A) to the sealing position (FIG. 5B), the overlap of the secondary segments 40 with the adjacent edges of the primary segments 35 increases.
A generally semi-circular or semi-cylindrical upper retainer plate 41 is disposed above the upper guide wedges 38 and the upper secondary segments 40. Such upper retainer plate 41 is preferably formed of steel or other metal and its shape is substantially coincidental with the upper alignment plat-e 24, at least at its inner semi-cylindrical surface 41a which is likewise generally coincidental with the alignment of the inner edges 35a of the primary segments 35. The ends 41b of each upper retainer plate 41 are adapted to contact each other to limit the travel of the rams R inwardly with respect to each other, which occurs when the rams reach the position essentially shown in FIGS. 1 and 9, and as will be more fully explained. Thus, the two upper retainer plates 41 together form a circular plate when they are in the position in contact with each other. The retainer plate 41 is keyed or is otherwise connected to the alignment plate 24 by suitable key 42 or other connecting means. The guide members 38 are connected to the upper retainer plate 41 by a plurality of dowel pins 43 (FIGS. 5A and 8), and also aplurality of cap screws 44. The dowel pins 43 take substantially all of the forces involved during the movements of the parts of the ram R to and from the sealing position. Because the retainer plate 41 is a unitary member and its movement is stopped when the rams R reach the point at which the plates 41 engage each other, the wedge guide members 38 are likewise moved with the retainer plate 41 until the retainer plate 41 is stopped, and at that time, the wedge members 38 are prevented from further movements inwardly. The primary segments 35 and the secondary segments 40, on the other hand, are free to move inwardly even after the retainer plate 41 and the guide members 38 have been stopped in their inward movement, which results in the yieldable material of the seal member 30 moving inwardly to engage the pipe or other object within the bore of the preventer and with the primary and secondary segments 35 and 40 moving with the yieldable material of the sealing member 30 to prevent longitudinal extrusion of the yieldable material when it is in the sealing engagement with the pipe or'other object. During the relative movement of the secondary segments 40 with respect to the wedge members 38, the sides 40a of each secondary segment 40 engage the sides 38a of each wedge member 38 so that the radial inward movement of the secondary segments 40 is assured. The rubber or other yieldable material of the seal member 30 extends upwardly and outwardly behind each of the secondary segments 40 so as to urge them inwardly along with the primary segments 35. To be sure that the upper secondary segments 40 retract with the seal member 30 as it is moved from the sealing position to the retracted position, the keys 36 connect the primary segments 35 to the secondary segments 40. As previously explained, each key 36 is substantially T-shaped with its vertical portion 36a extending upwardly into a suitable slot 40b (FIG. 8) in the secondary segment 40 thereaboove.
The lateral legs 36b of each key 36 extends into the slots 35d of the adjacent primary segments 35 (FIGS. A and 8).
The retainer screw 37 which are threaded into the primary segments 35 extend upwardly into slots 38b having a shoulder 38c over which the head 37a extends. Such slidable connection between each primary segment 35 and its wedge member 38 thereabove serves to interconnect the primary segments 35 to the wedge members 38 and thus to the retainer plate 41 so that in the event damage occurs in the well to the rubber or other yieldable material of the seal member 30, the segments 35 will not fall into the well. Secondarily, there is some guiding action provided by the cap screws 37 moving in the slots 38b as the primary segments 35 move radially relative to the guide members 38.
It should be noted that the inner curved surface 35a of each of the primary segments 35 has a radius which would perfectly engage only one external radius of a pipe P disposed in the bore of the preventer. To provide some variability with respect to that contact, the inner surfaces 35a of the segments 35 may be coated with Teflon or other yieldable material so that they can more accurately conform to the external surface of pipes P of different diameters. However, in the normal operations, the variations in such surfaces is not sufficient to be concerned about so that there is essentially a steel to steel contact between the segments 35 and the external surface of the pipe P when the rams R are in the sealing position with the yieldable material of the seal member 30 in sealing engagement with the external surface of the pipe P.
Referring now in particular to FIGS. 5A, 5B, 6 and 7, the specific mounting for the ends of the assemblies for each ram R are illustrated in the preferred form of this invention. Thus, at each of the generally semicylindrical or semi-circular ends, a half width secondary segment 40' is disposed in sliding engagement with the adjacent wedge member 38. The end secondary segment 40 has a slot 40a through which extends a retaining screw 45 which is threaded or is otherwise connected to the adjacent guide member 38(FIG. 5A). Also, the end key 36 (FIG. 7) is only a half key, having only one of the legs 36b and it is secured to the end secondary segment 40' by an additional pin 46.
