US3895677A - Riser pipe stacking method - Google Patents
Riser pipe stacking method Download PDFInfo
- Publication number
- US3895677A US3895677A US434651A US43465174A US3895677A US 3895677 A US3895677 A US 3895677A US 434651 A US434651 A US 434651A US 43465174 A US43465174 A US 43465174A US 3895677 A US3895677 A US 3895677A
- Authority
- US
- United States
- Prior art keywords
- riser
- opening
- pipe section
- string
- riser pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 15
- 238000005553 drilling Methods 0.000 claims abstract description 31
- 230000008878 coupling Effects 0.000 claims description 18
- 238000010168 coupling process Methods 0.000 claims description 18
- 238000005859 coupling reaction Methods 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 230000000977 initiatory effect Effects 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 abstract description 4
- 238000009844 basic oxygen steelmaking Methods 0.000 description 40
- 241000239290 Araneae Species 0.000 description 14
- 230000033001 locomotion Effects 0.000 description 8
- 230000006378 damage Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 241000237519 Bivalvia Species 0.000 description 1
- 241001481833 Coryphaena hippurus Species 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000020639 clam Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000026058 directional locomotion Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B19/00—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
- E21B19/14—Racks, ramps, troughs or bins, for holding the lengths of rod singly or connected; Handling between storage place and borehole
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B19/00—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
- E21B19/002—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables specially adapted for underwater drilling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B19/00—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
- E21B19/14—Racks, ramps, troughs or bins, for holding the lengths of rod singly or connected; Handling between storage place and borehole
- E21B19/143—Racks, ramps, troughs or bins, for holding the lengths of rod singly or connected; Handling between storage place and borehole specially adapted for underwater drilling
Definitions
- the cellar floor is provided with a sliding door mechanism which is se- [51] CLZ E21B 19/14 lectively capable of supporting either the blowout pre- Field of Search 166/ 5 315 175/5 ventor and riser weight, or the blowout preventor.
- transportation system includes means for lifting and supporting a riser pipe section vertically and movable in transverse and longitudinal, horizontal directions [56] References Cited for transporting pipe sections in a vertical condition.
- FIGS RISER PIPE STACKING METHOD BACKGROUND OF THE INVENTION dition below the derrick floor and for transporting such units in vertical condition between storage and operational areas.
- BOP blowout preventor means
- riser pipe sections On most rigs during the installation or removal of a riser pipe system, the riser is set or supported dependently on the rotary table and connections of riser pipe sections are made at the rig or derrick floor level.
- the lengths of riser pipe sections When not in use, the lengths of riser pipe sections are usually passed through a V-door and supported horizontally on a pipe rack by means of a rig crane.
- This manipulation of riser pipe sections between a horizontal position on a pipe rack and a vertical passage through the rotary table is similar to the operation required for running casing strings. The operation requires virtually the full drilling crew as well as crane operators and roustabouts.
- Wind or dynamic loading on the derrick is not increased as it would be if the riser were racked in the derrick;
- the transportation system has capability for transverse and longitudinal, horizontal directional movement and vertical lifting movement. Means are provided for independent motion in any of the three coordinate directions.
- the transportation means include a bridge type crane mounted for movement on a pair of rails.
- a vertical lifting device is mounted for sliding movement along a transverse beam of the crane.
- At the cellar floor opening is a first pair of supporting arms for engaging and supporting blowout preventors where the supporting arms are spaced at appropriate distances relative to blowout preventors sizes.
- At the cellar floor opening also is a second pair of supporting arms for engaging and supporting riser pipe sections. The separate pair of supporting arms utilize the same space but can be selectively employed.
- FIG. 1 is a schematic representation of an offshore rig embodying the riser pipe handling system of the present invention
- FIGS. 24 are plan views of the door and opening in extended and retracted positions
- FIG. 5 is a view taken along line 5-5 of FIG. 3;
- FIG. 6 is a side view taken along line 66 of FIG. 7;
- FIG. 7 is a plan view of the transporting system for riser pipe and BOP means.
- FIG. 8 is a schematic illustration of the cellar floor plan for transporting and storing riser pipe sections.
- an offshore rig or drilling barge 10 which can be a semi-submersible which supports a drilling floor 11 above the surface 12 of the ocean 13.
- a cellar deck or floor 14 Below the drilling floor 11 is a cellar deck or floor 14.
