US3894932A - Conversion of hydrocarbons with {37 y{38 {0 faujasite-type catalysts - Google Patents

Conversion of hydrocarbons with {37 y{38 {0 faujasite-type catalysts Download PDF

Info

Publication number
US3894932A
US3894932A US417001A US41700173A US3894932A US 3894932 A US3894932 A US 3894932A US 417001 A US417001 A US 417001A US 41700173 A US41700173 A US 41700173A US 3894932 A US3894932 A US 3894932A
Authority
US
United States
Prior art keywords
catalyst
hydrocarbon
suspension
riser
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US417001A
Inventor
Hartley Owen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Oil Corp
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Priority to US417001A priority Critical patent/US3894932A/en
Application granted granted Critical
Publication of US3894932A publication Critical patent/US3894932A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A single riser fluid catalytic cracking operation for converting a gas oil feed material and a gaseous fraction rich in C3-C4 hydrocarbons to form aromatics and isobutane is described. Conversion of the C3-C4 rich fraction is accomplished at a high temperature in an initial annular portion of the riser reactor before charging a gas oil feed to the suspension formed in the annular section. C3-C4 rich hydrocarbon streams may be converted at a lower temperature in a downstream portion of the riser.

Description

United States Patent Owen 5] July 15, 1975 1 CONVERSION OF HYDROCARBONS WITH 3.406.112 /1968 Bowles 208/153 Y FAUJASITE TYPE CATALYSTS 3.617.497 11/1971 Bryson et a1... 208/ 3,679,576 7/1972 McDonald 208/74 Inventor: Hartley Owen, Belle M a NJ. 3,692,667 9/1972 McKinney et a1. 208/ Assignee: Mobil Oil Corporation New York 3.706.654 12/1972 Bryson et a1. 208/74 N.Y. Primary Examiner-Delbert E. Gantz 122] Flled: 1973 Assistant ExaminerG. E. Schmitkons [2 1] Appl No: 417,001 Attorney, Agent. or FirmCharles A. Huggett; Carl D.
Farnsworth [52] US. Cl. 1. 208/74; 208/78; 208/120;
208/155; 208/156; 208/164; 760/676 R: [57] ABSTRACT 760/673 A single riser fluid catalytic cracking operation for [5 1] Int. Cl ..C10g 37/02; Cl0g 11/18; converting a gas oil feed material and a gaseous frac- B01 j 9/20 tion rich in C -C hydrocarbons to form aromatics and [58] Field of Search 208/74, 62, 71. 78 isobutane is described. Conversion of the C -C rich fraction is accomplished at a high temperature in an [56] References Cited initial annular portion of the riser reactor before UNITED STATES PATENTS charging a gas oil feed to the suspension formed in the 2 425 482 8/1947 M6861 .1 208/120 annular section' C3434 rich hydmcarbo" stream may 2:427:820 9/1947 Thomas 208/57 be converted at a lower temperature in a downstream 2.487.132 11/1949 Hemminger 208/ P 0f the riser- 2,908.630 10/1959 Friedman 203/74 4 Cl l D 2.999.061 9/1961 Persyn 208/67 'awmg 3.182.011 5/1965 Friedman 208/78 C -C H.yc Mixture r lsobutylene C -C Hyc Mixture or Sim CONVERSION OF HYDROCARBONS WITH Y" FAUJASITE-TYPE CATALYSTS BACKGROUND OF THE INVENTION The field of catalytic cracking and particularly the operations related to dense and dilute fluid phase catalytic operations have been undergoing progressive development since early I940. As new experience was gained in operating and design parameters, new catalyst compositions were developed which prompted a further refinement in known operating technology. With the development of high activity crystalline zeolite catalyst, the industry found a further need to improve upon its operating parameters to take advantage of the new catalysts activity, selectivity and operating sensitivity. The present invention is thus concerned with an improved method of cracking or catalytic operation which relates the catalyst activity and selectivity to processing parameters in a manner mutually con tributing to improving the conversion of available refinery feed materials.
SUMMARY OF THE INVENTION The present invention is directed to the conversion of hydrocarbons in the presence of a relatively large pore crystalline material of the faujasite type of crystalline zeolite. In a more particular aspect, the present invention is concerned with more completely utilizing the activity and selectivity characteristics of X and "Y faujasite crystalline aluminosilicate conversion catalyst to upgrade gas oil feed materials and normally gaseous hydrocarbon products such as those obtained in a gas oil conversion operation. In yet another aspect the present invention is concerned with using a faujasite cracking catalyst separated from a gas oil hydrocarbon conversion zone to upgrade particularly C and C, rich hydrocarbon gaseous material to higher boiling gasoline boiling material. The C -C rich gaseous material may be the product of a high temperature gas oil cracking operation or the gaseous hydrocarbons may be recovered from other available refinery sources. More particularly, the present invention is concerned with the cracking of gas oil boiling range hydrocarbon feed materials with a Y faujasite cracking catalyst under elevated temperature cracking conditions selected from within the range of 900F. to about 1 100F. at a hydrocarbon residence time in a once through conversion zone restricted to within the range l l to about 12 seconds. Catalyst to oil ratios may be selected from within the range of4 to about 20. Generally, it is preferred to accomplish cracking of the gas oil in an upflowing riser conversion zone discharging into cyclonic separation means in an upper portion of an enlarged vessel wherein products of gas oil cracking are separated from the catalyst used. The riser suspension may also be discharged adjacent the inlet to cyclonic separating means rather than directly into the cyclonic separating means as shown. The separated catalyst is collected in the lower portion of the vessel which is in open communication with the upper end of a lower extending stripping zone wherein the catalyst is stripped with countercurrent upwardly flowing stripping gas such as steam. The stripped products and products of conversion separated from the catalyst discharge from the riser conversion zone are combined with the cyclonically separated hydrocarbon vapors and passed to one or more downstream separation zones.
