US3895089A - Method for preparing air-laid nonwoven webs from combined streams - Google Patents

Method for preparing air-laid nonwoven webs from combined streams Download PDF

Info

Publication number
US3895089A
US3895089A US347971A US34797173A US3895089A US 3895089 A US3895089 A US 3895089A US 347971 A US347971 A US 347971A US 34797173 A US34797173 A US 34797173A US 3895089 A US3895089 A US 3895089A
Authority
US
United States
Prior art keywords
fibers
streams
web
pair
lickerin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US347971A
Inventor
Prashant K Goyal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson
Original Assignee
Johnson and Johnson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson filed Critical Johnson and Johnson
Priority to US347971A priority Critical patent/US3895089A/en
Priority to US05/547,914 priority patent/US3963392A/en
Application granted granted Critical
Publication of US3895089A publication Critical patent/US3895089A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H5/00Special paper or cardboard not otherwise provided for
    • D21H5/26Special paper or cardboard manufactured by dry method; Apparatus or processes for forming webs by dry method from mainly short-fibre or particle material, e.g. paper pulp
    • D21H5/2607Pretreatment and individualisation of the fibres, formation of the mixture fibres-gas and laying the fibres on a forming surface
    • D21H5/2628Formation of a product from several constituents, e.g. blends of various types of fibres, fillers and/or binders or formation from various sources and/or streams or fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/736Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged characterised by the apparatus for arranging fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/28Organic non-cellulose fibres from natural polymers