- the clearance between the cellar floor 14 and drilling floor 11 is made adequate to permit vertical stacking of riser pipe sections between the two floors l1 and 14.
- a derrick l5 equipped with a traveling block 16, draw works 17, and a rotary table 18.
- an opening 19 (sometimes called a moon pool opening) in the cellar floor 14.
- a special two-stage horizontally movable door 20 is movable between an extended position over the opening to support selectively either a riser pipe section or a Blow Out Preventor (hereinafter referred to as BOP).
- the door 20 is powered by suitable hydraulic or mechanical means which is schematically illustrated by the numeral 21.
- the door powering means 21 is capable of horizontally reciprocating the door 20 relative to the opening 19 between an extended position over the opening or a retracted position where the opening is entirely clear.
- a riser pipe string 22 is extended from the cellar floor 14 to the ocean floor 23.
- the riser string 22 is comprised of the usual tubular riser pipe sections or joints which are connected to one another.
- the BOP means 24 attaches to the ocean floor well head connection.
- the BOP means 24, as illustrated, has an enlarged cross-section as compared to the cross-section of a riser pipe section.
- the vertical clearance between the cellar floor and derrick floor is such that one of the riser pipe sections 25 can be vertically disposed in the clearance between the rotary table 18 in the drilling floor and opening 19 in the cellar floor.
- the riser pipe sections and BOP means have support means (to be explained later) which are engagable by the door 20 to support the riser string 22 while a riser pipe section 25 is added or subtracted from the riser pipe string.
- Means for moving a riser pipe section in the space between the drilling rig floor and cellar floor include a bridge crane 27 which is mounted for movement in one horizontal direction by spaced apart guide rails 28 (only one shown).
- the crane includes wire lines 29 for moving the BOP means vertically with respect to the cellar floor.
- a transverse beam 30 on the bridge crane extends between the guide rails 28.
- a fork lift type device 31 is mounted for movement along the length of the beam 30 and is also capable of vertical movement relative to the transverse beam 30.
- the purpose of this arrangement is to transport riser pipe sections or BOP means in a vertical condition between the cellar opening 19 and storage areas.
- the storage area for the BOP means is to either side of the opening as shown by the illustration of upper and lower BOP stacks 32 and 33.
- the storage area for the riser pipe sections includes upper fingers 35 which are arranged to receive the upper portion of the riser pipe sections and stubs 36 set along the cellar floor for receiving the open lower end of each riser pipe section.
- the crane 2 first picks up the lower section 33 of a BOP and moves it to the opening 19.
- the BOP portion 33 is lowered partially through the opening with the door 20 in a retracted condition.
- the door 20 which has beams for supporting the BOP 33, is moved to an extended position where the door arms support the BOP portion 33 relative to the cellar floor.
- the bridge crane 27 is then used to move the upper BOP section 32 over the lower section and the BOP sections are connected.
- a single joint of riser pipe that has been prepositioned on the hook of the traveling block 16 by means of a running too] (not shown) is lowered through the rotary table 18 and connected to the top of the assembled BOP stack.
- the BOP stack is then picked up sufficiently for clearance and the sliding door 20 is retracted to allow passage through the cellar deck opening 19 of the BOP.
- a second pair of door arms are engaged to the first set of door arms that previously supported the BOPs.
- the interconnection of the two sets of arms is accomplished while the door is in the retracted position.
- the door 20 is then manipulated again to an extended position with the now interconnected second set of arms that are spaced apart sufficiently to provide clearance for the riser and to support a riser spider 37 which will support the riser section and BOP connected to it.
- the riser spider 37 is then installed around the riser and supported by the second set of arms. The riser is then set in it.
- the running tool (not shown) is then released and pulled up sufficiently to provide clearance for the next joint of riser.
- the fork lift device 31 is moved to the riser pipe section storage area and another riser pipe section is picked up vertically and transported in a vertical condition to the cellar opening 19 where it is lowered and coupled to the riser joint setting in the riser spider.
- the running tool (not shown) attached to the traveling block 16 is lowered through the rotary table 18 to attach to the connected riser pipe section.
- the assembled stack is picked up sufficiently to release the spider and then is lowered until the second riser pipe section is in position to be supported by the riser spider 37. This sequence is repeated for the other riser pipe sections as needed. The operation is reversed for pulling the riser string.
- the opening 19 is defined by a rectangular shaped frame comprised of frame components 19(A-D) which attach to the cellar floor.