.The lower anti-extrusion means 32 is not illustrated in-detail since the parts thereof are preferably identical to those described heretofore in connection with the upper anti-extrusion means 31, except that they are upside down with respect to each other. Briefly, as seen in FIG. 1, the lower anti-extrusion means 32 has its parts identified with the same letters and numerals as the upper anti-extrusion means 31, except that the prefix 1" is placed in front of the numbers for the lower anti-extrusion means 32. Thus, the same general arrangement for the lower primary segments 135 is provided as is provided for the upper primary segments 35, and they are interconnected with suitable keys 136 to secondary segments 140. A plurality of wedge guide members corresponding to the guide members 38 are provided between the secondary segments 140 and these are connected to the lower retainer plate 141 which corresponds with the upper retainer plate 41. The lower retainer plate 141 is keyed or is otherwise removably connected to the lower alignment plate 25 by keys or pins 142, or other suitable connecting means.
In the operation or use of the apparatus of this invention, each of the rams R is adapted to be retracted to a fully open position, wherein the bore 10a of the blowout preventer body or housing 10 is fully open as illustrated in FIG. 2. This is of course accomplished in a conventional way by moving the piston 16 or other power means outwardly to retract the rams R into the recesses 10b and 12a. The depth of the recesses 12a in the head or bonnet 12 may be deep enough to receive the entire ram R, as will be well understood, so that when the head or bonnet 12 is removed from the preventer body 10, the ram R may be exposed for the replacement or repair of the ram parts. The details of such construction are not illustrated since they form no specific part of this invention, but are to be understood to be useful in connection herewith.
When the blowout preventer is to be used for sealing around the pipe P or with the opposite rams themselves, the power means P for each of the rams R is actuated to move the piston 16 inwardly towards each other to bring the alignment plates 24 and 25 together into the closed or stop position illustrated in FIG. 3. At that time, the retainer plates 41 and 141 of the pair of rams R are also in engagement with each other at their ends so that they form generally cylindrical or circular plates above and below the wedge members 38 and 138.
At the time the rams R thus move to the stop position shown in FIG. 3, the pipe P is confined, but sealing therewith has not actually been accomplished. Continued inward movement of the ram carriers 20 is then effected by continuing the inward movement of the power means such as the pistons 16, which causes a distortion or inward movement of the sealing means, and in particular the seal members 30 and 21 to force the inner surface 30a of each of the ram sealing members 30 into sealing engagement with the external surface of the pipe P.
At the same time, the primary segments 35 and as well as the secondary segments 40 and move radially inwardly until they engage the external surface of the pipe P. When the primary and secondary segments have thus engaged the pipe P, the rubber or other yieldable material of the seal member 30 is confined and is prevented from extruding longitudinally along the length of the pipe P. This makes it possible to hold extremely high pressures above and below the preventer.
In some instances, it may be possible to use only the upper anti-extrusion means 31, to seal against upward extrusion forces from well pressure, but normally both of the anti-extrusion means 31 and 32 are provided with each of the rams R.
When it is desired to release the seal members 30 from their sealing position, the pistons 16 are retracted and are moved outwardly to relieve the pressure on the seal members 21 and 30. The elasticity of the materials such as rubber of the seal members 21 and 30 cause them to return to their normal undistorted condition (FIG. 1) as the pressure from the power means M is relieved. The retraction of the seal member 30 causes the primary segments 35 to also retract radially to their non-sealing position (FIG. 9). The secondary segments 40 and 140 are forced to retract with the primary segments 35 and 135 because of the interconnections of the keys 36 and 136, respectively, as previously explained.
FIG. 4 illustrates the metal-tometal contact of the secondary segments 40 with the external surface of the pipe P when the seal member 30 of each of the rams R is in sealing engagement with the external surface of the pipe P. In FIG. 4, the secondary segments 40 have been shown in their extreme innermost position, which is the limit of travel and effective sealing action with the particular ram R illustrated in the drawings. It will be understood that effective sealing action may be accomplished from such innermost position of FIG. 4 to any pipe diameter outwardly to the diameter formed by the 24 surfaces 24c of the upper alignment plates 25 (FIG. 4). Thus, there is a variable inside diameter range for effective sealing with the particular ram construction. The extent of such variation depends upon the particular configuration and the radius of curvature of the inner segments of the anti-extrusion means 31 and 32. In fact, the arrangement of the primary and secondary segments of both of the anti-extrusion means 31 and 32 may be constructed so that the diameter of the opening formed by such segments in their innermost sealing position is small enough so that there is sealing and anti-extrusion protection even when nothing is in the bore of the preventer and the sealing is accomplished by the rams themselves as in the case ofblind rams.