Definitions

  • the air streams may be generated by a single suction source below the fiber collecting means, or by separate individually controlled suction sources on opposite sides of the further divider plates, which may be individually adjusted to further vary the web that is formed on the fiber collecting means.
  • the further divider plate is preferably removably mounted so that a further material, such as a reinforcing material or an adhesive can be introduced into the composite stream and resulting web, if desired.
  • This invention relates to an improved process for airlaying fibers to produce a wide variety of air-laid nonwoven webs, and to an apparatus upon which such a process may be performed.
  • the webs produced by the process and apparatus of the invention comprise a blend of long and short fibers; i.e., textile length and papermaking fibers, with the fibers of the webs being randomly oriented.
  • Fibers are usually classified according to length, with relatively long or textile length fibers being longer than about one-fourth inch and generally between one-half and two and one-half inches in length.
  • the term short fibers refers to papermaking fibers, such as wood pulp fibers or cotton linters having a length less than about one-fourth inch. While it is recognized that short fibers are usually substantially less costly than long fibers, it is also recognized in many instances that it is desirable to strengthen a short fiber product by including a blend of long fibers therein.
  • Nonwoven materials are structures which in general consist of an assemblage or web of fibers, joined randomly or systematically by mechanical, chemical or other means. These materials are well known in the art, having gained considerable prominence within the last years or so in the consumer market, the industrial commercial market and the hospital field. For example, nonwoven materials are becoming increasingly important in the textile and related fields, one reason being because of their low cost of manufacture for a given yardage as compared to the cost of more conventional textile fabrics made by weaving, knitting or felting.
  • nonwoven materials are available today in a wide range of fabric weights of from as little as about 100 grains per square yard to as much as about 4,000 grains or more per square yard.
  • Nonwoven materials are basically one of two types oriented or random webs.
  • oriented webs have the major proportion of the fibers aligned predominantly in one direction, generally the machine or long direction (MD) of the fibrous web so that the properties of the resulting web are asymmetrical or aniosotropic i.e. conventionally the tensile strengths in the machine direction are generally approximately eight or more times higher than in the cross direction (CD); while on the other hand, random fibrous nonwoven webs do not have the fibers lying predominantly in any direction so that the resulting web is more balanced or isotropic e.g. the tensile strengths in both the machine and the cross direction are approximately the same.
  • MD machine or long direction
  • CD cross direction
  • random fibrous nonwoven webs do not have the fibers lying predominantly in any direction so that the resulting web is more balanced or isotropic e.g. the tensile strengths in both the machine and the cross direction are approximately the same.
  • the uses of oriented nonwoven webs are quite restricted as compared to random
  • conventional air-laying techniques for producing nonwoven materials involve opening of fibers from a compressed state, dispersing the fibers in a single high velocity air stream and subsequent condensing (i.e. depositing) of the fibers onto a perforated cylinder or wire screen or belt to produce a web. Thereafter, the web is generally post-treated to provide the required degree of coherency by one or more well known steps, e.g. mechanical or chemical bonding procedures.
  • air-laying techniques of producing nonwoven webs have several advantages over other types of known web processes in its ability to produce a wide variation of lengths and fineness of webs with a wide range of fabric weights, and as well to permit the use of short fibers for different types of products.
  • a method that has been used to blend a mixture of long and short fibers into a nonwoven web of randomly oriented fibers involved the step of introducing a mixture of preopened long and short fibers to a single lickerin where the mixture of long and short fibers is individualized.
  • the individual fibers, but still in admixture, are introduced into an air stream and conveyed to a condenser where they were formed into a web.
  • This method has a significant disadvantage in that in order to prevent degradation of the long fibers, it is necessary to operate the lickerin at optimum speed for the long fibers, which is much below that which is optimum for short fibers. This necessary compromise seriously limited the rate at which the fibers could be processed through this system and this economic disadvantage militates against its use. Also, this method is capable of producing only a single type of web, i.e., a web comprised of a homogeneous blend of long and short fibers.
  • Another prior art apparatus used to make a nonwoven web that is intended to be a homogeneous mixture of randomly oriented long and short fibers includes the use of a milling device, such as a hammer mill, to individualize the short fibers and a lickerin to individualize the long fibers.
  • the individualized short fibers are entrained in an air stream leading to a mixing zone into which the long fibers are introduced, where the fibers are intermixed.
  • the mixture of fibers is deposited on a condenser to form a web of a random mixture of long and short fibers.
  • the intermixed fibers are not completely homogeneously blended; in fact, in such webs, there is more or less of a stratification of the fibers in layers, with the long fibers predominating on one side of the web and the short fibers predominating on the other side.
  • a particular disadvantage of this apparatus was that the hammer mill did not completely 3 individualize the wood pulp fibers and, in consequence, clumps of fibers and/or salt" resulted. Also, only a single type of web can be produced by this approach.
  • long and short fibers to be blended are individualized separately and simultaneously by separate high speed lickerins, one for each type of fiber, that are operated at speeds optimum for the specific fibers acted upon.
  • the lickerin is operated in the order of 6,000 rpm to individualize the wood pulp fibers, and the long fibers, the staple length fibers, for example, rayon. are individualized by the lickerin acting on these fibers, operated at a speed in the order of 2,400 rpm. At a speed of 6,000 rpm, rayon fibers are damaged.
  • individualized fibers are doffed from their respective lickerins by separate air streams.
  • the fibers are entrained in the separate air streams and the air streams are subsequently intermixed in a mixing zone to homogeneously blend the fi bers entrained therein.
  • the homogeneous blend of fibers is then deposited in random fashion on a condenser disposed in proximity to the mixing zone.
  • Lovgren apparatus represents a substantial advance in the art, the apparatus has limitations in that it does not lend itself for use in making a wide variety of webs.
  • the following types of webs can be produced: (1 a web comprised of a homogeneous blend of fibers from two different fiber sources, (2) a web having outer layers comprised of fibers from two different fiber sources and an intermediate layer that is a blend of the fibers from each source, and (3) a web of two layers of fibers from each fiber source, with the layers being interlaced only at the region of their interface.
  • 3,768,118 a web is produced from two different types of fibers at a given overall concentration, with the concentration of each fiber type being increased above the overall concentration at opposite faces, and with the concentration of each fiber type gradually decreasing away from the face at which the overall concentration is increased to the opposite side of the web.
  • Ruffo et al also discovered that by providing an air-to-fiber volume ratio substantially in excess of those provided in the Lovgren and Farrington applications, i.e. in the range of about 12,000:1 to 275,000:1 in the combined air stream, extremely uniform webs can be produced at high production speeds up to 550 feet per minute or greater.
  • the present invention provides a novel apparatus and process for producing a wide variety of webs by varying the feed of raw fiber materials which are fed to a plurality of uniquely arranged fiber openers and by control- 5 ling the flow of the fibers to the point where they are deposited on a fiber collection means.
  • the apparatus includes a plurality of pairs of adjacently spaced, oppositely rotating lickerins mounted on a common frame, with there being a fiber feed mecha- 0 nism in the form of a nose bar and feed roll associated with each lickerin.
  • the specific lickerins, nose bars and feed rolls will be selected for optimum conditions for the specific fiber being processed, and the individualized fibers from each fiber source are initially entrained in a first combined gaseous stream generally below the lickerin paris, and ultimately in a further composite combined stream immediately above a fiber collection means.
  • a divider plate or baffle is movably mounted between the lickerins of each pair, so that the fibers doffed from each lickerin of the pair can be either fully blended, partially blended, or substantially blended.
  • the apparatus also includes an inlet slot in the region where reach of the combined streams from the various lickerin pairs converges to form the composite combined streams, and the nature of the web that is ill timately produced is controlled by the step of introducing a web influencing means through this slot.
  • the web influencing means may be in the form of a movable divider plate or baffle that may be adjustably positioned and selectively located so as to allow the combined streams to freely intermix with one another and form the composite stream. or to partially or completely interfere with the intermixing of the combined streams and thereby vary the nature of the composite stream.
  • the web influencing means may also take the form of a further medium. such as a reinforcing me dium (scrim. gauze. etc.) or an adhesive medium in the form of a liquid or a powder.
  • a web may be produced comprised of up to five different types of fibers. The exact nature of the web will. of course. depend upon the location of the various divider plates. the type of further medium (if any) that is introduced through the central slot, and control of the gaseous stream. as discussed below.
  • the gaseous streams may be generated by a single suction source, but preferably. two independently controllable suction sources are provided so that the trajectories of the fibers in the gaseous streams can be controlled independently of the movable divider plates. With two suction sources. a substantially larger fiber depositing zone is produced. which reduces the ten dency of the fibers to be deposited in shingle effect. As a result. a more coherent web can be produced.
  • FIG. 1 is a cross-sectional view showing the main components of one embodiment of the apparatus of the present invention, with the central divider plate being shown in a lowered position;
  • FIG. 2 is a cross-sectional view similar to FIG. 1. but showing the central divider plate in a raised, fully with drawn position;
  • FIG. 3 is a simplified cross-sectional view of the apparatus of the present invention to illustrate its operation with the divider plates for each pair of Iickerins in an elevated position and with the divider plate in the web influencing means in a lowered position;
  • FIG. 3A is an enlarged fractional cross-sectional view of the web produced in the operation illustrated in FIG. 3;
  • FIG. 4 is a simplified cross-sectional view of the apparatus of the present invention to illustrate its operation with the divider plates for each pair of lickerins in an intermediate position and with the divider plate in the web influencing means in a lowered position;
  • FIG. 4a is an enlarged fractional cross-sectional view of the web produced in the operation illustrated in FIG. 4:
  • FIG. 5 is a simplified cross-sectional view of the apparatus of the present invention to illustrate its operation with the divider plates for each pair of lickerins in a lowered position and with the divider plate in the web influencing means in a lowered position;
  • FIG. 5a is an enlarged fractional cross-sectional view of the web produced in the operation illustrated in FIG 5:
  • FIG. 6 is a simplified crossseetional view of the apparatus of the present invention to illustrate its opera tion with the divider plates for each pair of liekerins in an elevated position and with means provided to introduce a reinforcing material into the composite stream as the web influencing means;
  • FIG. 6a is an enlarged fractional cross-sectional view of the web produced in the operation illustrated in FIG. 6.
  • apparatus A includes a main frame F which supports the major components of the apparatus.
  • Frame F inludes a pair of spaced. parallel side frame members 9 (one of which is shown in FIGS. I and 2). which collectively define a chamber wherein fiber opening means (herein lickerins) individualize fibers from fibrous sources for entrainment of the fibers in high speed gaseous streams and deposition of the fibers on a fiber collection means to form a web.
  • fiber opening means herein lickerins
  • side plates 9 converge upwardly to a central horizontally disposed region 9'. the center of which defines the center line of web forming apparatus A.
  • a first pair 7 of fiber opening means is located on one side (left hand) ofthe center line of the apparatus. and a second pair 8 of fiber opening means is located on the other side (right hand) of the center line ofthe apparatus.
  • one fiber opening means of each pair is adapted to open or individualize staple or textile length fibers, while the other fiber opening means is adapted to open short or papermaking length fibers.
  • this specific arrangement has been chosen for simplicity of description only. and is not in any way intended as a limitation on this disclosure.
  • the present invention contemplates that each fiber opening means of one pair may open the same or different fi bers. which may be the same as.
  • fiber opening pair 8 is essentially the same as fiber opening pair 7 (except for the orientation of frame F). Only pair 7 will be described in detail.
  • the same reference numerals used herein to describe pair 7 are also applicable to pair 8, and hence primed reference numerals have been used in the drawings to designate those elements of pair 8 that are the same as those in pair 7.
  • wood pulp is introduced into the system in the form of a pulpboard 10. which is directed between a plate 11 and a wire wound feed roll 12.
  • a nose bar 13 Connected to the lower part of the plate 11 is a nose bar 13 for providing an anvil against which the pulpboard is directed during the individualizing step.
  • the nose bar 13 has a sidewall 14 that can be made relatively flat. since due to the integrity of the pulpboard, it is unnecessary that the nose bar 13 be designed to more precisely direct the pulpboard to the lickerin 17 that is used to individualize the pulpboard into short fibers.
  • the bottom wall 15 of the nose bar 13 is angularly disposed relative to the sidewall 14 and is spaced :1 short distance from the teeth of the lickerin 17 to define a passage through which the pulpboard is moved during the individualizing operation.
  • the pulpboard is individualized into short wood fibers by the teeth of the lickerin 17 acting on the pulpboard directed into position to be contacted by the teeth by the nose bar 13.
  • the feed roll 12 is journalled in a bracket 19 that is eccentrically mounted at 20 to permit adjustment of the feed roll relative to the pulp lickerin l7 and nose bar 13.
  • the bracket 19 and feed roll 12 may be resil iently biased to direct the pulpboard toward the nose bar 13, as described in detail in the above-metnioned Farrington and Ruffo et al applications to insure that the pulpboard is fed into position to be engaged by the lickerin teeth, and to accommodate varying thicknesses of material.
  • the feed roll 12 is secured to a shaft that is suitably supported for rotation by a variable drive means, not shown, the details of which are not important to the present invention.
  • the speed at which the feed roll 12 is rotated is determined by the rate at which pulp is to be fed into the system.
  • the pulpboard 10 is fed into position to be engaged by the lickerin teeth adjacent the nose bar 13.
  • the lickerin 17 is mounted on shaft 31, which is driven at a very high speed by suitable drive means to individualize the pulpboard into short fibersv
  • the lickerin 17 is driven at a speed of 6,000 rpm and produces a large throughput of pulp fibers without adversely affecting the fibers.