- the side frame components or members 19a and are elongated and attached to an end frame member 1%.
- the door 20 is in a retracted position and rests upon the frame members 19c, 19a, 19c and 19d.
- the door 20 includes two sets of generally U- shaped gate members.
- a first U-shaped member 40 is shown most clearly in FIG. 3.
- the gate member 40 has a length greater than the span between the frame members 19d and 19c, and its open end lies on the transverse frame member 19d in the retracted position of the gate member.
- the U-shaped gate member 40 includes a pair of longitudinally extending bar members 40a and 40b which are spaced apart a distance compatable with the outer diameter of a riser pipe section so that ariser pipe section can be supported by a riser spider installed on the gate member 40.
- a riser pipe spider is also employed but is not shown for clarity of illustration.
- the other U-shaped gate member 50 is also shown most clearly in FIG. 3.
- the gate member 50 has its open end facing the opening 19 where the open end is defined by parallel bar members 50a and 50b.
- the bar members 50a and 50b are spaced apart a distance compatable with the outer diameter of a BOP.
- the bar members 50a and 50b attach toa pair of spaced transverse bars 50c and 50d which extend across the width of the frame member 19d.
- Side support bar members 50c and 50f extend along the length of the frame members 29a and 19c and attach to the BOP supporting bars 50a and 50b.
- the gate member 50 is movable between a retracted and extended position relative to the cellar opening 19.
- the gate member 50 has its transverse members 50c and 50d disposed above the bars 40a and 40b (see FIG. 5) of the gate member 40 so that the gate members 40 and 50 may move horizontally between retracted and extended positions independently of one another.
- Selective locking means in the form of openings 40c and 50g are respectively provided in the bars 40a and 40b and the transverse bars 50c and 50d. Pins (not shown) are used to couple the gate members to one another. Hence, as shown in FIG. 4, both gate members 40 and 50 can be retracted and extended relative to the opening 19 in unison.
- a riser spider 37 is conventional and is shown schematically in FIG. 4.
- the spider 37 includes hinged semi-cylindrical members with four equidistantly spaced latching fingers-37a.
- the latching fingers 37a releasably engage latching slots in a riser section for plan view.
- the guide rails 28 are spaced from one another in a parallel fashion at the height above the cellar floor adequate to permit transportation of a riser pipe section in a vertical condition.
- Elongated end frame members 61 and 62 extend along the rails and carry journaled pairs of wheels 63.
- the frame members 61 and 62 are connected to transverse beam members 64 and 65 which can have box type cross-sections.
- the frame and beam members 61, 62, 64 and 65 form a generally rectangular configuration which is movable in a horizontal direction by virtue of the wheels 63 and the track 28.
- a longitudinal rack 66 can be attached to one or both of the rails 28.
- a pinion 67 on the wheel shaft 68 engages the rack 66 for driving purposes.
- a motor and transmission means'69 on the beam 64 can be used to drive the shaft 68.
- one or more hooks 29 attached to cable and spooling means 70 can be provided on the frame for picking up equipment such as the BOP means.
- a U-shaped frame member 74 has an upper arm with a vertically journaled set of rollers 75 which engage a side of the guide 71 facing away from the front of the beam 65.
- Horizontally journaled sets of rollers76 in the frame 74 engage the upper surfaces of the guides 71 and 73.
- a vertically journaled roller in the lower arm of the frame member 74 engages an outer side of the lower guide 72.
- the guides and rollers provide a cantilevered rolling support for the frame member 74 on the transverse beam 65.
- a motor 77 on the frame member operates a pinion on the frame member 74 which engages a longitudinal rack 78 on the beam 65. Operation of the motor 77 traverses the frame member 74'relative to the beam member 65 in a horizontal direction transverse or perpendicular to the direction of travel of the beam member 65 on the rails 28.
- the foward portion of the frame member 75 is provided with parallel vertical trackways 80 in opposing sides of the frame member.
- Guide rollers 81 are received in the guideways and are attached to a lifting frame 82.
- Additional side rollers 83 are provided so that the lifting frame 82 is movable vertically with respect to the frame member 74.
- Hydraulic means 84 are coupled between the frame member 74 and lifting frame 82 to accomplish relative vertical motion between the units.
- the lifting frame 82 has a generally flat upper surface 86 which has a U-shaped recess 87 sized to pass around the outer diameter of a riser section.