FIG. 4A illustrates the effectiveness of the antiextrusion means of this invention when sealing with a kelly K or other object which does not have a cylindrical external surface. The rubber or other yieldable material of the seal members 30 is distorted into sealing engagement with the external surface of the kelly K, and the anti-extrusion segments move into contact at some parts of the external surface of the kelly K, but because of the circular arrangement thereof, they cannot contact fully throughout the external surface of the kelly K. However, the area which is left exposed as seen in FIG. 4A is relatively small and therefore the antiextrusion means 40 provides support throughout substantially the full area in which the seal elements 30 extend for the sealing action.
FIGS. 9 and illustrate the movement of the upper primary segments 35 from the open or stop position (FIG. 9) to the sealing position (FIG. 10) where the inner edges 35a are in metal to metal contact with the external surface of the pipe P to prevent longitudinal extrusion of the rubber or other sealing material of the seal member 30. It will be understood that the lower primary segments 135 move similarly and effect a metal to metal contact with the pipe P also.
However, it should be noted that the upper segments 35 and 40 may move independently of the lower segments 135 and 140 from the stop position of FIGS. 3 and 9 to the sealing position of FIGS. 4 and 10, so that sealing and metal to metal contact by the segments may be effected at a pipe or object even though the diameter of the object is different in proximity to the upper segments than it is in proximity to the lower segments. For example, if a pipe joint or collar is disposed in the bore of the preventer when it is desired to close off the bore, and with the upper edge of the joint or collar below the upper segments 35 and 40 but above the lower segments I35 and 140, distortion and sealing of the seal member 30 with the pipe and collar is effected, metal to metal contact of the upper segments 35 and 40 with the pipe is effected for preventing upward longitudinal extrusion of the seal member 30, and metal to metal contact of the lower segments and with the collar is effected for preventing downward longitudinal extrusion of the seal member 30.
It will also be understood that the same type of sealing action occurs at any intermediate location or radial position of the segments between the stop position of FIG. 9 and the smallest diameter sealing position of FIG. 10. The secondary segments 40 and 140 prevent extrusion of the sealing material of the seal member 30 beyond the radial gaps between the primary segments 35 and 135, respectively.
It will also be understood that the smallest diameter sealing position of FIG. 10 is merely illustrative and may be varied. If desired to provide a blind ram with the anti-extrusion action of this invention the inner edges of all of the segments would essentially meet at the innermost sealing position so that there would essentially be no central opening.
Instead of the dished out or concave surface 30a, the shape of the surface 30a or other portions of the sealing member 30 may be modified, or recesses or the like in the member 30 may be provided, the purpose of which is to compensate, or partially compensate, for the smaller volume of the space available for the rubber of the member 30 when it is in its sealing position (FIG. 10) as compared to the volume of the space available for such member 30 in its retracted position (FIGS. 1 and 9).
The foregoing disclosure and description of the invention are illustrative and explanatory thereof, and various changes in the size, shape, and materials as well as in the details of the illustrated construction may be made without departing from the spirit of the invention.
I claim:
1. A blowout preventer ram, comprising:
a ram carrier having an internal longitudinally extending ram sealing means recess;
yieldable sealing means adapted to fit in said ram sealing means recess and having an inner bore opening with a curved inner surface adapted to engage a well pipe or the like extending longitudinally and disposed inwardly of the sealing means,
a variable inner diameter upper anti-extrusion means disposed at the upper end] of said yieldable sealing means; and
said anti-extrusion means including pipe engaging means secured to said sealing means and movable radially with said sealing means for providing a variable inner diameter thereof for engagement with the external surfaces of well pipes of varying diameters to prevent upward extrusion of said sealing means at each of the varying diameters of the pipes.
2. The structure set forth in claim 1, including:
lower anti'extrusion means disposed below said yieldable sealing means and including pipe engaging means secured to said sealing means and movable radially therewith for providing a variable inner diameter thereof for engagement with the external surfaces of well pipes of varying diameters to prevent downward extrusion of said sealing means at each of the varying diameters of the pipes.