In accordance with this invention, C -C rich hydrocarbon mixture or an isobutylene rich stream is contacted with the Y faujasite conversion catalyst before contact with gas oil boiling range feed material in an initial portion of the riser or after initial contact with gas oil feed. The gas oil conversion is accomplished at a catalyst to hydrocarbon feed ratio in the range of 4 to about It) and an elevated hydrocarbon feed temperature sufficient to form a suspension at a temperature in the range of about 950 to about 1 F. Conversion of the C -C, rich hydrocarbon feed, on the other hand, is accomplished at temperatures above that relied upon for gas oil cracking or under lower temperature gas oil conversion temperatures. Thus the C -C, hydrocarbon rich feed which may be charged to the riser to encounter the regenerated catalyst at its highest temperature received from the regeneration zone may be converted at a temperature of about 1250F. before the suspension thereof is brought in contact with gas oil feed in the riser. Therefore, the residence time of the C -C hydrocarbon rich feed at high temperature conditions before gas oil contact may be up to l or 2 seconds or it may be only a fraction of a second, as little as one-tenth of a second, but the contact time under lower temperature conditions may be equal to or greater than that employed for the gas oil conversion operation. In any event, the conversion zone is maintained under conditions which can provide a hydrocarbon residence time within the range of l to about 12 seconds before separation of the suspension. This is so since either one of the feeds may be introduced to the riser conversion zone at spaced apart intervals lying in a downstream portion thereof. During this combination conversion operation, the Y faujasite catalyst provides hydrogen transfer activity and cyclization selectivity which converts introduced and formed C -C hydrocarbons to aromatics; alkyl aromatics and some low boiling gaseous material.
The C -C rich hydrocarbon feed material or the isobutylene rich feed may be separately furnace heated or heated by other suitable means to a temperature suitable for introducing to the riser conversion zone. The C -C rich hydrocarbon feed initially contacting the freshly regenerated catalyst may encounter significantly different high temperature residence times depending upon whether the gas oil is introduced to an initial, intermediate or downstream portion of the riser conversion zone.
Catalyst particles separated from the conversion zone are stripped in a stripping zone countercurrent to rising stripping gas such as steam as mentioned above. The stripped catalyst is then transferred to a catalyst regeneration zone, not shown, for the removal of deposited carbonaceous material by burning, thereby heating the catalyst to an elevated temperature in the range of ll50F. up to 1,500 or 1,600F.
BRIEF DESCRIPTION OF THE DRAWING The FIGURE is a diagrammatic sketch in elevation of an arrangement of hydrocarbon conversion zones for catalytically converting selected hydrocarbon feeds with a fluid conversion catalyst.
DISCUSSION OF SPECIFIC EMBODIMENTS Referring now to the FIGURE, there is shown a riser conversion zone 2 supplied with hot regenerated catalyst by conduit 4 provided with a catalyst flow control valve 6. Steam is introduced to a bottom portion of riser 2 by one or more steam inlet conduits 8 and/or and a gas oil feed is introduced by inlet conduit 12 which projects upwardly into the bottom portion of riser 2. A C -C rich hydrocarbon fraction may be introduced separately or with steam by conduit 8 to the bottom portion of riser 2 for admixture with hot regenerated catalyst. A suspension of catalyst in upflow gasiform hydrocarbon material with or without steam provides a mix temperature of at least llOOF. initially formed and passed upwardly through an annular section of riser 2 about a gas oil inlet means l2 under velocity conditions selected to provide a hydrocarbon residence time as low as about one-tenth ofa second up to about 1 or 2 secondsfiThe upflowing initially formed suspension in the annulirs of riser 2 is thereafter combined with preheated hydrocarbon feed such as a gas oil feed introduced by conduit 12 projecting upwardly into the bottom of riser 2. The thus formed suspension at an elevated cracking temperature of at least l000F. is caused to flow upwardly through the remaining portion of the riser under hydrocarbon conversion conditions. On the other hand, the gas oil feed may be introduced at spaced intervals along the riser as by conduits l4 and 16. In yet another embodiment it is contemplated initially lifting the hot regenerated catalyst with steam or other inert gas before contact with the gas oil feed introduced by conduit 12 for upward flow through the riser. Additional gas oil feed may also be added downstream to the thusformed suspension. Thereafter gaseous hydrocarbons rich in C and C hydrocarbons are introduced to the upflowing suspension by conduit 16 or a further downstream inlet conduit not shown permitting a minimum residence time of about 1 second for ldw temperature upgrading as herein described. In the arrangement of the FIGURE. the suspension in riser 2 is discharged into cyclonic separation zones 18 and 20 housed in the upper portion of vessel 22 wherein separation of catalyst from hydrocarbon vapors is accomplished. Hydrocarbon vapors separated from catalystthen pass into a plenum chamber 24 for removal from the vessel by conduit 26. Catalyst separated from hydrocarbon vapors in cyclonic means 18 and 20 pass by diplegs 28 and 30 to a fluid bed of catalyst 32 maintained in the lower portion of the vessel 22. The fluid bed of catalyst 32 is in open communication with a lower extending stripping zone 34 therebelow to which the fluid bed of catalyst moves generally downward countercurrentto rising stripping gas introduced by conduit 36. The stripping zone is maintained at a temperature within the range of 900F. to l 150F. and the higher temperatures may be facilitated by the addition of hot regenerated catalyst to the catalyst in the stripping zone by means not shown. Stripped catalyst is removed from a bottom portion of the stripping zone by conduit 38 for transfer to a catalyst regeneration zone not shown. Stripped catalyst may also be recycled to the riser inlet by conduit means not shown when it is desired to provide catalyst to hydrocarbon ratios greater than 20 and as high as about 80.
The fluid bed of catalyst 32 separated from the riser conversion zone 2 is at an elevated temperature and may be in the range of from about 900F. to about I F. As suggested above, gaseous hydrocarbon feed such as a mixture of C -C hydrocarbons may be used to form a high temperature suspension in a bottom portion of riser 2 by use of either conduit 12 or 8 alone or in combination with one another before gas oil is introduced to a downstream portion of riser 2 as by one or both of conduits l4 and 16. Also. as a means for controlling catalyst to hydrocarbon ratios in the riser an inert gas may be initially employed to form a suspension in a bottom portion of the riser into which C. and lighter hydrocarbons and gas oil are dispersed as herein provided. The suspension formed will vary considerably in temperature as herein provided and in catalystlhydrocarbon ratio but generally will be in the range of ID to about 40.