- a riser pipe section 24 has diametrically opposed pin members 88 perpendicularly arranged relative to the axis of a riser pipe and supported by plate members 89 welded to the upper sides of the pins 88 and to the sides of a riser pipe section.
- the surface 82 of the frame 82 has recesses 90 therein to receive the pins 88 so that a riser section is interlocked by the pins to the lifting frame.
- the arms 35 which provide the upper support for the riser pipe sections can include transverse locking bars 92 to retain the upper portion of the pipes in a steady condition.
- the crane 27 can move to the stored riser pipe sections and the fork lift device can be lowered below the crane 27 to engage the pins 88 of a riser pipe section.
- the arms 35 for storage are located relative to the pins 88 so that the lifting portion of fork lift device can be inserted between the arms 35 and pins 88.
- the riser pipe sections are stacked and removed one at a time from side to side of the racking arms 35.
- the crane 27 first picks up the lower end 33 of a BOP and moves it to the opening 19.
- the BOP portion 33 is lowered partially through the opening 19 with the door sections 40 and 50 in a retracted condition.
- the door section 50 which has beams for supporting the BOP 33, is moved to an extended position where the door section 50 supports the BOP portion 33 relative to the cellar floor.
- the bridge crane 27 is then used to move an upper BOP section 32 over the lower section 33 and the BOP sections 32 and 33 are connected.
- the interconnection of the two sets of arms 40 and 50 is accomplished by inserting pins in the holes 40c and 50g while the door is in the retracted position.
- the door 20 is then manipulated again to an extended position with the now engaged second set of arms 40 that are spaced apart sufficiently to provide clearance for the riser and to support a riser spider 37 which will support the riser and BOP connected to it.
- the riser spider 37 is then installed around the riser and supported by the second set of arms 40.
- the riser is then set in it.
- the running tool (not shown) is then released and pulled up sufficiently to provide clearance for the next joint of riser.
- the fork lift device 31 is moved to the riser pipe section storage area and another riser pipe section is picked up vertically and transported in a vertical condition to the cellar opening 19 where it is lowered and coupled to the riser joint setting in the riser spider.
- the running too] (not shown) attached to the traveling block 16 and is lowered through the rotary table 18 to attach to the connected riser pipe section.
- the assembled stack is picked up sufficiently to release the spider and then is lowered until the riser pipe section is in position to be supported by the riser spider which is supported by the door section 40.
- the door section 40 then supports the depending stack by support of the riser pipe section by the door sections 40 and 50 coupled to one another.
- a method for manipulating riser pipe sections between a stored condition of individual sections in a storage area in a drilling rig and an operational condition of sections coupled to one another to define a riser string where said riser string extends downwardly from the drilling rig toward the floor under the water comprising the steps of coupling the draw works of a drilling rig to the riser string and lifting the riser string through an opening in a riser storage floor until at least the upper end of said riser string is below the rotary table on the rig floor and at least one riser section is above the riser storage floor,
- a method for manipulating riser pipe sections between a stored condition of individual sections in a storage area in a drilling rig and an operational condition of sections coupled to one another to define a riser string where said riser string extends downwardly from the drilling rig toward the floor under the water comprising the steps of moving a riser pipe section from a storage area to a location below a draw works