  • the lickerin teeth fray the pulpboard until the fibers are loosened therefrom, after which the teeth comb the short fibers out of the board.
  • the clothing on the lickerin is designed to act on the particular fiber and has the optimum tooth profile for the specific material it is processing. Each successive tooth has more opening action than the one before, which facilitates individualizing and when operated at an optimum speed greatly minimizes, if not totally prevents, clumps and salt from being extracted from the board.
  • the pitch and height of the teeth used on the lickerin for the pulpboard may vary, good results being obtained with a tooth pitch of about three thirty-seconds inch to about A inch and a tooth height of about three thirty-seconds inch to about 2 inch.
  • the angle of the teeth of the lickerin for the pulpboard may also vary, generally within the limits of about l 0 to about +l0.
  • a positive angle for the teeth of the pulpboard lickerin which is standard in the industry. viz., +l0, may be used in accordance with the invention, but this is not preferred. in general, it is preferred that the angle of the teeth be positive and be below +10".
  • the wood fibers are individualized by the lickerin 17, they are entrained in an air stream and directed through a duct 32 formed between the lickerin 17 and a sidewall 33, which duct 32 leads into a mixing zone 34.
  • the staple length fibers which may be rayon in the form of a carded batt 35, has no integrity and must be positively directed to the clothing of the rayon lickerin 38 to insure that the rayon lickerin teeth will pick the rayon up from a rayon source 35.
  • the nose bar 36 used with the rayon wire wound feed roll 37 differs from the pulp nose bar 13.
  • the nose bar 36 is curved at 360 to essentially conform to the adjacent circumference of the rayon feed roll 37.
  • the rayon fibers picked up from the rayon source are positively maintained in position relative to the feed roll 37 until the fibers are disposed immediately adjacent the teeth of the rayon lickerin 38, which teeth will then serve to comb the fibers from the rayon source.
  • the rayon lickerin is mounted on shaft 41, which is driven at a high speed by suitable drive means (not shown). A speed which can generally be used without seriously adversely affecting the fibers is 3,000 rpm.
  • the individualized rayon fibers are then air-conveyed into duct 40 located between sidewall 42 and lickerin 38, which duct 40 leads into mixing zone 34.
  • the teeth of the rayon lickerin usually have a lower tooth height and pitch than the pulp lickerin.
  • the pitch and height of the teeth used on the lickerin for the rayon may vary, good results being obtained with a tooth pitch of about one-eighth inch to about onefourth inch and a tooth height of about one-eighth inch to about one-fourth inch.
  • the angle of the teeth of the lickerin for the rayon may also vary, generally within the limits of about l0 to about +20".
  • lickerins l7 and 38 are disposed in parallel adjacency with respect to one another, and the axes of shafts 31 and 41 lie in a plane that is disposed at an acute angle with respect to the horizontal.
  • Lickerins l7 and 38 are mounted in symmetrical relationship relative to lickerins 17 and 38, and the plane passing through the axes of shafts 31' and 41' intersects the plane passing through axes of shafts 31 and 41 at the center line of the machine.
  • the abovementioned planes subtend an angle in excess of 45, preferably in exess of and most preferably in the range of from about to about 145.
  • a divider plate is mounted for movement at right angles with respect to the plane passing through the axes of shafts 31 and 41, and divider plate 140 is movable along a path that substantially bisects the space between lickerins 17 and 38.
  • the means for moving the divider plate 140 may take the form of that disclosed in the abmementioned Farrington application. and the di ⁇ ider plate I40 is mouible through a range of positions from a fully withdrawn or retracted position disposed above the plane of the axes of shafts 31 and 4! to a fully extended position disposed a substantial distance below the plane of the arms of shafts 3
  • the total air-to-fiber volume ratio in the combined stream i.e. the stream in mixing zone 54 and therebelow. is between about 11000:! to about 275.0000. With this volume ratio extremely unifrom webs can he produced at production speeds in excess of 500 feet per minute.
  • the volume ratio in each individual stream is within the same ratio i.e. H.000 -Z75.000:l.
  • the volume ratio in the combined stream preferably has a minimum of from about l5.000:l to H4000: l. and up to 175.000:] (desirably between
  • liber opening pairs 7 and 8 can each produce a wide variety of web combinations.
  • the combined streams from mixing zones 34 and 34' are combined into a further combined stream to form webs of almost unlimited varieties. but before describing several of these ⁇ vebs. the ducting and air flow system of the appa ratus will be described in more detail.
  • the doffing of the fibers from the lickerins i7. 38. the air entrainment of the previously individualized fihers. the conveying of the fibers through the ducts 32. 40 into the mixing Zone 34. and the conveying of the intermixed fibers through a further duct 52 to a condenser 50 is accomplished by high velocity air that is introduced into the system by being pulled in through parallel passages 44, 46 by one or more suction fans (not shown).
  • the parallel flow paths 44. 46 lead to lit.l ⁇ '- erins 17. 38. respectively to direct the high velocity air in a uniform flow pattern against the lickerin teeth to doff the fibers clinging thereto.
  • the air with entrained particles therein then flows through ducts 32. 40. respectively. into mixing mm 34 from where it flows through duct 52 to condenser 50.
  • the fiber particles entrained in the air stream are deposited on the condenser in the form of a web.
  • the condenser 50 on which the fibers are formed into a web consists of an endless movable mesh screen conveyor 8] that is directed over four pulleys. not shown.
  • the conveyor is driven by suitable drive means (not shown) to move from left to right. as indicated by the directional arrows in FIGS. 1 and 2.
  • the conveyor 8] slides over a plate 82 having openings 84 and 86 therein separated by a central partition 88. Plate 82 is disposed above a housing 48. which contains an aperture 49. through which the air is sucked into the hous ing and through conduits 89a and 89h that lead to sepa' rate and individually controllable suction fans.
  • Sealed wall means may be provided between conduits 89a and 8911. so that the vast majority.
  • plate 82 may be eliminated and a single suction fan provided; but in order to increase the flexibility of the equipment. the two suction fan arrangement is preferred so that the suction pressure and the volume of air being processed through the suction slots 84 and 86 can be varied and controlled.
  • the two suction fan arrangement may be utilized to control the degree to which the combined streams from ducts 52 and 52' intermix in the mixing zone immediately above screen 81. If divider plate 142 (hereafter more fully described) is completely withdrawn and duct 8% completely restricted. the combined stream from duct 52' will have a tendency to deflect toward slot 84 since the air is being pulled through the slot. Since the combined stream from duct 52 is also normally directed toward slot 84. the two combined streams will intermix effectively. By way of contrast. if divider plate 142 is in the fully extended position. and both suction fans are running at about the same rate. the combined streams from ducts 52 and 52' remain substantially separate. and little or no mixing of the combined streams takes place. In summary. the dual l l suction fan arrangement imparts to the apparatus the ability to control the trajectory of the gaseous stream and the degree of mixing of the fibers therein independently of the divider plates I40. 140'. or 142.
  • the speed at which the conveyor 81 is moved will determine the thickness of the web being formed. For example. the thickness of the web will be increased by decreasing the web take-away speed. and vice versa.
  • the screen conveyor 81 leads to another conveyor belt. not shown. on which the web is carried to another station for further processing. as by the bonding techniques mentioned below.
  • a pair of slightly diverging plate members 66. 68 are employed to define two outer wall portions of the duct 52 between the lickerins l7 and 38 and the condenser.
  • the lower portion of the ducts 52 and 52' between the plates 66, 68. 66 and 68' and the condenser 50 are essentially sealed off by rollers 69 that are rotatably mounted on pivotally mounted arms 70. 72.
  • the weight of the rollers and arms tends to maintain the rollers in a sealing condition to minimize the introduction of air between the rollers 69 and the plates 66, 68, 66' and 68 and condenser 50.
  • plates 68 and 68 converge toward one another and toward the center line of the machine.
  • the lowermost ends of plates 68 and 68 are spaced from one another to define a vertical slot 80 located on the center line of the apparatus. and through which a further web influencing means can be inserted.
  • the further web influencing means may. for example. take the form of a vertically movable divider plate 142. which may be adjusted by any suitable means (not shown) through a range of positions from a fully retracted position (FIG. 2). which allows the combined streams from ducts 52 and 52' to freely in termix with one another. to a fully extended position (FIG. 1) closely adjacent screen 81.
  • the divider plate 142 may be removed. in which case a further medium could be introduced through slot 80 to form the further web influencing means.
  • the further medium could take the form of a perforate medium. such as a scrim. nonwoven fabric. porous paper; or of a liquid or powder spray of a treating substance. such as an adhesive. pigment. or the like. Since slot 80 is located on the center line of the apparatus. the further medium will be concentrated primarily in the center of the web that is built upon screen 81.
  • driven feed rolls 90 may be rotatably mounted between side plates 9 for feeding the further medium from a supply source (not shown) over guide roll SH and through slot 80'.
  • a weir box 92 could be provided between side plates 9 for discharging the liquid downwardly and through slot 80.
  • the present invention contemplates that it may be hollow. or slotted. so that in addition to introducing a further medium into [2 the web. the degrce of mixing of the combined streams from ducts 52 and 52' can also be controlled. The effect of varying the position of divider plate 142, introducing a further medium through slot 80. and individu' ally controlling the condenser suction fans will be explained in more detail hereinafter.
  • EXAMPLE I A web laying process is carried out in the apparatus of the invention in theposition shown in FIG. 3 with divider plates 140 and 140' in the completely withdrawn position and divider plate 142 in the completely extended or down position.
  • the exhaust fans communieating with ducts 89a and 89b are operated at equal capacity.
  • pulp is fed to lickerins l7 and 17', and rayon to lickerins 38 and 38' the pulp and rayon fibers cross over one another in mixing zones 34 and 34'. and the combined streams are substantially completely isolated from one another by the lower end of divider plate I42.
  • a web is produced on foraminous screen 81 which. as shown in FIG. 311.
  • the web center has the highest concentration of pulp fibers. with the pulp fiber concentration progressively decreasing toward the web surfaces.
  • EXAMPLE II A web laying process is carried out in the apparatus of this invention with divider plates I40 and I40 and divider plate 142 in an intermediate position. a setting for a homogeneous blend. Pulp lickerins l7 and 17' are rotated at 5100 rpm and rayon lickerins 38 and 38' are rotated at 2800 rpm. At each lickerin the nost bar is located at a spacing of 0.020 inches. The fibers are fed to the lickerins at rates to provide a blend of 60 percent pulp and 40 percent rayon by weight and the belt is moved at I00 feet per minute to produce a web having a density of H grains per square yard. The web is uniform in composition in all portions of its thickness and the fibers laid on the web are substantially flat so that there is substantially no shingling effect in the web.
  • EXAMPLE III A weblaying process is carried out in the apparatus of this invention in the position shown in FIG. 5 with divider plates 140 and 140' and divider plate 142 in lowered position.
  • the lickerin speeds. belt speed. nose bar spacings and pulp/fiber ratios are identical to those of Example II.
  • the web produced has a density of l I70 grains per square yard and. as shown in FIG. 50 has a predominance of pulp at its outer faces 51 I and a rayon-rich inner core 5I2.
  • Example IV This Example is the same as Example I. except that lickerin 38 opens polyester instead of rayon and the resulting web is similar to the web produced with Example I. except that one surface of the web has an enriched polyester fiber content. while the opposite surface of the web has an enriched rayon fiber content.
  • Example V This Example is substantially the same as Example I. except that divider plate I42 is removed and scrim is fed through slot by rolls 90. as shown in FIG. 6.
  • FIG. 61 is similar to that of Example I. with rayon-rich outer layers 6]] and pulp-rich center 612, the latter being reinforced by scrim in intimate contact therewith.
  • EXAMPLE Vl This Example is similar to Example -l. except that divider plates 140 and 140' are in an intermediate position. as shown in FIG. 4, so that substantially complete intermixing takes place in ducts 89a and 89b.
  • the exhaust fan communicating with Duct 89 is operated at a higher speed than the fan communicating with duct 89'. producing a web layer in the initial portion of the web laying process which is more dense than the web layer produced in the final portion of the web laying process.
  • the final web. shown in H6. 4a is uniform in rayon/pulp ratio in all portions of its thickness, but its lower layer 411 is more dense than its upper layer 412.
  • nonwoven webs obtained by the present invention may be post-treated by any suitable conventional technique, e.g.. mechanical or chemical. to bond the web and provide the required strength and coherency characteristics for a given product.
  • suitable conventional technique e.g.. mechanical or chemical. to bond the web and provide the required strength and coherency characteristics for a given product.
  • the particular type of bonding technique chosen will depend upon various factors well known to those skilled in the art. e.g.. type of fibers. the particular use of the products. etc.
  • typical of the conventional techniques are web saturation bonding. suction bonding. foam bonding. print bonding. fiber bonding. fiber interlocking spray bonding. solvent bonding. scrim bonding. viscous bonding. merccriza tion. etc.
  • the method of forming a web of nonwoven fibers comprising the steps of providing a plurality of sources of fibers. rotating a lickerin for each source of fibers. feeding each source of fibers into contact with its respective lickerin whereby each lickerin individualizes fibers from its respective source. providing separate high speed gaseous streams to doff at least some of the fibers from each lickerin and to entrain the individualized fibers in their respective gaseous stream. impelling a first pair of the gaseous streams carrying entrained fibers toward one another at a first common region.
  • suction applying step is performed by locating a single suction applying member generally centrally below said third controlling member and below said fiber receiv ing member.
  • suction applying step is by locating first and second suction applying members below said fiber receiving member and below and on opposite sides of said third controlling member. and separately adjusting said first and second suction applying members.
  • the method of forming a web of nonwoven fibers upon a foraminous fiber collecting means in a fiber depositing zone comprising the steps of providing a plurality of sources of fibers. rotating a lickerin for each source of fibers. feeding each source of fibers into contact with its respective lickerin whereby each lickerin individualizes fibers from its respective source. providing separate high-speed gaseous streams to doff at least some of the fibers from each lickerin and to entrain the individualized fibers in their respective gaseous stream. impelling a first pair of the gaseous streams carrying entrained fibers along converging flow paths and toward one another at a first common region.
  • a method as set forth in claim 7 including the furtiter step of introducing a further web component at said third common region.
  • a method as set forth in claim 9 in which the step of introducing a further web component is performed by introducing a perforate medium at said third common region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