The method and system of the FlGURE above described may be modified considerably in operating combinations without departing from the concepts of the present invention. In addition to the embodiments above identified. riser 2 may be substantially external to vessel 22 and stripping zone 34 rather than pass upwardly through substantially the center thereof. In this arrangement, the riser relied upon to upgrade C and lower boiling hydrocarbons and gas oil may be pro vided with additional hot freshly regenerated catalyst in a downstream portion of the gas oil riser conversion section. In one or more of the above defined embodiments, the C and lower boiling gaseous feed components contact active conversion catalyst of the faujasite type at a temperature within the range of 700F. up to about l 100F. and the gas oil feed contacts the faujasite catalyst preferably at temperatures in excess of 900F. and as high as l 100F. In yet a further embodiment it is contemplated employing a riser system in which the gas oil feed initially forms a high temperature catalyst/oil suspension in the bottom annular portion of the riser about inlet conduit 12 through which dispersion steam is introduced, additional gas oil feed may be added to the suspension as by conduit 14 and a C rich stream may then be added to the upflowing suspension as by conduit 16. In other words, lower boiling gaseous hydrocarbons such as a C -C rich stream is brought in contact with the gas oil-catalyst suspension in a downstream or upper portion of the riser conversion zone.
DISCUSSION OF SPECIFIC EXAMPLE A series of conversion runs with an isobutylene rich feed were made under selected temperature and hydrocarbon residence time conditions which support the improved operations contemplated bythe present invention and variations thereon. A catalyst comprising 15 percent REY was contacted under the conditions identified in the table below which produced the results TABLE Unit Hopper (dense bed) Riser [dilute phase. steady state) Run No. IROC- I93 l94 I96 l97 Temp. "F 1050 l050 I050 850 850 'r gas. sec. 46 22 7 8 l7 Cat/gas (wt/wt) 29 41 4O 40 80 Conversion (NLB):
Unconv. butylene 5.4 8.7 l7.4 29.3 27.4 3L7 9.l 14.6
Propylene 33 4.] l 1.9 4.3 5.5
TABLE Cntinued Unit Hopper (dense bed) Riser (dilute phase. steady state) Run No. IHUC- I93 I94 I95 I96 197 Temp. F 1050 I050 1050 850 850 1' gas. sec. 46 22 7 K I? (at/gas (wt/wt) 29 4| 4t] 40 Ht) lsohutune I99 23.7 34.! 42.0 J74 C,,+ gaso. 3.3 4.3" I98 l3.8 [73 Other C,- gases 39H 32.4 81) I68 2.5 l2 65 20.6 Coke 29.0 208 8.8} Hill} I41] No liquid trap used identified. It was observed upon examination of the product that a considerable amount of hydrogen trans fer occurred along with the production of a significant amount of liquid product. The liquid product was identified as consisting chiefly of toluene, xylenes, trimethylbenzenes and naphthalenes. Runs were made at a temperature of lO50F. and 850F. using a wide spread in hydrocarbon residence time.
It will be observed from these data, that at the shorter residence time used for the riser conversion runs, cracking of isobutylene to lower molecular weight gases and to coke is much reduced. However, at totai conversion levels of 82.6. 67.8 and 90.9 percent of the isobutylene, losses to undesirable products are l2.2l percent and the ratios of isobutane to butylene plus propylene range from 1.15 to 3.25.
Thus run 195 effected at a high temperature and short residence time supports a concept of the present invention where the hot freshly regenerated catalysts initially contact the C -C rich feed in the lower portion of the riser reactor before coming in contact with gas oil feed material. On the other hand. run 196 supports a concept of this invention wherein previously used catalyst reduced to a lower temperature is contacted in a down-stream portion of the riser reactor with a C -C rich gaseous hydrocarbon feed material. Thus in any of the operating embodiments herein contemplated and defined. a Y faujasite conversion catalyst has activity and selectivity for hydrogen transfer reaction and olefin cyclization reaction leading to the production of significant quantities of isobutane and aromatics.
In the method and system of this invention it is contemplated processing hydrocarbon feed materials other than gas oil as specifically discussed above. That is, it is contemplated processing higher boiling residual oils, resids and hydrogenated charge materials such as hydrogenated gas oils. and hydrogenated resid.
Having thus generally described the method and means of the present invention and discussed specific embodiments related thereto, it is to be understood that no undue restrictions are to be imposed by reason thereof except as defined by the following claims.
I claim:
I. A method for converting hydrocarbons with faujasite conversion catalyst which comprises,
passing an upflowing suspension of hot regenerated faujasite conversion catalyst in a C -C gaseous hydrocarbon fraction at a temperature of about l250F. through a lower annular portion of a riser conversion zone for a residence time in the range of ().l to 2 seconds.
LII
introducing a higher boiling hydrocarbon fraction of at least gas oil boiling range into said upflowing suspension downstream of said annular zone at one or more spaced apart downstream intervals and converting the introduced higher boiling fraction at a temperature in the range of 900F. to l000F. at a hydrocarbon residence time up to about 10 seconds to a product rich in aromatics.
separating the suspension following traverse of said riser conversion zone into a hydrocarbon phase and a catalyst phase. and sequentially stripping and regenerating said separated catalyst phase.
2. The method of claim I wherein the suspension after traversing the riser conversion zone is cyclonically separated into a hydrocarbon phase and a catalyst phase, the catalyst phase is stripped with stripping gas and a portion of the stripped catalyst is recycled to the inlet of the riser conversion zone.
3. A method for converting gas oils and low boiling C -C hydrocarbons with a faujasite conversion catalyst which comprises,
passing a suspension of faujasite cracking catalyst suspended in a hydrocarbon feed material of at least gas oil boiling range at an initial temperature of at least 1000F. upwardly through a riser conversion zone under conditions to provide a hydrocarbon residence time up to about l0 seconds, introducing hydrocarbons rich in C and C hydrocarbons into said suspension to obtain conversion thereof to aromatics and isobutane,
separating the suspension into a hydrocarbon phase and a catalyst phase, recovering the hydrocarbon phase, and stripping the separated catalyst before regeneration thereof.
4. In a riser hydrocarbon conversion operation the improvement which comprises,
passing a suspension comprising a gas oil high boiling hydrocarbon fraction admixed with faujasite catalyst at a temperature of at least 950F. upwardly through a conversion zone.
adding the high boiling fraction incrementally to the upflowing suspension,
introducing a hydrocarbon fraction rich in C and C hydrocarbons into a downstream portion of said suspension in said riser conversion zone maintained under conditions to produce a product rich in isobutane,
separating the suspension upon discharge from the conversion zone into a hydrocarbon phase and a catalyst phase, recovering the hydrocarbon phase, recovering and stripping the catalyst phase.
* l i l:

Claims (4)

1. A METHOD FOR CONVERTING HYDROCARBONS WITH FAUJASITE CONVERSION CATALYST WHICH COMPRISES, PASSING AN UPFLOWING SUSPENSION OF HOT REGENERATED FAUJASITE CONVERSION CATALYST IN A C3-C4 GASEOUS HYDROCARBON FRACTION AT A TEMPERATURE OF ABOUT 1250*F. THROUGH A LOWER ANNULAR PORTION OF A RISER CONVERSION ZONE FOR A RESIDENCE TIME IN THE RANGE OF 0.1 TO 2 SECONDS, INTRODUCING A HIGHER BOILING HYDROCARBON FRACTION OF AT LEAST GAS OIL BOILING RANGE INTO SAID UPFLOWING SUSPENSION DOWNSTREAM OF SAID ANNULAR ZONE AT ONE OR MORE SPACED APART DOWNSTREAM INTERVALS AND CONVERTING THE INTRODUCED HIGHER BOILING FRACTION AT A TEMPERATURE IN THE RANGE OF 900*F. TO 1000*F. AT A HYDROCARBON RESIDENCE TIME UP TO ABOUT 10 SECONDS TO A PRODUCT RICH IN AROMATICS, SEPARATING THE SUSPENSION FOLLOWING TRAVERSE OF SAID RISER CONVERSION ZONE INTO A HYDROCARBON PHASE AND A CATALYST PHASE, AND SEQUENTIALLY STRIPPING AND REGENERATING SAID SEPARATED CATALYST PHASE.
2. The method of claim 1 wherein the suspension after traversing the riser conversion zone is cyclonically separated into a hydrocarbon phase and a catalyst phase, the catalyst phase is stripped with stripping gas and a portion of the stripped catalyst is recycled to the inlet of the riser conversion zone.
3. A method for converting gas oils and low boiling C3-C4 hydrocarbons with a faujasite conversion catalyst which comprises, passing a suspension of faujasite cracking catalyst suspended in a hydrocarbon feed material of at least gas oil boiling range at an initial temperature of at least 1000*F. upwardly through a riser conversion zone under conditions to provide a hydrocarbon residence time up to about 10 seconds, introducing hydrocarbons rich in C3 and C4 hydrocarbons into said suspension to obtain conversion thereof to aromatics and isobutane, separating the suspension into a hydrocarbon phase and a catalyst phase, recovering the hydrocarbon phase, and stripping the separated catalyst beFore regeneration thereof.
4. In a riser hydrocarbon conversion operation the improvement which comprises, passing a suspension comprising a gas oil high boiling hydrocarbon fraction admixed with faujasite catalyst at a temperature of at least 950*F. upwardly through a conversion zone, adding the high boiling fraction incrementally to the upflowing suspension, introducing a hydrocarbon fraction rich in C3 and C4 hydrocarbons into a downstream portion of said suspension in said riser conversion zone maintained under conditions to produce a product rich in isobutane, separating the suspension upon discharge from the conversion zone into a hydrocarbon phase and a catalyst phase, recovering the hydrocarbon phase, recovering and stripping the catalyst phase.
US417001A 1973-11-19 1973-11-19 Conversion of hydrocarbons with {37 y{38 {0 faujasite-type catalysts Expired - Lifetime US3894932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US417001A US3894932A (en) 1973-11-19 1973-11-19 Conversion of hydrocarbons with {37 y{38 {0 faujasite-type catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US417001A US3894932A (en) 1973-11-19 1973-11-19 Conversion of hydrocarbons with {37 y{38 {0 faujasite-type catalysts