3. The structure set forth in claim 1, including:
means for moving said ram carrier and the parts therewith laterally to and from said sealing position.
4. The structure set forth in claim 1, wherein said upper anti-extrusion means includes:
a plurality of upper primary segments disposed with a gap between adjacent segments and secured to the yieldable material of said sealing means for movement with said yieldable material as it is moved to and from said sealing position; and
a plurality of upper secondary segments disposed above said primary segments spanning said gap between said adjacent upper primary segments to substantially prevent extrusion of said yieldable material above said gap.
5. The structure set forth in claim 4, wherein said lower anti-extrusion means includes:
a plurality of lower primary segments disposed with a gap between adjacent segments and secured to the yieldable material of said sealing means for movement with said yieldable material as it is moved to and from said sealing position;
a plurality of lower secondary segments disposed below said lower primary segments and spanning said gap between said adjacent lower primary segments to substantially prevent extrusion of said yieldable material below said gap.
6. The structure set forth in claim 1, wherein:
said internal recess is substantially semicylindrical;
and
said outer surface of said sealing means is a convex substantially semicylindrical surface.
7. The structure set forth in claim 4, wherein said upper anti-extrusion means includes:
upper guide means disposed above said upper primary segments and between and in guiding contact 7 with each pair of said upper secondary segments.
8. The structure set forth in claim 5, wherein said lower anti-extrusion means includes:
lower guide means disposed below said lower primary segments and between and in guiding contact with each pair of said lower secondary segments.
9. The structure set forth in claim 7, including:
an upper ram retainer plate secured to said ram carrier and to said upper guide means.
10. The structure set forth in claim 8, including;
a lower ram retainer plate secured to said ram carrier and to said lower guide means.
11. The structure set forth in claim 4, including:
upper connector means connecting said upper primary and secondary segments together to effect a retraction of said secondary segments with said primary segments when said yieldable material is moved outwardly from said sealing position.
12. The structure set forth in claim 5, including:
lower connector means connecting said lower primary and secondary segments together to effect a retraction of said secondary segments with said primary segments when said yieldable material is moved outwardly from said sealing position.
13. The structure set forth in claim 5, wherein:
said primary and secondary segments of said upper and lower anti-extrusion means are disposed substantially semicircularly.
14. The structure set forth in claim 13, including an upper wedge shaped guide member disposed adjacent each'of said upper secondary segments in said upper anti-extrusion means; and
a lower wedge shaped guide member disposed adjacent each of said lower secondary segments in said lower anti-extrusion means.
15. The structure set forth in claim 4, wherein said sealing means comprises:
an outer substantially semicylindrical yieldable member having said convex substantially semicylindrical surface; and
an inner yieldable member engaged with said outer yieldable member and having said inner surface for engaging and conforming to an object or another ram inwardly thereof.
16. In a blowout preventer having a pair of blowout preventer rams, the improvement residing in each ram, wherein each ram includes:
a ram carrier adapted to engage the other ram carrier at the innermost limit of travel thereof;
sealing means carried with said ram carrier from an open position wherein the carriers are spaced from each other to a stop position wherein the carriers are engaging each other;
means for urging said sealing means inwardly to a sealing position after said carriers have reached said stop position to cause said sealing means on each ram to engage each other or around an object therebetween; and
anti-extrusion means including means for contacting the anti-extrusion means of the other ram or the object therebetween when said sealing means are in the sealing position for substantially preventing longitudinal extrusion of said sealing means in at least one longitudinal direction while said sealing means are in said sealing position. i
17. The structure set forth in claim 16, wherein said anti-extrusion means includes means for substantially preventing longitudinal extrusion of said sealing means in both upward and downward longitudinal directions.
18. The structure set forth in claim 16, wherein said blowout preventer has a housing with a recess for receiving each of said rams, and including:
power means for moving said ram carriers into contact with each other at said stop position and for thereafter forcing said sealing means into said sealing position.
19. The structure set forth in claim 18, wherein said housing includes:
anti-extrusion means outwardly of said sealing means of each of said rams for substantially preventing outward extrusion of said sealing means.
20. The structure set forth in claim 19, including:
an anti-extrusion side plate on each side of said sealing means of each of said rams and slidably engageable with said housing for substantially preventing lateral extrusion of said sealing means during its distortion in moving into and out of said sealing position.