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US434651A US3895677A (en) | 1974-01-18 | 1974-01-18 | Riser pipe stacking method |
CA198,730A CA1002933A (en) | 1974-01-18 | 1974-05-02 | Riser pipe stacking system |
GB2037874A GB1452702A (en) | 1974-01-18 | 1974-05-08 | Riser pipe stacking system |
NO742065A NO742065L (enrdf_load_stackoverflow) | 1974-01-18 | 1974-06-07 | |
US05/563,736 US3981369A (en) | 1974-01-18 | 1975-03-31 | Riser pipe stacking system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US434651A US3895677A (en) | 1974-01-18 | 1974-01-18 | Riser pipe stacking method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/563,736 Division US3981369A (en) | 1974-01-18 | 1975-03-31 | Riser pipe stacking system |
Publications (1)
Publication Number | Publication Date |
---|---|
US3895677A true US3895677A (en) | 1975-07-22 |
Family
ID=23725089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US434651A Expired - Lifetime US3895677A (en) | 1974-01-18 | 1974-01-18 | Riser pipe stacking method |
Country Status (4)
Country | Link |
---|---|
US (1) | US3895677A (enrdf_load_stackoverflow) |
CA (1) | CA1002933A (enrdf_load_stackoverflow) |
GB (1) | GB1452702A (enrdf_load_stackoverflow) |
NO (1) | NO742065L (enrdf_load_stackoverflow) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4136633A (en) * | 1977-06-06 | 1979-01-30 | Exxon Production Research Company | Device for restraining lateral movement of subsea equipment |
US4190120A (en) * | 1977-11-18 | 1980-02-26 | Regan Offshore International, Inc. | Moveable guide structure for a sub-sea drilling template |
US4401164A (en) * | 1981-04-24 | 1983-08-30 | Baugh Benton F | In situ method and apparatus for inspecting and repairing subsea wellheads |
FR2552488A1 (fr) * | 1983-09-23 | 1985-03-29 | Creusot Loire | Procede et dispositif de chargement des elements tubulaires ou des tiges de forage sur un mat de forage |
WO1985003050A1 (en) * | 1983-12-30 | 1985-07-18 | William Bennet | Semi-submersible vessel |
US4557332A (en) * | 1984-04-09 | 1985-12-10 | Shell Offshore Inc. | Drilling riser locking apparatus and method |
US4567842A (en) * | 1984-05-02 | 1986-02-04 | Novacorp International Consulting Ltd. | Weight type motion compensation system for a riser moored tanker |
US4625673A (en) * | 1984-02-13 | 1986-12-02 | Novacorp International Consulting Ltd. | Motion compensation means for a floating production system |
FR2584673A1 (fr) * | 1985-07-12 | 1987-01-16 | Nord Mediterranee Chantiers | Plate-forme semi-submersible |
US4725179A (en) * | 1986-11-03 | 1988-02-16 | Lee C. Moore Corporation | Automated pipe racking apparatus |
US5647443A (en) * | 1994-07-22 | 1997-07-15 | Heerema Group Services B.V. | Method and device for drilling for oil or gas |
EP0919692A2 (de) | 1997-11-27 | 1999-06-02 | Johann Haas | Magazin für Bohrstangen und/oder Verrohrungen an Gesteinsbohrmaschinen |
WO1999038763A1 (en) * | 1998-01-28 | 1999-08-05 | Kværner Oil & Gas A.S | An arrangement for a drilling/production vessel with geostationary anchoring |
US20030159853A1 (en) * | 2002-02-22 | 2003-08-28 | Archibald William G. | Multi-activity offshore drilling facility having a support for tubular string |
US20070251725A1 (en) * | 2004-06-02 | 2007-11-01 | John Banks | Multiple Activity Rig |
US20080000685A1 (en) * | 2006-06-30 | 2008-01-03 | Gavin Humphreys | Triple activity drilling ship |
US20090057011A1 (en) * | 2007-04-02 | 2009-03-05 | Inge Petersson | Drilling device |
WO2009082197A3 (en) * | 2007-12-20 | 2009-09-03 | Itrec B.V. | A tubulars storage device |
US20090223660A1 (en) * | 2006-10-19 | 2009-09-10 | Inge Petersson | Integrated drilling deck and bop handling |