Publications (1)

Publication Number Publication Date
US3894932A true US3894932A (en) 1975-07-15

Family

ID=23652193

Family Applications (1)

Application Number Title Priority Date Filing Date
US417001A Expired - Lifetime US3894932A (en) 1973-11-19 1973-11-19 Conversion of hydrocarbons with {37 y{38 {0 faujasite-type catalysts

Country Status (1)

Country Link
US (1) US3894932A (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974062A (en) * 1974-10-17 1976-08-10 Mobil Oil Corporation Conversion of full range crude oils with low molecular weight carbon-hydrogen fragment contributors over zeolite catalysts
US4064038A (en) * 1973-05-21 1977-12-20 Universal Oil Products Company Fluid catalytic cracking process for conversion of residual oils
US4422925A (en) * 1981-12-28 1983-12-27 Texaco Inc. Catalytic cracking
US4435279A (en) 1982-08-19 1984-03-06 Ashland Oil, Inc. Method and apparatus for converting oil feeds
US4479870A (en) * 1984-02-29 1984-10-30 Jop Inc. Use of lift gas in an FCC reactor riser
US4541922A (en) * 1984-02-29 1985-09-17 Uop Inc. Use of lift gas in an FCC reactor riser
US4541923A (en) * 1984-02-29 1985-09-17 Uop Inc. Catalyst treatment and flow conditioning in an FCC reactor riser
EP0171460A1 (en) * 1984-06-13 1986-02-19 Ashland Oil, Inc. Residual oil cracking process using dry gas as lift gas initially in riser reactor
US4606810A (en) * 1985-04-08 1986-08-19 Mobil Oil Corporation FCC processing scheme with multiple risers
US4717466A (en) * 1986-09-03 1988-01-05 Mobil Oil Corporation Multiple riser fluidized catalytic cracking process utilizing hydrogen and carbon-hydrogen contributing fragments
US4717467A (en) * 1987-05-15 1988-01-05 Mobil Oil Corporation Process for mixing fluid catalytic cracking hydrocarbon feed and catalyst
US4752375A (en) * 1986-09-03 1988-06-21 Mobil Oil Corporation Single riser fluidized catalytic cracking process utilizing a C3-4 paraffin-rich co-feed and mixed catalyst system
US4802971A (en) * 1986-09-03 1989-02-07 Mobil Oil Corporation Single riser fluidized catalytic cracking process utilizing hydrogen and carbon-hydrogen contributing fragments
US4830728A (en) * 1986-09-03 1989-05-16 Mobil Oil Corporation Upgrading naphtha in a multiple riser fluid catalytic cracking operation employing a catalyst mixture
US4853105A (en) * 1986-09-03 1989-08-01 Mobil Oil Corporation Multiple riser fluidized catalytic cracking process utilizing hydrogen and carbon-hydrogen contributing fragments
US4861741A (en) * 1986-09-03 1989-08-29 Mobil Oil Corporation Mixed catalyst system and catalytic conversion process employing same
US4865718A (en) * 1986-09-03 1989-09-12 Mobil Oil Corporation Maximizing distillate production in a fluid catalytic cracking operation employing a mixed catalyst system
US4871446A (en) * 1986-09-03 1989-10-03 Mobil Oil Corporation Catalytic cracking process employing mixed catalyst system
US4874503A (en) * 1988-01-15 1989-10-17 Mobil Oil Corporation Multiple riser fluidized catalytic cracking process employing a mixed catalyst
US4888103A (en) * 1986-09-03 1989-12-19 Herbst Joseph A Process of stripping in a catalytic cracking operation employing a catalyst mixture which includes a shape selective medium pore silicate zeolite component
US4892643A (en) * 1986-09-03 1990-01-09 Mobil Oil Corporation Upgrading naphtha in a single riser fluidized catalytic cracking operation employing a catalyst mixture
US4923593A (en) * 1988-01-21 1990-05-08 Institut Francais Du Petrole Cracking catalyst and catalytic cracking process
US4927522A (en) * 1988-12-30 1990-05-22 Mobil Oil Corporation Multiple feed point catalytic cracking process using elutriable catalyst mixture
EP0369536A1 (en) * 1988-11-18 1990-05-23 Stone & Webster Engineering Corporation Process for selectively maximizing product production in fluidized catalytic cracking of hydrocarbons
US4966681A (en) * 1986-09-03 1990-10-30 Mobil Oil Corporation Multiple riser fluidized catalytic cracking process utilizing a C3 -C4 paraffin-rich co-feed and mixed catalyst system
US5012026A (en) * 1989-02-14 1991-04-30 Mobil Oil Corp. Turbulent fluid bed paraffin conversion process
US5087349A (en) * 1988-11-18 1992-02-11 Stone & Webster Engineering Corporation Process for selectively maximizing product production in fluidized catalytic cracking of hydrocarbons
US5139748A (en) * 1990-11-30 1992-08-18 Uop FCC riser with transverse feed injection
US5158669A (en) * 1990-11-15 1992-10-27 Uop Disengager stripper
US5273720A (en) * 1992-11-16 1993-12-28 Uop FCC stripper with shiftable baffles
US5314611A (en) * 1990-11-15 1994-05-24 Uop External integrated disengager stripper and its use in fluidized catalytic cracking process
US5316657A (en) * 1992-11-27 1994-05-31 Uop FCC process for de-gassing spent catalyst boundary layer
US5316662A (en) * 1990-11-15 1994-05-31 Uop Integrated disengager stripper and its use in fluidized catalytic cracking process
US5449498A (en) * 1990-11-15 1995-09-12 Uop FCC stripper with multiple integrated disengager
US5549814A (en) * 1992-12-02 1996-08-27 Uop FCC stripper with spoke arrangement for bi-directional catalyst stripping
US5565177A (en) * 1988-12-16 1996-10-15 Uop Side mounted FCC stripper with two-zone stripping
US6416656B1 (en) 1999-06-23 2002-07-09 China Petrochemical Corporation Catalytic cracking process for increasing simultaneously the yields of diesel oil and liquefied gas
US6680030B2 (en) 1999-12-29 2004-01-20 Uop Llc Stripping process with horizontal baffles
US6740227B2 (en) 1999-12-29 2004-05-25 Uop Llc Stripping process with fully distributed openings on baffles
US6780308B1 (en) 2001-11-21 2004-08-24 Uop Llc Stripping process with disproportionately distributed openings on baffles
US7022221B1 (en) 2002-08-16 2006-04-04 Uop Llc Stripping apparatus and process
US7077997B1 (en) 2002-08-16 2006-07-18 Uop Llc Stripping apparatus
US20060163116A1 (en) * 2003-06-03 2006-07-27 Baptista Claudia Maria De Lace Process for the fluid catalytic cracking of mixed feedstocks of hydrocarbons from different sources
US20080081006A1 (en) * 2006-09-29 2008-04-03 Myers Daniel N Advanced elevated feed distribution system for very large diameter RCC reactor risers
US20090107884A1 (en) * 2007-10-31 2009-04-30 Mehlberg Robert L Stripping apparatus and process
US20090107336A1 (en) * 2007-10-31 2009-04-30 Mehlberg Robert L Stripping process
US20090107092A1 (en) * 2007-10-31 2009-04-30 Mehlberg Robert L Stripping apparatus
US20100074806A1 (en) * 2008-09-25 2010-03-25 Lambin Jason P Stripping Apparatus with Multi-Sloped Baffles
US20110162951A1 (en) * 2009-07-13 2011-07-07 Inventure Chemical, Inc. Partial pressure distillation process
US20110198267A1 (en) * 2010-02-18 2011-08-18 Uop Llc Advanced elevated feed distribution apparatus and process for large diameter fcc reactor risers
US8062507B2 (en) 2008-09-25 2011-11-22 Uop Llc Stripping process with multi-sloped baffles
US11167258B2 (en) 2019-05-14 2021-11-09 Uop Llc Apparatus and process for separating gases from catalyst and revamp