Claims (20)

1. A blowout preventer ram, comprising: a ram carrier having an internal longitudinally extending ram sealing means recess; yieldable sealing means adapted to fit in said ram sealing means recess and having an inner bore opening with a curved inner surface adapted to engage a well pipe or the like extending longitudinally and disposed inwardly of the sealing means, a variable inner diameter upper anti-extrusion means disposed at the upper end of said yieldable sealing means; and said anti-extrusion means including pipe engaging means secured to said sealing means and movable radially with said sealing means for providing a variable inner diameter thereof for engagement with the external surfaces of well pipes of varying diameters to prevent upward extrusion of said sealing means at each of the varying diameters of the pipes.
2. The structure set forth in claim 1, including: lower anti-extrusion means disposed below said yieldable sealing means and including pipe engaging means secured to said sealing means and movable radially therewith for providing a variable inner diameter thereof for engagement with the external surfaces of well pipes of varying diameters to prevent downward extrusion of said sealing means at each of the varying diameters of the pipes.
3. The structure set forth in claim 1, including: means for moving said ram carrier and the parts therewith laterally to and from said sealing position.
4. The structure set forth in claim 1, wherein said upper anti-extrusion means includes: a plurality of upper primary segments disposed with a gap between adjacent segments and secured to the yieldable material of said sealing means for movement with said yieldable material as it is moved to and from said sealing position; and a plurality of upper secondary segments disposed above said primary segments spanning said gap between said adjacent upper primary segments to substantially prevent extrusion of said yieldable material above said gap.
5. The structure set forth in claim 4, wherein said lower anti-extrusion means includes: a plurality of lower primary segments disposed with a gap between adjacent segments and secured to the yieldable material of said sealing means for movement with said yieldable material as it is moved to and from said sealing position; a plurality of lower secondary segments disposed below said lower primary segments and spanning said gap between said adjacent lower primary segments to substantially prevent extrusion of said yieldable material below said gap.
6. The structure set forth in claim 1, wherein: said internal recess is substantially semicylindrical; and said outer surface of said sealing means is a convex substantially semicylindrical surface.
7. The structure set forth in claim 4, wherein said upper anti-extrusion means includes: upper guide means disposed above said upper primary segments and between and in guiding contact with each pair of said upper secondary segments.
8. The structure set forth in claim 5, wherein said lower anti-extrusion means includes: lower guide means disposed below said lower primary segments and between and in guiding contact with each pair of said lower secondary segments.
9. The structure set forth in claim 7, including: an upper ram retainer plate secured to said ram carrier and to said upper guide means.
10. The structure set forth in claim 8, including; a lower ram retainer plate secured to said ram carrier and to said lower guide means.
11. The structure set forth in claim 4, including: upper connector means connecting said upper primary and secondary segments together to effect a retraction of said secondary segments with said primary segments when said yieldable material is moved outwardly from said sealing position.
12. The structure set forth in claim 5, including: lower connector means connecting said lower primary and secondary segments together to effect a retraction of said secondary segments with said primary segments when said yieldable material is moved outwardly from said sealing position.
13. The structure set forth in claim 5, wherein: said primary and secondary segments of said upper and lower anti-extrusion means are disposed substantially semicircularly.
14. The structure set forth in claim 13, including an upper wedge shaped guide member disposed adjacent each of said upper secondary segments in said upper anti-extrusion means; and a lower wedge shaped guide member disposed adjacent each of said lower secondary segments in said lower anti-extrusion means.
15. The structure set forth in claim 4, wherein said sealing means comprises: an outer substantially semicylindrical yieldable member having said convex substantially semicylindrical surface; and an inner yieldable member engaged with said outer yieldable membEr and having said inner surface for engaging and conforming to an object or another ram inwardly thereof.
16. In a blowout preventer having a pair of blowout preventer rams, the improvement residing in each ram, wherein each ram includes: a ram carrier adapted to engage the other ram carrier at the innermost limit of travel thereof; sealing means carried with said ram carrier from an open position wherein the carriers are spaced from each other to a stop position wherein the carriers are engaging each other; means for urging said sealing means inwardly to a sealing position after said carriers have reached said stop position to cause said sealing means on each ram to engage each other or around an object therebetween; and anti-extrusion means including means for contacting the anti-extrusion means of the other ram or the object therebetween when said sealing means are in the sealing position for substantially preventing longitudinal extrusion of said sealing means in at least one longitudinal direction while said sealing means are in said sealing position.