US20100071906A1 (en) * | 2008-09-19 | 2010-03-25 | Petroleo Brasileiro S.A. - Petrobras | System and method for simultaneous sea drilling operations |
US20110011320A1 (en) * | 2009-07-15 | 2011-01-20 | My Technologies, L.L.C. | Riser technology |
US20110091284A1 (en) * | 2009-10-19 | 2011-04-21 | My Technologies, L.L.C. | Rigid Hull Gas-Can Buoys Variable Buoyancy |
US20110100639A1 (en) * | 2008-04-29 | 2011-05-05 | Itrec B.V. | Floating offshore structure for hydrocarbon production |
US20110180266A1 (en) * | 2008-06-30 | 2011-07-28 | A.P. Meller-Mærsk A/S | Drill ship for deep sea intervention operations |
US20110209651A1 (en) * | 2010-03-01 | 2011-09-01 | My Technologies, L.L.C. | Riser for Coil Tubing/Wire Line Injection |
US20120067642A1 (en) * | 2010-09-13 | 2012-03-22 | Christopher Magnuson | Multi-Operational Multi-Drilling System |
US20130064634A1 (en) * | 2011-09-13 | 2013-03-14 | Trevor S. Brown | SALT Ring Handling System and Method |
KR101271134B1 (ko) | 2011-12-27 | 2013-06-04 | 삼성중공업 주식회사 | 문풀호스 이송장치 및 이를 포함하는 시추선 |
US9410385B2 (en) | 2007-02-23 | 2016-08-09 | Friede Goldman United, Ltd. | Simultaneous tubular handling system |
US10214975B2 (en) * | 2016-04-29 | 2019-02-26 | Cameron International Corporation | Vertical pipe handling system and method for its use |
US10385631B2 (en) * | 2013-05-27 | 2019-08-20 | Itrec B.V. | Drilling vessel |
US10513887B1 (en) | 2018-10-29 | 2019-12-24 | Thomas G Drysdale | Self-elevating drilling unit drills petroleum well offshore with wellhead on seabed |
WO2022008266A1 (en) * | 2020-07-06 | 2022-01-13 | Canrig Robotic Technologies As | Robotic pipe handler systems |
US11371299B2 (en) | 2020-09-01 | 2022-06-28 | Canrig Robotic Technologies As | Robotic pipe handler and pipe storage |
US11486209B2 (en) | 2020-07-06 | 2022-11-01 | Nabors Drilling Technologies Usa, Inc. | Robotic pipe handler systems |
US11643887B2 (en) | 2020-07-06 | 2023-05-09 | Canrig Robotic Technologies As | Robotic pipe handler systems |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3043255A (en) * | 1957-09-23 | 1962-07-10 | Shell Oil Co | Drilling |
US3189093A (en) * | 1962-09-13 | 1965-06-15 | Shell Oil Co | Well drilling platform |
US3333562A (en) * | 1963-12-24 | 1967-08-01 | Newport News S & D Co | Ship structure and handling means for underwater mining |
-
1974
- 1974-01-18 US US434651A patent/US3895677A/en not_active Expired - Lifetime
- 1974-05-02 CA CA198,730A patent/CA1002933A/en not_active Expired
- 1974-05-08 GB GB2037874A patent/GB1452702A/en not_active Expired
- 1974-06-07 NO NO742065A patent/NO742065L/no unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3043255A (en) * | 1957-09-23 | 1962-07-10 | Shell Oil Co | Drilling |
US3189093A (en) * | 1962-09-13 | 1965-06-15 | Shell Oil Co | Well drilling platform |
US3333562A (en) * | 1963-12-24 | 1967-08-01 | Newport News S & D Co | Ship structure and handling means for underwater mining |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4136633A (en) * | 1977-06-06 | 1979-01-30 | Exxon Production Research Company | Device for restraining lateral movement of subsea equipment |
US4190120A (en) * | 1977-11-18 | 1980-02-26 | Regan Offshore International, Inc. | Moveable guide structure for a sub-sea drilling template |
US4401164A (en) * | 1981-04-24 | 1983-08-30 | Baugh Benton F | In situ method and apparatus for inspecting and repairing subsea wellheads |
FR2552488A1 (fr) * | 1983-09-23 | 1985-03-29 | Creusot Loire | Procede et dispositif de chargement des elements tubulaires ou des tiges de forage sur un mat de forage |
US4646672A (en) * | 1983-12-30 | 1987-03-03 | William Bennett | Semi-subersible vessel |
WO1985003050A1 (en) * | 1983-12-30 | 1985-07-18 | William Bennet | Semi-submersible vessel |
US4625673A (en) * | 1984-02-13 | 1986-12-02 | Novacorp International Consulting Ltd. | Motion compensation means for a floating production system |