A process and apparatus for forming a wide variety of air-laid nonwoven webs, with the apparatus including plural pairs of spaced parallel oppositely rotating lickerins, each pair having a movable divider plate therebetween. The lickerins individualize fibers from separate fibrous sources, which may be similar or dissimilar, and high speed air streams are caused to flow past each individual lickerin, through a mixing zone between each pair of lickerins to form combined streams, and into a common mixing zone above a fiber collecting means to form a composite stream. The individualized fibers are doffed from the lickerins by the high speed air streams and are entrained therein, and divider plates between each pair of lickerins are adjustable through a range of positions for controlling the degree of intermixing of the entrained fibers in the combined streams. A further divider plate is mounted in adjustable relationship with respect to the common mixing zone to control the degree to which the combined streams and entrained fibers intermix in forming the composite stream. The air streams may be generated by a single suction source below the fiber collecting means, or by separate individually controlled suction sources on opposite sides of the further divider plates, which may be individually adjusted to further vary the web that is formed on the fiber collecting means. The further divider plate is preferably removably mounted so that a further material, such as a reinforcing material or an adhesive can be introduced into the composite stream and resulting web, if desired.

Description

United States Patent [1 1 Goyal METHOD FOR PREPARING AIR-LAID NONWOVEN WEBS FROM COMBINED STREAMS [75] Inventor: Prashant K. Goyal, Bombay, India [73] Assignee: Johnson & Johnson, New
Brunswick, NJ.
[22] Filed: Apr. 4, 1973 [21] Appl. No.: 347,971
[52] US. Cl. 264/89; 19/1563; 264/91; 264/113; 264/116; 264/121; 425/81; 425/82 [51] Int. Cl D0411 1/16 [58] Field of Search 264/108, 121, 115, 116, 264/113; 19/1563, 156.4; 425/80, 82, 81, 83
[56] References Cited UNITED STATES PATENTS 2,624,079 [[1953 Duvall 264/113 3,768,118 10/1973 Ruffo et a1 19/1455 Primary Examiner-Robert F. White Assislant Examiner-T. E. Balhoff [57] ABSTRACT A process and apparatus for forming a wide variety of air-laid nonwoven webs, with the apparatus including plural pairs of spaced parallel oppositely rotating lick- 20 I 2'42 44 19 9 27 O 1 a 14 1 July 15, 1975 erins, each pair having a movable divider plate therebetween. The lickerins individualize fibers from separate fibrous sources. which may be similar or dissimilar, and high speed air streams are caused to flow past each individual lickerin, through a mixing zone between each pair of lickerins to form combined streams, and into a common mixing zone above a fiber collecting means to form a composite stream. The individualized fibers are doffed from the lickerins by the high speed air streams and are entrained therein, and divider plates between each pair of lickerins are adjustable through a range of positions for controlling the degree of intermixing of the entrained fibers in the combined streams. A further divider plate is mounted in adjustable relationship with respect to the common mixing zone to control the degree to which the combined streams and entrained fibers intermix in forming the composite stream. The air streams may be generated by a single suction source below the fiber collecting means, or by separate individually controlled suction sources on opposite sides of the further divider plates, which may be individually adjusted to further vary the web that is formed on the fiber collecting means. The further divider plate is preferably removably mounted so that a further material, such as a reinforcing material or an adhesive can be introduced into the composite stream and resulting web, if desired.
11 Claims, 10 Drawing Figures PATENTEDJUL 1 SHEET Fl (5. 6o
METHOD FOR PREPARING AIR-LAID NONWOVEN WEBS FROM COMBINED STREAMS BACKGROUND OF THE INVENTION This invention relates to an improved process for airlaying fibers to produce a wide variety of air-laid nonwoven webs, and to an apparatus upon which such a process may be performed. Preferably, the webs produced by the process and apparatus of the invention comprise a blend of long and short fibers; i.e., textile length and papermaking fibers, with the fibers of the webs being randomly oriented.
Fibers are usually classified according to length, with relatively long or textile length fibers being longer than about one-fourth inch and generally between one-half and two and one-half inches in length. The term "long fibers" as used herein, refers to textile fibers having a length greater than one-fourth inch, and the fibers may be of natural or synthetic origin, The term short fibers," as used herein, refers to papermaking fibers, such as wood pulp fibers or cotton linters having a length less than about one-fourth inch. While it is recognized that short fibers are usually substantially less costly than long fibers, it is also recognized in many instances that it is desirable to strengthen a short fiber product by including a blend of long fibers therein.
Nonwoven materials are structures which in general consist of an assemblage or web of fibers, joined randomly or systematically by mechanical, chemical or other means. These materials are well known in the art, having gained considerable prominence within the last years or so in the consumer market, the industrial commercial market and the hospital field. For example, nonwoven materials are becoming increasingly important in the textile and related fields, one reason being because of their low cost of manufacture for a given yardage as compared to the cost of more conventional textile fabrics made by weaving, knitting or felting. Typical of their use is hospital caps, dental bibs, eye pads, dress shields, shoe liners, shoulder pads, skirts, hand towels, handkerchiefs, tapes, bags, table napkins, curtains, draperies, etc Generally speaking, nonwoven materials are available today in a wide range of fabric weights of from as little as about 100 grains per square yard to as much as about 4,000 grains or more per square yard.
Nonwoven materials are basically one of two types oriented or random webs. As the name implies, oriented webs have the major proportion of the fibers aligned predominantly in one direction, generally the machine or long direction (MD) of the fibrous web so that the properties of the resulting web are asymmetrical or aniosotropic i.e. conventionally the tensile strengths in the machine direction are generally approximately eight or more times higher than in the cross direction (CD); while on the other hand, random fibrous nonwoven webs do not have the fibers lying predominantly in any direction so that the resulting web is more balanced or isotropic e.g. the tensile strengths in both the machine and the cross direction are approximately the same. As will be readily appreciated, the uses of oriented nonwoven webs are quite restricted as compared to random webs in that their principle strength lies only in one direction making them unsuitable where a product must have good strength characteristics in all directions.
Many different processes and apparatus are known in the art for producing nonwoven webs; briefly summarized, they may be classified as (l) mechanical techniques (e.g. by carding, garnetting, filament winding), (2) extrusion techniques (e.g. filament extrusion). (3) wet laying techniques (e.g. inclined wire paper apparatus, cylinder paper apparatus, etc.) and (4) air-laying techniques. This invention concerns improvements in the latter classification i.e. the air-laying techniques, to produce improved random air-laid nonwoven materials.
In brief summary, conventional air-laying techniques for producing nonwoven materials involve opening of fibers from a compressed state, dispersing the fibers in a single high velocity air stream and subsequent condensing (i.e. depositing) of the fibers onto a perforated cylinder or wire screen or belt to produce a web. Thereafter, the web is generally post-treated to provide the required degree of coherency by one or more well known steps, e.g. mechanical or chemical bonding procedures.
In general, air-laying techniques of producing nonwoven webs have several advantages over other types of known web processes in its ability to produce a wide variation of lengths and fineness of webs with a wide range of fabric weights, and as well to permit the use of short fibers for different types of products.
Notwithstanding the advantages of air-laying procedures, the present state of technology for producing random nonwoven webs, insofar as their production speeds are concerned, is inferior to other processes for producing nonwoven webs. By way of example, a method that has been used to blend a mixture of long and short fibers into a nonwoven web of randomly oriented fibers involved the step of introducing a mixture of preopened long and short fibers to a single lickerin where the mixture of long and short fibers is individualized. The individual fibers, but still in admixture, are introduced into an air stream and conveyed to a condenser where they were formed into a web. This method has a significant disadvantage in that in order to prevent degradation of the long fibers, it is necessary to operate the lickerin at optimum speed for the long fibers, which is much below that which is optimum for short fibers. This necessary compromise seriously limited the rate at which the fibers could be processed through this system and this economic disadvantage militates against its use. Also, this method is capable of producing only a single type of web, i.e., a web comprised of a homogeneous blend of long and short fibers.
Another prior art apparatus used to make a nonwoven web that is intended to be a homogeneous mixture of randomly oriented long and short fibers includes the use of a milling device, such as a hammer mill, to individualize the short fibers and a lickerin to individualize the long fibers. The individualized short fibers are entrained in an air stream leading to a mixing zone into which the long fibers are introduced, where the fibers are intermixed. The mixture of fibers is deposited on a condenser to form a web of a random mixture of long and short fibers. In these webs, the intermixed fibers are not completely homogeneously blended; in fact, in such webs, there is more or less ofa stratification of the fibers in layers, with the long fibers predominating on one side of the web and the short fibers predominating on the other side. A particular disadvantage of this apparatus was that the hammer mill did not completely 3 individualize the wood pulp fibers and, in consequence, clumps of fibers and/or salt" resulted. Also, only a single type of web can be produced by this approach.
Langdon US. Pat. No. 3,512,218, granted May I), 1970, and Wood US. Pat. No. 3,535,187. granted Oct. 20, 1970, disclose apparatus for producing layered, nonwoven webs, wherein the layers are apparently separated by a thin interface of blended fibers from each layer.
A recent development in this field of air-laying webs has overcome a number of the aforementioned problems in the apparatus previously used and makes possible production of a nonwoven web of a homogeneous mixture of long and short fibers, free from consequential amounts of clumps and salt. The apparatus and method of this development are described and claimed in a commonly owned U.S. application Ser. No. 108,547, filed Jan. 21, 1971, in the name of Ernest G. Lovgren, and now US. Pat. No. 3,772,739.
In the Lovgren apparatus and process, long and short fibers to be blended are individualized separately and simultaneously by separate high speed lickerins, one for each type of fiber, that are operated at speeds optimum for the specific fibers acted upon. For example. in the case of pulpboard, the lickerin is operated in the order of 6,000 rpm to individualize the wood pulp fibers, and the long fibers, the staple length fibers, for example, rayon. are individualized by the lickerin acting on these fibers, operated at a speed in the order of 2,400 rpm. At a speed of 6,000 rpm, rayon fibers are damaged.
In the Lovgren apparatus, individualized fibers are doffed from their respective lickerins by separate air streams. The fibers are entrained in the separate air streams and the air streams are subsequently intermixed in a mixing zone to homogeneously blend the fi bers entrained therein. The homogeneous blend of fibers is then deposited in random fashion on a condenser disposed in proximity to the mixing zone. The air streams generated by the high speed operation of the lickerins and by a suction fan located in the condenser, which acts to draw air past the lickerins, convey the fibers to the condenser.
While the Lovgren apparatus represents a substantial advance in the art, the apparatus has limitations in that it does not lend itself for use in making a wide variety of webs.
In accordance with a still further recent improvement, as described and claimed in a commonly owned US. application Ser. No. 108.545, filed in the name of Allan P. Farrington on Jan. 21, 1971, and now U.S. Pat. No. 3,740,797 flexible process and apparatus are de scribed for producing a wider variety of nonwoven, airlaid isotropic webs made up of a substantially uniform mixture of long and short fibers, or of two different kinds of long or short fibers. In accordance with the Farrington process, the following types of webs can be produced: (1 a web comprised of a homogeneous blend of fibers from two different fiber sources, (2) a web having outer layers comprised of fibers from two different fiber sources and an intermediate layer that is a blend of the fibers from each source, and (3) a web of two layers of fibers from each fiber source, with the layers being interlaced only at the region of their interface.
In yet another recent development, a still further improvement is disclosed for not only producing webs having greater uniformity, but also non-laminated webs having different properties at their opposite faces. Two similar webs [(2) and (3)} have been produced by the Farrington invention, as summarized in the preceding paragraph, but such webs do not obtain the different properties by a blend of fibers at the opposite faces. In accordance with the teachings in commonly owned United States application Ser. No. 108,546 filed in the name of Angelo P. Ruffo and Prashant K. Goyal on Jan. 21, 1971, and now US. Pat. No. 3,768,118 a web is produced from two different types of fibers at a given overall concentration, with the concentration of each fiber type being increased above the overall concentration at opposite faces, and with the concentration of each fiber type gradually decreasing away from the face at which the overall concentration is increased to the opposite side of the web. Ruffo et al also discovered that by providing an air-to-fiber volume ratio substantially in excess of those provided in the Lovgren and Farrington applications, i.e. in the range of about 12,000:1 to 275,000:1 in the combined air stream, extremely uniform webs can be produced at high production speeds up to 550 feet per minute or greater. These webs were of the type described above in this paragraph, or the type described in the preceding paragraph,
While the Lovgren, Farrington and Ruffo et al applications all disclose significant advances in the art, there Q remains a need for an apparatus and process for producing a wider variety of high quality webs at greater throughputs, and this need is satisfied by the process and apparatus of the present invention. Since the present invention is related to the inventions disclosed in 1.5 the Lovgren, Farrington and Ruffo et 211 applications, the disclosures thereof are expressly incorporated herein by this reference to the extent that they are not inconsistent with the express teachings thereof.
SUMMARY OF THE INVENTION The present invention provides a novel apparatus and process for producing a wide variety of webs by varying the feed of raw fiber materials which are fed to a plurality of uniquely arranged fiber openers and by control- 5 ling the flow of the fibers to the point where they are deposited on a fiber collection means.
The apparatus includes a plurality of pairs of adjacently spaced, oppositely rotating lickerins mounted on a common frame, with there being a fiber feed mecha- 0 nism in the form of a nose bar and feed roll associated with each lickerin. The specific lickerins, nose bars and feed rolls will be selected for optimum conditions for the specific fiber being processed, and the individualized fibers from each fiber source are initially entrained in a first combined gaseous stream generally below the lickerin paris, and ultimately in a further composite combined stream immediately above a fiber collection means. A divider plate or baffle is movably mounted between the lickerins of each pair, so that the fibers doffed from each lickerin of the pair can be either fully blended, partially blended, or substantially blended. The apparatus also includes an inlet slot in the region where reach of the combined streams from the various lickerin pairs converges to form the composite combined streams, and the nature of the web that is ill timately produced is controlled by the step of introducing a web influencing means through this slot.
LII
The web influencing means may be in the form of a movable divider plate or baffle that may be adjustably positioned and selectively located so as to allow the combined streams to freely intermix with one another and form the composite stream. or to partially or completely interfere with the intermixing of the combined streams and thereby vary the nature of the composite stream. The web influencing means may also take the form of a further medium. such as a reinforcing me dium (scrim. gauze. etc.) or an adhesive medium in the form of a liquid or a powder.