17. The structure set forth in claim 16, wherein said anti-extrusion means includes means for substantially preventing longitudinal extrusion of said sealing means in both upward and downward longitudinal directions.
18. The structure set forth in claim 16, wherein said blowout preventer has a housing with a recess for receiving each of said rams, and including: power means for moving said ram carriers into contact with each other at said stop position and for thereafter forcing said sealing means into said sealing position.
19. The structure set forth in claim 18, wherein said housing includes: anti-extrusion means outwardly of said sealing means of each of said rams for substantially preventing outward extrusion of said sealing means.
20. The structure set forth in claim 19, including: an anti-extrusion side plate on each side of said sealing means of each of said rams and slidably engageable with said housing for substantially preventing lateral extrusion of said sealing means during its distortion in moving into and out of said sealing position.
US412677A 1971-10-20 1973-11-05 Variable inside diameter blowout preventer Expired - Lifetime US3897039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US412677A US3897039A (en) 1971-10-20 1973-11-05 Variable inside diameter blowout preventer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19097271A 1971-10-20 1971-10-20
US412677A US3897039A (en) 1971-10-20 1973-11-05 Variable inside diameter blowout preventer

Publications (1)

Publication Number Publication Date
US3897039A true US3897039A (en) 1975-07-29

Family

ID=26886613

Family Applications (1)

Application Number Title Priority Date Filing Date
US412677A Expired - Lifetime US3897039A (en) 1971-10-20 1973-11-05 Variable inside diameter blowout preventer

Country Status (1)

Country Link
US (1) US3897039A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229012A (en) * 1978-04-28 1980-10-21 Cameron Iron Works, Inc. Variable bore packer assembly for ram-type blowout preventers
US4431704A (en) * 1983-03-29 1984-02-14 Regal International, Inc. Composition for blowout preventer
US4646561A (en) * 1984-07-31 1987-03-03 Jack W. Hayden Method and apparatus for hydrostatic testing of tubular member
US6089526A (en) * 1997-05-01 2000-07-18 Stewart & Stevenson Services, Inc. Ram type blowout preventor
US20050045323A1 (en) * 2000-06-09 2005-03-03 Oil Lift Technology Inc. Pump drive head with stuffing box
US20170058623A1 (en) * 2015-08-31 2017-03-02 Cameron International Corporation Annual Blowout Preventer with Radial Actuating Member
US10370927B2 (en) 2017-03-30 2019-08-06 General Electric Company Blowout prevention system including blind shear ram
US10655420B2 (en) 2017-03-21 2020-05-19 Baker Hughes, A Ge Company, Llc Blowout prevention system including blind shear ram
US11156054B2 (en) * 2016-03-30 2021-10-26 Electrical Subsea & Drilling As Annular blowout preventer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US778591A (en) * 1902-02-03 1904-12-27 Mahlon E Layne Valve.
US2035925A (en) * 1933-05-24 1936-03-31 Seamark Lewis Mervyn Cecil Casing head equipment
US2218093A (en) * 1937-12-09 1940-10-15 Arthur J Penick Blowout preventer
US2246709A (en) * 1939-08-21 1941-06-24 Cameron Iron Works Inc Blowout preventer
US2368928A (en) * 1942-03-16 1945-02-06 Baker Oil Tools Inc Packing device
US2609836A (en) * 1946-08-16 1952-09-09 Hydril Corp Control head and blow-out preventer
US2780294A (en) * 1955-05-02 1957-02-05 John Stahl Packer assembly
US2846178A (en) * 1955-01-24 1958-08-05 Regan Forge & Eng Co Conical-type blowout preventer
US3038542A (en) * 1958-08-11 1962-06-12 Glenn L Loomis Tester apparatus for oil wells or the like
US3416767A (en) * 1966-12-20 1968-12-17 Schlumberger Technology Corp Blowout preventer
US3572628A (en) * 1968-10-04 1971-03-30 Cameron Iron Works Inc Blowout preventer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US778591A (en) * 1902-02-03 1904-12-27 Mahlon E Layne Valve.