US4557332A (en) * | 1984-04-09 | 1985-12-10 | Shell Offshore Inc. | Drilling riser locking apparatus and method |
US4567842A (en) * | 1984-05-02 | 1986-02-04 | Novacorp International Consulting Ltd. | Weight type motion compensation system for a riser moored tanker |
FR2584673A1 (fr) * | 1985-07-12 | 1987-01-16 | Nord Mediterranee Chantiers | Plate-forme semi-submersible |
US4725179A (en) * | 1986-11-03 | 1988-02-16 | Lee C. Moore Corporation | Automated pipe racking apparatus |
US5647443A (en) * | 1994-07-22 | 1997-07-15 | Heerema Group Services B.V. | Method and device for drilling for oil or gas |
EP0919692A2 (de) | 1997-11-27 | 1999-06-02 | Johann Haas | Magazin für Bohrstangen und/oder Verrohrungen an Gesteinsbohrmaschinen |
WO1999038763A1 (en) * | 1998-01-28 | 1999-08-05 | Kværner Oil & Gas A.S | An arrangement for a drilling/production vessel with geostationary anchoring |
GB2349613A (en) * | 1998-01-28 | 2000-11-08 | Kvaerner Oil & Gas As | An arrangement for a drilling/production vessel with geostationary anchoring |
GB2349613B (en) * | 1998-01-28 | 2001-09-19 | Kvaerner Oil & Gas As | An arrangement for a drilling/production vessel with geostationary anchoring |
US20030159853A1 (en) * | 2002-02-22 | 2003-08-28 | Archibald William G. | Multi-activity offshore drilling facility having a support for tubular string |
US6766860B2 (en) * | 2002-02-22 | 2004-07-27 | Globalsantafe Corporation | Multi-activity offshore drilling facility having a support for tubular string |
US20070251725A1 (en) * | 2004-06-02 | 2007-11-01 | John Banks | Multiple Activity Rig |
US8678094B2 (en) * | 2004-06-02 | 2014-03-25 | Stena Drilling Ltd. | Multiple activity rig |
US8925647B2 (en) | 2006-06-30 | 2015-01-06 | Stena Drilling Ltd. | Triple activity drilling ship |
US20080000685A1 (en) * | 2006-06-30 | 2008-01-03 | Gavin Humphreys | Triple activity drilling ship |
WO2008004068A1 (en) * | 2006-06-30 | 2008-01-10 | Stena Drilling Ltd. | Triple activity drilling ship |
US9217302B2 (en) | 2006-06-30 | 2015-12-22 | Stena Drilling Ltd. | Triple activity drilling ship |
US20090223660A1 (en) * | 2006-10-19 | 2009-09-10 | Inge Petersson | Integrated drilling deck and bop handling |
US8079426B2 (en) * | 2006-10-19 | 2011-12-20 | Gva Consultants Ab | Integrated drilling deck and bop handling |
US10612323B2 (en) | 2007-02-23 | 2020-04-07 | Friede & Goldman United B.V. | Simultaneous tubular handling system |
US9410385B2 (en) | 2007-02-23 | 2016-08-09 | Friede Goldman United, Ltd. | Simultaneous tubular handling system |
US20090057011A1 (en) * | 2007-04-02 | 2009-03-05 | Inge Petersson | Drilling device |
US7628225B2 (en) * | 2007-04-02 | 2009-12-08 | Gva Consultants Ab | Drilling device |
CN101932790B (zh) * | 2007-12-20 | 2013-06-12 | 伊特雷科公司 | 管件储存装置 |
WO2009082197A3 (en) * | 2007-12-20 | 2009-09-03 | Itrec B.V. | A tubulars storage device |
US8631949B2 (en) | 2007-12-20 | 2014-01-21 | Itrec B.V. | Tubulars storage device |
US20110100639A1 (en) * | 2008-04-29 | 2011-05-05 | Itrec B.V. | Floating offshore structure for hydrocarbon production |
US8522880B2 (en) * | 2008-04-29 | 2013-09-03 | Itrec B.V. | Floating offshore structure for hydrocarbon production |
US20110180266A1 (en) * | 2008-06-30 | 2011-07-28 | A.P. Meller-Mærsk A/S | Drill ship for deep sea intervention operations |
US20100071906A1 (en) * | 2008-09-19 | 2010-03-25 | Petroleo Brasileiro S.A. - Petrobras | System and method for simultaneous sea drilling operations |
US8387704B2 (en) * | 2008-09-19 | 2013-03-05 | Petroleo Brasileiro S.A.-Petrobras | System and method for simultaneous sea drilling operations |
US20130014688A1 (en) * | 2009-07-15 | 2013-01-17 | My Technologies, L.L.C. | Riser Technology |
US20110011320A1 (en) * | 2009-07-15 | 2011-01-20 | My Technologies, L.L.C. | Riser technology |
US9222317B2 (en) * | 2009-07-15 | 2015-12-29 | My Technologies, L.L.C. | Riser technology |