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2425482A (en) * 1944-02-26 1947-08-12 Texas Co Pretreatment of reactivated hydrocarbon cracking catalyst with normally gaseous olefins
US2427820A (en) * 1941-10-27 1947-09-23 Universal Oil Prod Co Catalytic cracking process
US2487132A (en) * 1944-12-09 1949-11-08 Standard Oil Dev Co Contacting gaseous fluid with solid particles
US2908630A (en) * 1953-09-01 1959-10-13 Sinclair Refining Co Process for cracking a plurality of hydrocarbon oils in a suspension of catalyst particles in a riser reactor
US2999061A (en) * 1958-08-27 1961-09-05 Tidewater Oil Company Butadiene conversion of c4 fraction of unsaturated hydrocarbons
US3182011A (en) * 1961-06-05 1965-05-04 Sinclair Research Inc Cracking a plurality of hydrocarbon stocks
US3406112A (en) * 1967-12-26 1968-10-15 Mobil Oil Corp Catalytic cracking process
US3617497A (en) * 1969-06-25 1971-11-02 Gulf Research Development Co Fluid catalytic cracking process with a segregated feed charged to the reactor
US3679576A (en) * 1970-01-06 1972-07-25 Commw Oil Refining Co Inc Fluidized catalytic cracking apparatus and process
US3692667A (en) * 1969-11-12 1972-09-19 Gulf Research Development Co Catalytic cracking plant and method
US3706654A (en) * 1969-11-12 1972-12-19 Gulf Research Development Co Fluid catalytic cracking processes and means