In a specific embodiment including two pairs of lickerins. planes passing through the center lines of each pair subtend an included angle of between 120 to 1450". The divider plate of each liekcrin pair is movable perpendicularly with respect to the plane through the center lines of the lickerins with which it is associated and. these divider plates are positioned at an acute angle with respect to one another. The slot through which the further divider plate or further medium is introduced is vertically disposed on the center line of the machine. i.e.. in alignment with the line of intersection between the planes which pass through the center lines ofthe lickerin pairs. It will be appreciated that with the aforedescribed arrangement. a web may be produced comprised of up to five different types of fibers. The exact nature of the web will. of course. depend upon the location of the various divider plates. the type of further medium (if any) that is introduced through the central slot, and control of the gaseous stream. as discussed below.
The gaseous streams may be generated by a single suction source, but preferably. two independently controllable suction sources are provided so that the trajectories of the fibers in the gaseous streams can be controlled independently of the movable divider plates. With two suction sources. a substantially larger fiber depositing zone is produced. which reduces the ten dency of the fibers to be deposited in shingle effect. As a result. a more coherent web can be produced.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing the main components of one embodiment of the apparatus of the present invention, with the central divider plate being shown in a lowered position;
FIG. 2 is a cross-sectional view similar to FIG. 1. but showing the central divider plate in a raised, fully with drawn position;
FIG. 3 is a simplified cross-sectional view of the apparatus of the present invention to illustrate its operation with the divider plates for each pair of Iickerins in an elevated position and with the divider plate in the web influencing means in a lowered position;
FIG. 3A is an enlarged fractional cross-sectional view of the web produced in the operation illustrated in FIG. 3;
FIG. 4 is a simplified cross-sectional view of the apparatus of the present invention to illustrate its operation with the divider plates for each pair of lickerins in an intermediate position and with the divider plate in the web influencing means in a lowered position;
FIG. 4a is an enlarged fractional cross-sectional view of the web produced in the operation illustrated in FIG. 4:
FIG. 5 is a simplified cross-sectional view of the apparatus of the present invention to illustrate its operation with the divider plates for each pair of lickerins in a lowered position and with the divider plate in the web influencing means in a lowered position;
FIG. 5a is an enlarged fractional cross-sectional view of the web produced in the operation illustrated in FIG 5:
FIG. 6 is a simplified crossseetional view of the apparatus of the present invention to illustrate its opera tion with the divider plates for each pair of liekerins in an elevated position and with means provided to introduce a reinforcing material into the composite stream as the web influencing means; and
FIG. 6a is an enlarged fractional cross-sectional view of the web produced in the operation illustrated in FIG. 6.
DETAILED DESCRIPTION While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail a preferred embodiment of the invention. with the understanding that the present disclosure is to be considered as an exem plification of the principles of the invention and is not intended to limit the invention to the embodiment illus trated. The scope of the invention will be pointed out in the appended claims.
Referring now to the drawings. the web forming apparatus is designated in its entirety by reference letter A. and apparatus A includes a main frame F which supports the major components of the apparatus. Frame F inludes a pair of spaced. parallel side frame members 9 (one of which is shown in FIGS. I and 2). which collectively define a chamber wherein fiber opening means (herein lickerins) individualize fibers from fibrous sources for entrainment of the fibers in high speed gaseous streams and deposition of the fibers on a fiber collection means to form a web. As is evident from FIGS. I and 2. side plates 9 converge upwardly to a central horizontally disposed region 9'. the center of which defines the center line of web forming apparatus A.
In the illustrated embodiment. a first pair 7 of fiber opening means is located on one side (left hand) ofthe center line of the apparatus. and a second pair 8 of fiber opening means is located on the other side (right hand) of the center line ofthe apparatus. As will be evident from the following description. one fiber opening means of each pair is adapted to open or individualize staple or textile length fibers, while the other fiber opening means is adapted to open short or papermaking length fibers. However. it should be understood that this specific arrangement has been chosen for simplicity of description only. and is not in any way intended as a limitation on this disclosure. For example. the present invention contemplates that each fiber opening means of one pair may open the same or different fi bers. which may be the same as. or different from the fibers opened by the fiber opening means of the other pair. Hence, while certain components of the apparatus are illustrated and described as having a specific configuration. which has been found to work particularly well for a specific type of fiber. it is not intended that this be limitative on the disclosure. since the specific configuration of the various components of the apparatus will be determined, to a certain extent, by the particular fibers being opened. it being understood that the components should be selected and given the configu- 7 ration that will result in maximum opening characteristics for the particular fiber being opened.
With the foregoing in mind, since fiber opening pair 8 is essentially the same as fiber opening pair 7 (except for the orientation of frame F). only pair 7 will be described in detail. The same reference numerals used herein to describe pair 7 are also applicable to pair 8, and hence primed reference numerals have been used in the drawings to designate those elements of pair 8 that are the same as those in pair 7.
Referring first to the left-hand, or wood pulp side of pair 7, wood pulp is introduced into the system in the form of a pulpboard 10. which is directed between a plate 11 and a wire wound feed roll 12. Connected to the lower part of the plate 11 is a nose bar 13 for providing an anvil against which the pulpboard is directed during the individualizing step. The nose bar 13 has a sidewall 14 that can be made relatively flat. since due to the integrity of the pulpboard, it is unnecessary that the nose bar 13 be designed to more precisely direct the pulpboard to the lickerin 17 that is used to individualize the pulpboard into short fibers. The bottom wall 15 of the nose bar 13 is angularly disposed relative to the sidewall 14 and is spaced :1 short distance from the teeth of the lickerin 17 to define a passage through which the pulpboard is moved during the individualizing operation. The pulpboard is individualized into short wood fibers by the teeth of the lickerin 17 acting on the pulpboard directed into position to be contacted by the teeth by the nose bar 13.
The feed roll 12 is journalled in a bracket 19 that is eccentrically mounted at 20 to permit adjustment of the feed roll relative to the pulp lickerin l7 and nose bar 13. The bracket 19 and feed roll 12 may be resil iently biased to direct the pulpboard toward the nose bar 13, as described in detail in the above-metnioned Farrington and Ruffo et al applications to insure that the pulpboard is fed into position to be engaged by the lickerin teeth, and to accommodate varying thicknesses of material. The feed roll 12 is secured to a shaft that is suitably supported for rotation by a variable drive means, not shown, the details of which are not important to the present invention. The speed at which the feed roll 12 is rotated is determined by the rate at which pulp is to be fed into the system.
During the operation of the illustrated apparatus, the pulpboard 10 is fed into position to be engaged by the lickerin teeth adjacent the nose bar 13. The lickerin 17 is mounted on shaft 31, which is driven at a very high speed by suitable drive means to individualize the pulpboard into short fibersv In an exemplary embodiment, the lickerin 17 is driven at a speed of 6,000 rpm and produces a large throughput of pulp fibers without adversely affecting the fibers. The lickerin teeth fray the pulpboard until the fibers are loosened therefrom, after which the teeth comb the short fibers out of the board. The clothing on the lickerin is designed to act on the particular fiber and has the optimum tooth profile for the specific material it is processing. Each successive tooth has more opening action than the one before, which facilitates individualizing and when operated at an optimum speed greatly minimizes, if not totally prevents, clumps and salt from being extracted from the board.
The pitch and height of the teeth used on the lickerin for the pulpboard may vary, good results being obtained with a tooth pitch of about three thirty-seconds inch to about A inch and a tooth height of about three thirty-seconds inch to about 2 inch. The angle of the teeth of the lickerin for the pulpboard may also vary, generally within the limits of about l 0 to about +l0. A positive angle for the teeth of the pulpboard lickerin which is standard in the industry. viz., +l0, may be used in accordance with the invention, but this is not preferred. in general, it is preferred that the angle of the teeth be positive and be below +10".
After the wood fibers are individualized by the lickerin 17, they are entrained in an air stream and directed through a duct 32 formed between the lickerin 17 and a sidewall 33, which duct 32 leads into a mixing zone 34.
Referring now to the staple length fiberizing system of the pair 7, a number of the mechanisms used in processing the staple length fibers are similar to those used on the pulp side of the system and where they are identical they are given the same numbers.
The staple length fibers, which may be rayon in the form of a carded batt 35, has no integrity and must be positively directed to the clothing of the rayon lickerin 38 to insure that the rayon lickerin teeth will pick the rayon up from a rayon source 35. To this end, the nose bar 36 used with the rayon wire wound feed roll 37 differs from the pulp nose bar 13. The nose bar 36 is curved at 360 to essentially conform to the adjacent circumference of the rayon feed roll 37. The rayon fibers picked up from the rayon source are positively maintained in position relative to the feed roll 37 until the fibers are disposed immediately adjacent the teeth of the rayon lickerin 38, which teeth will then serve to comb the fibers from the rayon source. The rayon lickerin is mounted on shaft 41, which is driven at a high speed by suitable drive means (not shown). A speed which can generally be used without seriously adversely affecting the fibers is 3,000 rpm. The individualized rayon fibers are then air-conveyed into duct 40 located between sidewall 42 and lickerin 38, which duct 40 leads into mixing zone 34.
The teeth of the rayon lickerin usually have a lower tooth height and pitch than the pulp lickerin. The pitch and height of the teeth used on the lickerin for the rayon may vary, good results being obtained with a tooth pitch of about one-eighth inch to about onefourth inch and a tooth height of about one-eighth inch to about one-fourth inch. The angle of the teeth of the lickerin for the rayon may also vary, generally within the limits of about l0 to about +20".
As is evident from the drawings, lickerins l7 and 38 are disposed in parallel adjacency with respect to one another, and the axes of shafts 31 and 41 lie in a plane that is disposed at an acute angle with respect to the horizontal. Lickerins l7 and 38 are mounted in symmetrical relationship relative to lickerins 17 and 38, and the plane passing through the axes of shafts 31' and 41' intersects the plane passing through axes of shafts 31 and 41 at the center line of the machine. The abovementioned planes subtend an angle in excess of 45, preferably in exess of and most preferably in the range of from about to about 145.
A divider plate is mounted for movement at right angles with respect to the plane passing through the axes of shafts 31 and 41, and divider plate 140 is movable along a path that substantially bisects the space between lickerins 17 and 38. The means for moving the divider plate 140 may take the form of that disclosed in the abmementioned Farrington application. and the di\ider plate I40 is mouible through a range of positions from a fully withdrawn or retracted position disposed above the plane of the axes of shafts 31 and 4! to a fully extended position disposed a substantial distance below the plane of the arms of shafts 3| and 41. As is described in detail in the abovenientioned Farrington and Ruffo et al applications. when plate 140 is in the fully retracted position. there is no interference with the high speed air streams from ducts 32 and 40. and the fibers in these air streams are impelled toward one another and into mixing zone 34. When di\ider plate 140 is in the fully extended position. the oncoming high speed streams from ducts 32 and 40 are com pletely isolated from one another. and there is no blending of the fibers in mixing zone 34. At various positions between the two extremes. the degree of interference with the oncoming air streams is varied. and thus the degree of mixing of the fibers in the oncoming streams can be controlled.
ln accordance with the teachings of the abovementioned Ruffo et al application. in order to obtain webs having a high degree of uniformity at hgih production speeds. the total air-to-fiber volume ratio in the combined stream. i.e. the stream in mixing zone 54 and therebelow. is between about 11000:! to about 275.0000. With this volume ratio extremely unifrom webs can he produced at production speeds in excess of 500 feet per minute. Most desirably the volume ratio in each individual stream is within the same ratio i.e. H.000 -Z75.000:l. In the case where staple length fibers form the total fiber content of the combined stream. the volume ratio in the combined stream preferably has a minimum of from about l5.000:l to H4000: l. and up to 175.000:] (desirably between |00.000:l and 275.000zl. with each individual stream having similar ratio.
It has been found that at the above-described volume ratios. when divider plate I40 is in the fully retracted position a majority of the fibers coming from duct 40 tend to cross o\er the fibers coming from duct 32. while a majority of the fibers coming from duct 32 tend to cross over the fibers coming from duct 40. Should a fiber collecting means be positioned immediately below mixing zone 34. the resulting web would have a concentration of short fibers at one face in excess of the overall concentration of short fibers in the Web. with the opposite face of the web having a concentration of staple length fibers in excess of the overall concentration of staple length fibers in the web. The concentration of the short and staple length fibers gradually. and generally linearly. diminishes from the respective "enriched face to the opposite face.
With the lower end of the divider plate positioned slightly below the plane of the shaft axes 3| and 41. at the volume ratios mentioned above. the fibers in the stream coming from duct 32 and duct 40 are substantially homogeneously blended. As will be readily understood. as the divider plate is progressively moved from the fully retracted position to the position slightly below the plane of the shaft axes 3| and 4!, the degree of fiber cross over gradually diminishes. When the divider plate is mox ed below the position for homogeneous blending. fiber cross over is effectively prevented. and as the divider plate is progressively moved downwardly to the fully extended position which effectively completely isolates the oncoming individual streams (ill from one another. the degree of blending gradually decreases. As a result. between these latter two positions webs may be produced having a homogeneously blended core of varying thickness separating layers of blended pulp and rayon layers.
With the foregoing in mind. it will be appreciated that liber opening pairs 7 and 8 can each produce a wide variety of web combinations. The combined streams from mixing zones 34 and 34' are combined into a further combined stream to form webs of almost unlimited varieties. but before describing several of these \vebs. the ducting and air flow system of the appa ratus will be described in more detail.