US20110091284A1 (en) * | 2009-10-19 | 2011-04-21 | My Technologies, L.L.C. | Rigid Hull Gas-Can Buoys Variable Buoyancy |
US20110209651A1 (en) * | 2010-03-01 | 2011-09-01 | My Technologies, L.L.C. | Riser for Coil Tubing/Wire Line Injection |
US20130252493A1 (en) * | 2010-03-01 | 2013-09-26 | Charles R. Yemington | Rigid Hull Gas-Can Buoys Variable Buoyancy |
US8733472B2 (en) * | 2010-09-13 | 2014-05-27 | Christopher Magnuson | Multi-operational multi-drilling system |
US20120067642A1 (en) * | 2010-09-13 | 2012-03-22 | Christopher Magnuson | Multi-Operational Multi-Drilling System |
US9051782B2 (en) * | 2010-09-13 | 2015-06-09 | Christopher Magnuson | Multi-operational multi-drilling system |
US20140216815A1 (en) * | 2010-09-13 | 2014-08-07 | Christopher Magnuson | Multi-operational multi-drilling system |
US20130064634A1 (en) * | 2011-09-13 | 2013-03-14 | Trevor S. Brown | SALT Ring Handling System and Method |
US8997878B2 (en) * | 2011-09-13 | 2015-04-07 | Stingray Offshore Solutions, LLC | SALT ring handling system and method |
KR101271134B1 (ko) | 2011-12-27 | 2013-06-04 | 삼성중공업 주식회사 | 문풀호스 이송장치 및 이를 포함하는 시추선 |
US10385631B2 (en) * | 2013-05-27 | 2019-08-20 | Itrec B.V. | Drilling vessel |
US10214975B2 (en) * | 2016-04-29 | 2019-02-26 | Cameron International Corporation | Vertical pipe handling system and method for its use |
US10513887B1 (en) | 2018-10-29 | 2019-12-24 | Thomas G Drysdale | Self-elevating drilling unit drills petroleum well offshore with wellhead on seabed |
US11486209B2 (en) | 2020-07-06 | 2022-11-01 | Nabors Drilling Technologies Usa, Inc. | Robotic pipe handler systems |
US11408236B2 (en) | 2020-07-06 | 2022-08-09 | Canrig Robotic Technologies As | Robotic pipe handler systems |
WO2022008266A1 (en) * | 2020-07-06 | 2022-01-13 | Canrig Robotic Technologies As | Robotic pipe handler systems |
US11643887B2 (en) | 2020-07-06 | 2023-05-09 | Canrig Robotic Technologies As | Robotic pipe handler systems |
US12270264B1 (en) | 2020-07-06 | 2025-04-08 | Canrig Robotic Technologies As | Robotic pipe handler systems |
US11371299B2 (en) | 2020-09-01 | 2022-06-28 | Canrig Robotic Technologies As | Robotic pipe handler and pipe storage |
US11414936B2 (en) | 2020-09-01 | 2022-08-16 | Canrig Robotic Technologies As | Robotic pipe handler |
US11767719B2 (en) | 2020-09-01 | 2023-09-26 | Canrig Robotic Technologies As | Robotic pipe handler |
US12378829B2 (en) | 2020-09-01 | 2025-08-05 | Canrig Robotic Technologies As | Robotic pipe handler |
Also Published As
Publication number | Publication date |
---|---|
GB1452702A (en) | 1976-10-13 |
CA1002933A (en) | 1977-01-04 |
NO742065L (enrdf_load_stackoverflow) | 1975-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3895677A (en) | Riser pipe stacking method | |
US3981369A (en) | Riser pipe stacking system | |
US3561811A (en) | Well pipe racker | |
US6705414B2 (en) | Tubular transfer system | |
US10612323B2 (en) | Simultaneous tubular handling system | |
US3655071A (en) | Horizontal pipe racking and handling apparatus | |
US10927615B2 (en) | Drilling rig with a top drive system operable in a wellbore drilling mode, tripping mode, and bypassing mode | |
US6854520B1 (en) | Apparatus and method for handling a tubular | |
US6857483B1 (en) | Drilling device and method for drilling a well | |
US4421447A (en) | Elevator transfer and support system | |
CA2646014C (en) | Apparatus and method for running tubulars | |
US11371291B2 (en) | Side saddle slingshot continuous motion rig | |
US3929235A (en) | System for handling and racking pipe in the hold of a vessel | |
CN110753780A (zh) | 处理、测试、存储浮动船上的隔水管内联顶管柱组件 | |
EP1038088B1 (en) | Handling assembly for tubulars and related method | |
US12139970B2 (en) | Module-based system for plug and abandonment operation of wells on an offshore installation | |
EP3829967B1 (en) | Semi-submersible | |
DK201470227A1 (en) | An offshore drilling rig and a method of operating the same |