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2427820A (en) * 1941-10-27 1947-09-23 Universal Oil Prod Co Catalytic cracking process
US2425482A (en) * 1944-02-26 1947-08-12 Texas Co Pretreatment of reactivated hydrocarbon cracking catalyst with normally gaseous olefins
US2487132A (en) * 1944-12-09 1949-11-08 Standard Oil Dev Co Contacting gaseous fluid with solid particles
US2908630A (en) * 1953-09-01 1959-10-13 Sinclair Refining Co Process for cracking a plurality of hydrocarbon oils in a suspension of catalyst particles in a riser reactor
US2999061A (en) * 1958-08-27 1961-09-05 Tidewater Oil Company Butadiene conversion of c4 fraction of unsaturated hydrocarbons
US3182011A (en) * 1961-06-05 1965-05-04 Sinclair Research Inc Cracking a plurality of hydrocarbon stocks
US3406112A (en) * 1967-12-26 1968-10-15 Mobil Oil Corp Catalytic cracking process
US3617497A (en) * 1969-06-25 1971-11-02 Gulf Research Development Co Fluid catalytic cracking process with a segregated feed charged to the reactor
US3692667A (en) * 1969-11-12 1972-09-19 Gulf Research Development Co Catalytic cracking plant and method
US3706654A (en) * 1969-11-12 1972-12-19 Gulf Research Development Co Fluid catalytic cracking processes and means
US3679576A (en) * 1970-01-06 1972-07-25 Commw Oil Refining Co Inc Fluidized catalytic cracking apparatus and process

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064038A (en) * 1973-05-21 1977-12-20 Universal Oil Products Company Fluid catalytic cracking process for conversion of residual oils
US3974062A (en) * 1974-10-17 1976-08-10 Mobil Oil Corporation Conversion of full range crude oils with low molecular weight carbon-hydrogen fragment contributors over zeolite catalysts
US4422925A (en) * 1981-12-28 1983-12-27 Texaco Inc. Catalytic cracking
US4435279A (en) 1982-08-19 1984-03-06 Ashland Oil, Inc. Method and apparatus for converting oil feeds
US4479870A (en) * 1984-02-29 1984-10-30 Jop Inc. Use of lift gas in an FCC reactor riser
US4541922A (en) * 1984-02-29 1985-09-17 Uop Inc. Use of lift gas in an FCC reactor riser
US4541923A (en) * 1984-02-29 1985-09-17 Uop Inc. Catalyst treatment and flow conditioning in an FCC reactor riser
EP0154676A2 (en) * 1984-02-29 1985-09-18 Uop Inc. Use of dual-function lift gas in a FCC reactor riser
EP0154676A3 (en) * 1984-02-29 1986-01-22 Uop Inc. Use of dual-function lift gas in a fcc reactor riser
TR23347A (en) * 1984-02-29 1989-12-19 Uop Inc USE OF DUAL FUNCTION LIFTING GAS IN AN AKK (FCC) REAKTOER LIFT
EP0171460A1 (en) * 1984-06-13 1986-02-19 Ashland Oil, Inc. Residual oil cracking process using dry gas as lift gas initially in riser reactor
US4606810A (en) * 1985-04-08 1986-08-19 Mobil Oil Corporation FCC processing scheme with multiple risers
US4802971A (en) * 1986-09-03 1989-02-07 Mobil Oil Corporation Single riser fluidized catalytic cracking process utilizing hydrogen and carbon-hydrogen contributing fragments
US4888103A (en) * 1986-09-03 1989-12-19 Herbst Joseph A Process of stripping in a catalytic cracking operation employing a catalyst mixture which includes a shape selective medium pore silicate zeolite component
US4966681A (en) * 1986-09-03 1990-10-30 Mobil Oil Corporation Multiple riser fluidized catalytic cracking process utilizing a C3 -C4 paraffin-rich co-feed and mixed catalyst system
US4830728A (en) * 1986-09-03 1989-05-16 Mobil Oil Corporation Upgrading naphtha in a multiple riser fluid catalytic cracking operation employing a catalyst mixture
US4853105A (en) * 1986-09-03 1989-08-01 Mobil Oil Corporation Multiple riser fluidized catalytic cracking process utilizing hydrogen and carbon-hydrogen contributing fragments
US4861741A (en) * 1986-09-03 1989-08-29 Mobil Oil Corporation Mixed catalyst system and catalytic conversion process employing same
US4865718A (en) * 1986-09-03 1989-09-12 Mobil Oil Corporation Maximizing distillate production in a fluid catalytic cracking operation employing a mixed catalyst system
US4871446A (en) * 1986-09-03 1989-10-03 Mobil Oil Corporation Catalytic cracking process employing mixed catalyst system
US4892643A (en) * 1986-09-03 1990-01-09 Mobil Oil Corporation Upgrading naphtha in a single riser fluidized catalytic cracking operation employing a catalyst mixture
US4752375A (en) * 1986-09-03 1988-06-21 Mobil Oil Corporation Single riser fluidized catalytic cracking process utilizing a C3-4 paraffin-rich co-feed and mixed catalyst system
US4717466A (en) * 1986-09-03 1988-01-05 Mobil Oil Corporation Multiple riser fluidized catalytic cracking process utilizing hydrogen and carbon-hydrogen contributing fragments
US4717467A (en) * 1987-05-15 1988-01-05 Mobil Oil Corporation Process for mixing fluid catalytic cracking hydrocarbon feed and catalyst
US4874503A (en) * 1988-01-15 1989-10-17 Mobil Oil Corporation Multiple riser fluidized catalytic cracking process employing a mixed catalyst
US4923593A (en) * 1988-01-21 1990-05-08 Institut Francais Du Petrole Cracking catalyst and catalytic cracking process
EP0369536A1 (en) * 1988-11-18 1990-05-23 Stone & Webster Engineering Corporation Process for selectively maximizing product production in fluidized catalytic cracking of hydrocarbons