The doffing of the fibers from the lickerins i7. 38. the air entrainment of the previously individualized fihers. the conveying of the fibers through the ducts 32. 40 into the mixing Zone 34. and the conveying of the intermixed fibers through a further duct 52 to a condenser 50 is accomplished by high velocity air that is introduced into the system by being pulled in through parallel passages 44, 46 by one or more suction fans (not shown The parallel flow paths 44. 46 lead to lit.l\'- erins 17. 38. respectively to direct the high velocity air in a uniform flow pattern against the lickerin teeth to doff the fibers clinging thereto. The air with entrained particles therein then flows through ducts 32. 40. respectively. into mixing mm 34 from where it flows through duct 52 to condenser 50. The fiber particles entrained in the air stream are deposited on the condenser in the form of a web.
The condenser 50 on which the fibers are formed into a web consists of an endless movable mesh screen conveyor 8] that is directed over four pulleys. not shown. The conveyor is driven by suitable drive means (not shown) to move from left to right. as indicated by the directional arrows in FIGS. 1 and 2. The conveyor 8] slides over a plate 82 having openings 84 and 86 therein separated by a central partition 88. Plate 82 is disposed above a housing 48. which contains an aperture 49. through which the air is sucked into the hous ing and through conduits 89a and 89h that lead to sepa' rate and individually controllable suction fans. Sealed wall means may be provided between conduits 89a and 8911. so that the vast majority. if not all. of the air flowing through the machine can be pulled through slot 84 or 86. Alternatively. plate 82 may be eliminated and a single suction fan provided; but in order to increase the flexibility of the equipment. the two suction fan arrangement is preferred so that the suction pressure and the volume of air being processed through the suction slots 84 and 86 can be varied and controlled.
The two suction fan arrangement may be utilized to control the degree to which the combined streams from ducts 52 and 52' intermix in the mixing zone immediately above screen 81. If divider plate 142 (hereafter more fully described) is completely withdrawn and duct 8% completely restricted. the combined stream from duct 52' will have a tendency to deflect toward slot 84 since the air is being pulled through the slot. Since the combined stream from duct 52 is also normally directed toward slot 84. the two combined streams will intermix effectively. By way of contrast. if divider plate 142 is in the fully extended position. and both suction fans are running at about the same rate. the combined streams from ducts 52 and 52' remain substantially separate. and little or no mixing of the combined streams takes place. In summary. the dual l l suction fan arrangement imparts to the apparatus the ability to control the trajectory of the gaseous stream and the degree of mixing of the fibers therein independently of the divider plates I40. 140'. or 142.
It should also be noted that with a two-suction fan arrangement a larger fiber laying area is produced. As is well known in the art. fibers that are deposited in an air laying process tend to build up on one another in generally inclined planes in a shingle-like fashion. With the two-suction fan arrangement. by virtue of the enlarged fiber laying area. the shingling effect is reduced. As a result. more coherent webs can be produced.
The speed at which the conveyor 81 is moved will determine the thickness of the web being formed. For example. the thickness of the web will be increased by decreasing the web take-away speed. and vice versa. The screen conveyor 81 leads to another conveyor belt. not shown. on which the web is carried to another station for further processing. as by the bonding techniques mentioned below.
In order to help seal off duct 52 and maximize the efficiency of the suction fans being used. a pair of slightly diverging plate members 66. 68 are employed to define two outer wall portions of the duct 52 between the lickerins l7 and 38 and the condenser. The lower portion of the ducts 52 and 52' between the plates 66, 68. 66 and 68' and the condenser 50 are essentially sealed off by rollers 69 that are rotatably mounted on pivotally mounted arms 70. 72. The weight of the rollers and arms tends to maintain the rollers in a sealing condition to minimize the introduction of air between the rollers 69 and the plates 66, 68, 66' and 68 and condenser 50.
As is evident from the drawings. plates 68 and 68 converge toward one another and toward the center line of the machine. The lowermost ends of plates 68 and 68 are spaced from one another to define a vertical slot 80 located on the center line of the apparatus. and through which a further web influencing means can be inserted. The further web influencing means may. for example. take the form of a vertically movable divider plate 142. which may be adjusted by any suitable means (not shown) through a range of positions from a fully retracted position (FIG. 2). which allows the combined streams from ducts 52 and 52' to freely in termix with one another. to a fully extended position (FIG. 1) closely adjacent screen 81. where the combined streams from ducts S2 and 52 are effectively isolated from one another. Alternatively. the divider plate 142 may be removed. in which case a further medium could be introduced through slot 80 to form the further web influencing means. The further medium could take the form of a perforate medium. such as a scrim. nonwoven fabric. porous paper; or of a liquid or powder spray of a treating substance. such as an adhesive. pigment. or the like. Since slot 80 is located on the center line of the apparatus. the further medium will be concentrated primarily in the center of the web that is built upon screen 81. For illustrative purposes. driven feed rolls 90 may be rotatably mounted between side plates 9 for feeding the further medium from a supply source (not shown) over guide roll SH and through slot 80'. or in the instance ofa liquid medium. a weir box 92 could be provided between side plates 9 for discharging the liquid downwardly and through slot 80. Instead of having the divider plate I42 removable. the present invention contemplates that it may be hollow. or slotted. so that in addition to introducing a further medium into [2 the web. the degrce of mixing of the combined streams from ducts 52 and 52' can also be controlled. The effect of varying the position of divider plate 142, introducing a further medium through slot 80. and individu' ally controlling the condenser suction fans will be explained in more detail hereinafter.
EXAMPLE I A web laying process is carried out in the apparatus of the invention in theposition shown in FIG. 3 with divider plates 140 and 140' in the completely withdrawn position and divider plate 142 in the completely extended or down position. The exhaust fans communieating with ducts 89a and 89b are operated at equal capacity. When pulp is fed to lickerins l7 and 17', and rayon to lickerins 38 and 38' the pulp and rayon fibers cross over one another in mixing zones 34 and 34'. and the combined streams are substantially completely isolated from one another by the lower end of divider plate I42. As a result. a web is produced on foraminous screen 81 which. as shown in FIG. 311. has an enriched rayon content at its two outer surfaces and in its outermost quarter-thicknesses 31] with the concentration of rayon progressively decreasing toward the center of the web. The web center has the highest concentration of pulp fibers. with the pulp fiber concentration progressively decreasing toward the web surfaces.
EXAMPLE II A web laying process is carried out in the apparatus of this invention with divider plates I40 and I40 and divider plate 142 in an intermediate position. a setting for a homogeneous blend. Pulp lickerins l7 and 17' are rotated at 5100 rpm and rayon lickerins 38 and 38' are rotated at 2800 rpm. At each lickerin the nost bar is located at a spacing of 0.020 inches. The fibers are fed to the lickerins at rates to provide a blend of 60 percent pulp and 40 percent rayon by weight and the belt is moved at I00 feet per minute to produce a web having a density of H grains per square yard. The web is uniform in composition in all portions of its thickness and the fibers laid on the web are substantially flat so that there is substantially no shingling effect in the web.
EXAMPLE III A weblaying process is carried out in the apparatus of this invention in the position shown in FIG. 5 with divider plates 140 and 140' and divider plate 142 in lowered position. The lickerin speeds. belt speed. nose bar spacings and pulp/fiber ratios are identical to those of Example II. The web produced has a density of l I70 grains per square yard and. as shown in FIG. 50 has a predominance of pulp at its outer faces 51 I and a rayon-rich inner core 5I2.
EXAMPLE IV This Example is the same as Example I. except that lickerin 38 opens polyester instead of rayon and the resulting web is similar to the web produced with Example I. except that one surface of the web has an enriched polyester fiber content. while the opposite surface of the web has an enriched rayon fiber content.
EXAMPLE V This Example is substantially the same as Example I. except that divider plate I42 is removed and scrim is fed through slot by rolls 90. as shown in FIG. 6. The
resulting web construction. shown in FIG. 61:. is similar to that of Example I. with rayon-rich outer layers 6]] and pulp-rich center 612, the latter being reinforced by scrim in intimate contact therewith.
EXAMPLE Vl This Example is similar to Example -l. except that divider plates 140 and 140' are in an intermediate position. as shown in FIG. 4, so that substantially complete intermixing takes place in ducts 89a and 89b. The exhaust fan communicating with Duct 89 is operated at a higher speed than the fan communicating with duct 89'. producing a web layer in the initial portion of the web laying process which is more dense than the web layer produced in the final portion of the web laying process. The final web. shown in H6. 4a, is uniform in rayon/pulp ratio in all portions of its thickness, but its lower layer 411 is more dense than its upper layer 412.
It should be understood that the nonwoven webs obtained by the present invention may be post-treated by any suitable conventional technique, e.g.. mechanical or chemical. to bond the web and provide the required strength and coherency characteristics for a given product. The particular type of bonding technique chosen will depend upon various factors well known to those skilled in the art. e.g.. type of fibers. the particular use of the products. etc. To this end. typical of the conventional techniques are web saturation bonding. suction bonding. foam bonding. print bonding. fiber bonding. fiber interlocking spray bonding. solvent bonding. scrim bonding. viscous bonding. merccriza tion. etc. These techniques are described in more detail in the above-mentioned Ruffo et al application.
It should also be noted that while all of the webs de scribed herein have been described as being deposited directly upon screen 8], the present invention also contemplates that such webs can be condensed upon a suitable carrier member. such as gauze. or an apertured nonwoven fabric.
What is claimed is:
l. The method of forming a web of nonwoven fibers comprising the steps of providing a plurality of sources of fibers. rotating a lickerin for each source of fibers. feeding each source of fibers into contact with its respective lickerin whereby each lickerin individualizes fibers from its respective source. providing separate high speed gaseous streams to doff at least some of the fibers from each lickerin and to entrain the individualized fibers in their respective gaseous stream. impelling a first pair of the gaseous streams carrying entrained fibers toward one another at a first common region. locating a first movably mounted web controlling member at a preselected position relative to said first pair of gaseous streams to control the location of the common region and the manner of combining of the individual streams of the first pair of gaseous streams into a first combined stream. impelling a second pair of the gaseous streams carrying entrained fibers toward one another at a second common region. locating a second movably mounted web controlling member at a preselected position relative to said second pair of gaseous streams to control the location of the second common region and the manner of combining of the individual streams of the second pair of gaseous streams into a second combined stream. impelling said first and second combined streams carrying entrained fibers toward one another at a third common region. locating a third mmably mounted web controlling member at a preselected position relative to said first and second combined streams to-control the location of the third common region and thus the type of web to be formed. and conveyingand depositing said fibers at a depositing zone to form a single web of nonwoven fibers.
2. A method as set forth in claim 1 in which the steps of locating said first and second controlling members are performed by moving said first and second controlling members to a position within a range of positions having as extremes (a) a completely withdrawn position permitting said individual gaseous streams to intermix and '(b) a completely extended position blocking the intermixing of Said individual gaseous streams.
3. A method as set forth in claim 2 in which the step of locating said third controlling member is performed by moving said third controlling member to a position within a range of positions having as extremes (a) a completely withdrawn position permitting said first and second combined streams to intermix and (b) a completely extended position blocking the intermixing of said first and second combined streams.
4. A method as set forth in claim 1 in which the fiber depositing step is performed by applying a suction to a foraminous fiber receiving member. whereby said fibers are retained at a relatively high velocity prior to being deposited on the fiber receiving member.
5. A method as set forth in claim 4 wherein said suction applying step is performed by locating a single suction applying member generally centrally below said third controlling member and below said fiber receiv ing member.
6. A method as set forth in claim 5 wherein said suction applying step is by locating first and second suction applying members below said fiber receiving member and below and on opposite sides of said third controlling member. and separately adjusting said first and second suction applying members.
7. The method of forming a web of nonwoven fibers upon a foraminous fiber collecting means in a fiber depositing zone comprising the steps of providing a plurality of sources of fibers. rotating a lickerin for each source of fibers. feeding each source of fibers into contact with its respective lickerin whereby each lickerin individualizes fibers from its respective source. providing separate high-speed gaseous streams to doff at least some of the fibers from each lickerin and to entrain the individualized fibers in their respective gaseous stream. impelling a first pair of the gaseous streams carrying entrained fibers along converging flow paths and toward one another at a first common region. locating a first movably mounted web controlling member at a preselected position relative to said first pair of gaseous streams to control the location of the common region and the manner of combining of the individual streams of the first pair of gaseous streams into a first combined stream. impelling a second pair of the gase ous streams carrying entrained fibers along converging flow paths and toward one another at a second common region. locating a second movably mounted web controlling member at a preselected position relative to said second pair of gaseous streams to control the location of the second common region and the manner of combining of the individual streams of the second pair of gaseous streams into a second combined stream, impelling said first and second combined streams carrying entrained fibers along flow paths and toward one another at a third common region. said last mentioned flow paths converging toward one another and toward said depositing zone. whereby at least some of the fibers from said first and second combined streams are intermixed with one another. and applying suction to said foraminous fiber collecting means to convey said fibers along said flow paths and to deposit said fibers at said depositing zone to form a single web of non-woven fibers.
8. A method as set forth in claim 7 in which the steps of locating said first and second controlling members are performed by moving said first and second controlling mcmbers to a position within a range of positions having as extremes (a) a completely withdrawn position permitting said individual gaseous streams to inter- 16 mix [bl a completely extended position blocking the intermixing of said individual gaseous streams.
9. A method as set forth in claim 7 including the furtiter step of introducing a further web component at said third common region.
10. A method as set forth in claim 9 in which the step of introducing a further web component is performed by introducing a perforate medium at said third common region.
11. A method set forth in claim 9 in which the step of introducing a further web component is performed by introducing a treating substance at said third com mon region,
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO. 3 895 089 DATED ly lama INVENTOR(S) Prashant K. Goyal It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In Colwrm 3, line 1? salt shouli rear salt Column 4, line 52, "selected for optimum conditions" should read selected for optimum opening conditions In Column line 63, "reach" should rea i each Signed and Scaled this eighteenth Day Of November 1975 [SEAL] Arrest RUTH C. MASON .IIILSIIHK ()Ijm'r