US2035925A (en) * 1933-05-24 1936-03-31 Seamark Lewis Mervyn Cecil Casing head equipment
US2218093A (en) * 1937-12-09 1940-10-15 Arthur J Penick Blowout preventer
US2246709A (en) * 1939-08-21 1941-06-24 Cameron Iron Works Inc Blowout preventer
US2368928A (en) * 1942-03-16 1945-02-06 Baker Oil Tools Inc Packing device
US2609836A (en) * 1946-08-16 1952-09-09 Hydril Corp Control head and blow-out preventer
US2846178A (en) * 1955-01-24 1958-08-05 Regan Forge & Eng Co Conical-type blowout preventer
US2780294A (en) * 1955-05-02 1957-02-05 John Stahl Packer assembly
US3038542A (en) * 1958-08-11 1962-06-12 Glenn L Loomis Tester apparatus for oil wells or the like
US3416767A (en) * 1966-12-20 1968-12-17 Schlumberger Technology Corp Blowout preventer
US3572628A (en) * 1968-10-04 1971-03-30 Cameron Iron Works Inc Blowout preventer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229012A (en) * 1978-04-28 1980-10-21 Cameron Iron Works, Inc. Variable bore packer assembly for ram-type blowout preventers
US4431704A (en) * 1983-03-29 1984-02-14 Regal International, Inc. Composition for blowout preventer
WO1984003910A1 (en) * 1983-03-29 1984-10-11 Regal Int Inc Composition for blowout preventer
US4646561A (en) * 1984-07-31 1987-03-03 Jack W. Hayden Method and apparatus for hydrostatic testing of tubular member
US6089526A (en) * 1997-05-01 2000-07-18 Stewart & Stevenson Services, Inc. Ram type blowout preventor
US9016362B2 (en) * 2000-06-09 2015-04-28 Oil Lift Technology Inc. Polish rod locking clamp
US20050045323A1 (en) * 2000-06-09 2005-03-03 Oil Lift Technology Inc. Pump drive head with stuffing box
US9322238B2 (en) 2000-06-09 2016-04-26 Oil Lift Technology Inc. Polish rod locking clamp
US10087696B2 (en) 2000-06-09 2018-10-02 Oil Lift Technology Inc. Polish rod locking clamp
US20170058623A1 (en) * 2015-08-31 2017-03-02 Cameron International Corporation Annual Blowout Preventer with Radial Actuating Member
US10648268B2 (en) * 2015-08-31 2020-05-12 Cameron International Corporation Annual blowout preventer with radial actuating member
US11156054B2 (en) * 2016-03-30 2021-10-26 Electrical Subsea & Drilling As Annular blowout preventer
US10655420B2 (en) 2017-03-21 2020-05-19 Baker Hughes, A Ge Company, Llc Blowout prevention system including blind shear ram
US10370927B2 (en) 2017-03-30 2019-08-06 General Electric Company Blowout prevention system including blind shear ram

Similar Documents

Publication Publication Date Title
US3915426A (en) Blowout preventer with variable inside diameter
US3897038A (en) Blowout preventer with variable inside diameter
US3737139A (en) Annular blowout preventer
US2794505A (en) Pipe hanging apparatus
US3915424A (en) Blowout preventer with variable inside diameter
US4523639A (en) Ram type blowout preventers
US6857634B2 (en) BOP assembly with metal inserts
US3543847A (en) Casing hanger apparatus
US3614111A (en) Tool joint stripping stationary blowout preventer with a retrievable packing insert
US3667721A (en) Blowout preventer
US3583480A (en) Method of providing a removable packing insert in a subsea stationary blowout preventer apparatus
US5064164A (en) Bop seal with improved metal inserts
US9045961B2 (en) Blowout preventer seal and method of using same
USRE37538E1 (en) Ram type blowout preventer
US4844406A (en) Blowout preventer
US5005802A (en) Variable bore packer for a ram type blowout preventer
BRPI0713850A2 (en) apparatus for isolating a high pressure zone from a low pressure zone and sealing assemblies
US3897039A (en) Variable inside diameter blowout preventer
US6969070B2 (en) Split carrier annulus seal assembly for wellhead systems
US4541639A (en) Ram-type blowout preventer with improved ram front packer
US4930745A (en) Variable bore ram rubber
BR112018014116B1 (en) SEALING APPARATUS AND METHOD FOR SEALING AN ANNULAR SPACE
US20200332617A1 (en) Blowout Preventer Shearing Ram
US3090640A (en) Well casing and tubing suspension assembly
US3090438A (en) Multiple flow conductor suspension apparatus