Claims (11)

1. THE METHOD OF FORMING A WEB OF NONWOVEN FIBERS COMPRISING THE STEPS OF PROVIDING A PLURALITY OF SOURCES OF FIBERS, ROTATING A LICKERIN FOR EACH SOURCE OF FIBERS, FEEDING ACH SOURCE OF FIBERS INTO CONTACT WITH ITS RESPECTIVE LICKERIN WHEREBY EACH LICKERIN INDIVIDUALIZES FIBERS FROM ITS RESPECTIVE SOURCE, PROVIDING SEPARATE HIGH SPEED GASEOUS STREAMS TO DOFF AT LEAST SOME OF THE FIBERS FROM EACH LICKERIN AND TO ENTRAIN THE INDIVIDUALIZED FIBERS IN THEIR RESPECTIVE GASEOUS STREAM, IMPELLING A FIRST PAIR OF THE GASEOUS STREAMS CARRYING ENTRAINED FIBERS TOWARD ONE ANOTHER AT A FIRST COMMON REGION, LOCATING A FIRST MOVABLY MOUNTED WEB CONTROLLING MEMBER AT A PRESELECTED POSITION RELATIVE TO SAID FIRST PAIR OF GASEOUS STREAMS TO CONTROL THE LOCATION OF THE COMMON REGION AND THE MANNER OF COMBINING OF THE INDIVIDUAL STREAMS OF THE FIRST PAIR OF GASEOUS STREAMS INTO A FIRST COMBINED STREAM, IMPELLING A SECOND PAIR OF THE ASEOUS STREAMS CARRYING ENTRAINED FIBERS TOWARD ONE ANOTHER AT A SECOND COMMON REGION, LOCATING A SECOND MOVABLY MOUNTED WEB CONTROLLING MEMBER AT A PRESELECTED POSITION RELATIVE TO SAID SECOND PAIR OF GASEOUS STREAMS TO CONTROL THE LOCATION OF THE SECOND COMMON REGION AND THE MANNER OF COMBINING OF THE INDIVIDUAL STREAMS OF THE SECOND PAIR OF GASEOUS STREAMS INTO A SECOND COMBINED STREAM, IMPELLING SAID FIRST AND SECOND COMBINED STREAMS CARRYING ENTRAINED FIBERS TOWARD ONE ANOTHER AT A THIRD COMMON REGION, LOCATING A THIRD MOVABLY MOUNTED WEB CONTROLLING MEMBER AT A PRESELECTED POSITION RELATIVE TO AID FIRST AND SECOND COMBINED STREAMS TO CONTROL THE LOCATION OF THE THIRD COMMON REGION AND THUS AND TYPE OF WEV TO BE FORMED, AND CONVEYING AND DEPOSITING SAID FIBERS AT A DEPOSITING ZONE TO FORM A SINGLE WEB OF NONWOVEN FIBERS.
2. A method as set forth in claim 1 in which the steps of locating said first and second controlLing members are performed by moving said first and second controlling members to a position within a range of positions having as extremes (a) a completely withdrawn position permitting said individual gaseous streams to intermix and (b) a completely extended position blocking the intermixing of said individual gaseous streams.
3. A method as set forth in claim 2 in which the step of locating said third controlling member is performed by moving said third controlling member to a position within a range of positions having as extremes (a) a completely withdrawn position permitting said first and second combined streams to intermix and (b) a completely extended position blocking the intermixing of said first and second combined streams.
4. A method as set forth in claim 1 in which the fiber depositing step is performed by applying a suction to a foraminous fiber receiving member, whereby said fibers are retained at a relatively high velocity prior to being deposited on the fiber receiving member.
5. A method as set forth in claim 4 wherein said suction applying step is performed by locating a single suction applying member generally centrally below said third controlling member and below said fiber receiving member.
6. A method as set forth in claim 5 wherein said suction applying step is by locating first and second suction applying members below said fiber receiving member and below and on opposite sides of said third controlling member, and separately adjusting said first and second suction applying members.
7. The method of forming a web of nonwoven fibers upon a foraminous fiber collecting means in a fiber depositing zone comprising the steps of providing a plurality of sources of fibers, rotating a lickerin for each source of fibers, feeding each source of fibers into contact with its respective lickerin whereby each lickerin individualizes fibers from its respective source, providing separate high-speed gaseous streams to doff at least some of the fibers from each lickerin and to entrain the individualized fibers in their respective gaseous stream, impelling a first pair of the gaseous streams carrying entrained fibers along converging flow paths and toward one another at a first common region, locating a first movably mounted web controlling member at a preselected position relative to said first pair of gaseous streams to control the location of the common region and the manner of combining of the individual streams of the first pair of gaseous streams into a first combined stream, impelling a second pair of the gaseous streams carrying entrained fibers along converging flow paths and toward one another at a second common region, locating a second movably mounted web controlling member at a preselected position relative to said second pair of gaseous streams to control the location of the second common region and the manner of combining of the individual streams of the second pair of gaseous streams into a second combined stream, impelling said first and second combined streams carrying entrained fibers along flow paths and toward one another at a third common region, said last mentioned flow paths converging toward one another and toward said depositing zone, whereby at least some of the fibers from said first and second combined streams are intermixed with one another, and applying suction to said foraminous fiber collecting means to convey said fibers along said flow paths and to deposit said fibers at said depositing zone to form a single web of non-woven fibers.
8. A method as set forth in claim 7 in which the steps of locating said first and second controlling members are performed by moving said first and second controlling members to a position within a range of positions having as extremes (a) a completely withdrawn position permitting said individual gaseous streams to intermix (b) a completely extended position blocking the intermixing of said individual gaseous streams.
9. A method as set forth in claim 7 including the further Step of introducing a further web component at said third common region.
10. A method as set forth in claim 9 in which the step of introducing a further web component is performed by introducing a perforate medium at said third common region.
11. A method as set forth in claim 9 in which the step of introducing a further web component is performed by introducing a treating substance at said third common region.
US347971A 1973-04-04 1973-04-04 Method for preparing air-laid nonwoven webs from combined streams Expired - Lifetime US3895089A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US347971A US3895089A (en) 1973-04-04 1973-04-04 Method for preparing air-laid nonwoven webs from combined streams
US05/547,914 US3963392A (en) 1973-04-04 1975-02-06 Apparatus for preparing air-laid nonwoven webs from combined streams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US347971A US3895089A (en) 1973-04-04 1973-04-04 Method for preparing air-laid nonwoven webs from combined streams

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/547,914 Division US3963392A (en) 1973-04-04 1975-02-06 Apparatus for preparing air-laid nonwoven webs from combined streams

Publications (1)

Publication Number Publication Date
US3895089A true US3895089A (en) 1975-07-15

Family

ID=23366096

Family Applications (1)

Application Number Title Priority Date Filing Date
US347971A Expired - Lifetime US3895089A (en) 1973-04-04 1973-04-04 Method for preparing air-laid nonwoven webs from combined streams

Country Status (1)

Country Link
US (1) US3895089A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952124A (en) * 1973-07-09 1976-04-20 Johnson & Johnson Back-to-back transition web and method of making said
US4131664A (en) * 1977-09-28 1978-12-26 Allen Industries, Inc. Method of making a multiple-density fibrous acoustical panel
US4634621A (en) * 1984-05-17 1987-01-06 The James River Corporation Scrim reinforced, cloth-like composite laminate and a method of making
US4636418A (en) * 1984-05-17 1987-01-13 James River Corporation Cloth-like composite laminate and a method of making
US4637949A (en) * 1984-07-03 1987-01-20 James River Corporation Scrim reinforced, flat cloth-like composite laminate and a method of making
AT384247B (en) * 1985-03-06 1987-10-12 Fehrer Enrst Dr Apparatus for the production of fibre nonwovens
US4764325A (en) * 1986-05-28 1988-08-16 The Procter & Gamble Company Apparatus for and methods of forming airlaid fibrous webs having a multiplicity of components
EP0308911A2 (en) * 1987-09-22 1989-03-29 JOHNSON & JOHNSON Variable transverse webber
US4904440A (en) * 1986-05-28 1990-02-27 The Procter & Gamble Company Apparatus for and methods of airlaying fibrous webs having discrete particles therein
US4908175A (en) * 1986-05-28 1990-03-13 The Procter & Gamble Company Apparatus for and methods of forming airlaid fibrous webs having a multiplicity of components
US4921659A (en) * 1987-09-22 1990-05-01 Chicopee Method of forming a fibrous web using a variable transverse webber
US5004579A (en) * 1989-05-26 1991-04-02 Mcneil-Ppc-Inc. Methods and apparatus for selective placement of fibrous material in formed fibrous articles
US5418031A (en) * 1993-11-22 1995-05-23 The United States Of America As Represented By The Secretary Of Agriculture Combination cellulosic/thermoplastic batt insulation and a method of production for such insulation
US5435708A (en) * 1992-11-13 1995-07-25 Reifenhauser Gmbh & Co. Maschinenfabrik Nozzle head for a meltblowing aparatus
US5447677A (en) * 1993-06-02 1995-09-05 Mcneil-Ppc, Inc. Apparatus and method for making absorbent products containing a first material dispersed within a second material
US5778494A (en) * 1995-12-08 1998-07-14 E. I. Du Pont De Nemours And Company Method and apparatus for improving the air flow through an air duct in a dry fiber web forming system
US20070006383A1 (en) * 2005-07-06 2007-01-11 Ogle Steven E Mattress with substantially uniform fire resistance characteristic
US20070202294A1 (en) * 2000-03-13 2007-08-30 L&P Property Management Company Protective fire retardant component for a composite furniture system
US20090126119A1 (en) * 2000-03-13 2009-05-21 L&P Property Management Company, A Delaware Corporation Fire resistant insulator pad
US20130216809A1 (en) * 2012-02-22 2013-08-22 The Procter & Gamble Company Fibrous structures and methods for making same
US9017803B2 (en) 2011-07-20 2015-04-28 International Paper Company Substrate for wallboard joint tape and process for making same
US20210381166A1 (en) * 2020-06-09 2021-12-09 Evrnu, Spc Processing cellulose-containing materials for paper or packaging materials
US20220056642A1 (en) * 2020-08-20 2022-02-24 Seiko Epson Corporation Fibrous body manufacturing method and fibrous body manufacturing apparatus
US11447893B2 (en) 2017-11-22 2022-09-20 Extrusion Group, LLC Meltblown die tip assembly and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2624079A (en) * 1949-08-16 1953-01-06 Wood Conversion Co Manufacture of air-laid felts
US3768118A (en) * 1971-01-21 1973-10-30 Johnson & Johnson Web forming process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2624079A (en) * 1949-08-16 1953-01-06 Wood Conversion Co Manufacture of air-laid felts
US3768118A (en) * 1971-01-21 1973-10-30 Johnson & Johnson Web forming process

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952124A (en) * 1973-07-09 1976-04-20 Johnson & Johnson Back-to-back transition web and method of making said
US4131664A (en) * 1977-09-28 1978-12-26 Allen Industries, Inc. Method of making a multiple-density fibrous acoustical panel
US4634621A (en) * 1984-05-17 1987-01-06 The James River Corporation Scrim reinforced, cloth-like composite laminate and a method of making
US4636418A (en) * 1984-05-17 1987-01-13 James River Corporation Cloth-like composite laminate and a method of making
US4637949A (en) * 1984-07-03 1987-01-20 James River Corporation Scrim reinforced, flat cloth-like composite laminate and a method of making
AT384247B (en) * 1985-03-06 1987-10-12 Fehrer Enrst Dr Apparatus for the production of fibre nonwovens
US4764325A (en) * 1986-05-28 1988-08-16 The Procter & Gamble Company Apparatus for and methods of forming airlaid fibrous webs having a multiplicity of components
US4904440A (en) * 1986-05-28 1990-02-27 The Procter & Gamble Company Apparatus for and methods of airlaying fibrous webs having discrete particles therein
US4908175A (en) * 1986-05-28 1990-03-13 The Procter & Gamble Company Apparatus for and methods of forming airlaid fibrous webs having a multiplicity of components
EP0308911A2 (en) * 1987-09-22 1989-03-29 JOHNSON & JOHNSON Variable transverse webber
US4921659A (en) * 1987-09-22 1990-05-01 Chicopee Method of forming a fibrous web using a variable transverse webber
EP0308911A3 (en) * 1987-09-22 1990-05-30 Johnson & Johnson Variable transverse webber
US5004579A (en) * 1989-05-26 1991-04-02 Mcneil-Ppc-Inc. Methods and apparatus for selective placement of fibrous material in formed fibrous articles
US5435708A (en) * 1992-11-13 1995-07-25 Reifenhauser Gmbh & Co. Maschinenfabrik Nozzle head for a meltblowing aparatus
US5447677A (en) * 1993-06-02 1995-09-05 Mcneil-Ppc, Inc. Apparatus and method for making absorbent products containing a first material dispersed within a second material
US5418031A (en) * 1993-11-22 1995-05-23 The United States Of America As Represented By The Secretary Of Agriculture Combination cellulosic/thermoplastic batt insulation and a method of production for such insulation
US5778494A (en) * 1995-12-08 1998-07-14 E. I. Du Pont De Nemours And Company Method and apparatus for improving the air flow through an air duct in a dry fiber web forming system
US20090126119A1 (en) * 2000-03-13 2009-05-21 L&P Property Management Company, A Delaware Corporation Fire resistant insulator pad
US20070202294A1 (en) * 2000-03-13 2007-08-30 L&P Property Management Company Protective fire retardant component for a composite furniture system
US20070006383A1 (en) * 2005-07-06 2007-01-11 Ogle Steven E Mattress with substantially uniform fire resistance characteristic
US9017803B2 (en) 2011-07-20 2015-04-28 International Paper Company Substrate for wallboard joint tape and process for making same
US10106932B2 (en) 2011-07-20 2018-10-23 International Paper Company Substrate for wallboard joint tape and process for making same
US20130216809A1 (en) * 2012-02-22 2013-08-22 The Procter & Gamble Company Fibrous structures and methods for making same
US11447893B2 (en) 2017-11-22 2022-09-20 Extrusion Group, LLC Meltblown die tip assembly and method
US20210381166A1 (en) * 2020-06-09 2021-12-09 Evrnu, Spc Processing cellulose-containing materials for paper or packaging materials
US20220056642A1 (en) * 2020-08-20 2022-02-24 Seiko Epson Corporation Fibrous body manufacturing method and fibrous body manufacturing apparatus
US11802377B2 (en) * 2020-08-20 2023-10-31 Seiko Epson Corporation Fibrous body manufacturing method and fibrous body manufacturing apparatus

Similar Documents

Publication Publication Date Title
US3895089A (en) Method for preparing air-laid nonwoven webs from combined streams
US3963392A (en) Apparatus for preparing air-laid nonwoven webs from combined streams
US3740797A (en) Method of forming webs and apparatus therefor
US3768118A (en) Web forming process
US4018646A (en) Nonwoven fabric
US4767586A (en) Apparatus and method for forming a multicomponent integral laid fibrous web with discrete homogeneous compositional zones, and fibrous web produced thereby
US4475271A (en) Process and apparatus for producing uniform fibrous web at high rate of speed
US3010161A (en) Method and means for producing mixed fiber suspensions in air and felts therefrom
US3812553A (en) Reorientation of fibers in a fluid stream
US3972092A (en) Machine for forming fiber webs
US3862472A (en) Method for forming a low basis weight non-woven fibrous web
US3984898A (en) Multilayer fibrous structures
US2451915A (en) Machine and method for forming fiber webs
US2913365A (en) Fibrous webs and method and apparatus for making same
US4083913A (en) Stabilization of mixed-fiber webs
JP2799174B2 (en) Non-woven fiber structure
JP2799175B2 (en) Cylindrical web forming equipment
JP2003535230A (en) Plant and method for dry producing nonwoven fibrous webs of short and long fibers, cotton fibrous web including cotton linter pulp (CLP)
US4795335A (en) Multi-headed ductless webber
US4904439A (en) Method of making a non-woven fiber web using a multi-headed ductless webber
US5093963A (en) Ductless webber
US3755028A (en) Method for manufacturing non-woven textile articles
US4843685A (en) Card
US3914822A (en) Machine for forming random fiber webs
JP2804486B2 (en) Pad product forming apparatus and pad forming method