US5087349A (en) * 1988-11-18 1992-02-11 Stone & Webster Engineering Corporation Process for selectively maximizing product production in fluidized catalytic cracking of hydrocarbons
US5565177A (en) * 1988-12-16 1996-10-15 Uop Side mounted FCC stripper with two-zone stripping
US4927522A (en) * 1988-12-30 1990-05-22 Mobil Oil Corporation Multiple feed point catalytic cracking process using elutriable catalyst mixture
US5012026A (en) * 1989-02-14 1991-04-30 Mobil Oil Corp. Turbulent fluid bed paraffin conversion process
US5158669A (en) * 1990-11-15 1992-10-27 Uop Disengager stripper
US5314611A (en) * 1990-11-15 1994-05-24 Uop External integrated disengager stripper and its use in fluidized catalytic cracking process
US5316662A (en) * 1990-11-15 1994-05-31 Uop Integrated disengager stripper and its use in fluidized catalytic cracking process
US5449498A (en) * 1990-11-15 1995-09-12 Uop FCC stripper with multiple integrated disengager
US5139748A (en) * 1990-11-30 1992-08-18 Uop FCC riser with transverse feed injection
US5273720A (en) * 1992-11-16 1993-12-28 Uop FCC stripper with shiftable baffles
US5316657A (en) * 1992-11-27 1994-05-31 Uop FCC process for de-gassing spent catalyst boundary layer
US5435973A (en) * 1992-11-27 1995-07-25 Uop FCC apparatus for de-gassing spent catalyst boundary layer
US5549814A (en) * 1992-12-02 1996-08-27 Uop FCC stripper with spoke arrangement for bi-directional catalyst stripping
US6416656B1 (en) 1999-06-23 2002-07-09 China Petrochemical Corporation Catalytic cracking process for increasing simultaneously the yields of diesel oil and liquefied gas
US6680030B2 (en) 1999-12-29 2004-01-20 Uop Llc Stripping process with horizontal baffles
US6740227B2 (en) 1999-12-29 2004-05-25 Uop Llc Stripping process with fully distributed openings on baffles
US6780308B1 (en) 2001-11-21 2004-08-24 Uop Llc Stripping process with disproportionately distributed openings on baffles
US7118715B1 (en) 2001-11-21 2006-10-10 Uop Llc Stripping process with disproportionately distributed openings on baffles
US7022221B1 (en) 2002-08-16 2006-04-04 Uop Llc Stripping apparatus and process
US7077997B1 (en) 2002-08-16 2006-07-18 Uop Llc Stripping apparatus
US20060163116A1 (en) * 2003-06-03 2006-07-27 Baptista Claudia Maria De Lace Process for the fluid catalytic cracking of mixed feedstocks of hydrocarbons from different sources
US7736491B2 (en) * 2003-06-03 2010-06-15 Petroleo Brasileiro S.A. - Petrobras Process for the fluid catalytic cracking of mixed feedstocks of hydrocarbons from different sources
US20080081006A1 (en) * 2006-09-29 2008-04-03 Myers Daniel N Advanced elevated feed distribution system for very large diameter RCC reactor risers
US7799286B2 (en) 2007-10-31 2010-09-21 Uop Llc Stripping apparatus
US20090107092A1 (en) * 2007-10-31 2009-04-30 Mehlberg Robert L Stripping apparatus
US20090107336A1 (en) * 2007-10-31 2009-04-30 Mehlberg Robert L Stripping process
US20090107884A1 (en) * 2007-10-31 2009-04-30 Mehlberg Robert L Stripping apparatus and process
US7914610B2 (en) 2007-10-31 2011-03-29 Uop Llc Stripping process
US20100074806A1 (en) * 2008-09-25 2010-03-25 Lambin Jason P Stripping Apparatus with Multi-Sloped Baffles
US7972565B2 (en) 2008-09-25 2011-07-05 Uop Llc Stripping apparatus with multi-sloped baffles
US8062507B2 (en) 2008-09-25 2011-11-22 Uop Llc Stripping process with multi-sloped baffles
US20110162951A1 (en) * 2009-07-13 2011-07-07 Inventure Chemical, Inc. Partial pressure distillation process
US20110198267A1 (en) * 2010-02-18 2011-08-18 Uop Llc Advanced elevated feed distribution apparatus and process for large diameter fcc reactor risers
US9238209B2 (en) 2010-02-18 2016-01-19 Uop Llc Advanced elevated feed distribution apparatus and process for large diameter FCC reactor risers
US11167258B2 (en) 2019-05-14 2021-11-09 Uop Llc Apparatus and process for separating gases from catalyst and revamp

Similar Documents

Publication Publication Date Title
US3894932A (en) Conversion of hydrocarbons with {37 y{38 {0 faujasite-type catalysts
US3894935A (en) Conversion of hydrocarbons with {37 Y{38 {0 faujasite-type catalysts
US5547910A (en) Method and system for controlling the activity of a crystalline zeolite cracking catalyst
US3856659A (en) Multiple reactor fcc system relying upon a dual cracking catalyst composition
US4116814A (en) Method and system for effecting catalytic cracking of high boiling hydrocarbons with fluid conversion catalysts
US4606810A (en) FCC processing scheme with multiple risers
US3661799A (en) Oxidative fluidized regeneration of petroleum conversion catalyst in separate dilute and dense phase zones
US3847793A (en) Conversion of hydrocarbons with a dual cracking component catalyst comprising zsm-5 type material
US3886060A (en) Method for catalytic cracking of residual oils
US4422925A (en) Catalytic cracking
US3894933A (en) Method for producing light fuel oil
US3894934A (en) Conversion of hydrocarbons with mixture of small and large pore crystalline zeolite catalyst compositions to accomplish cracking cyclization, and alkylation reactions
US3894931A (en) Method for improving olefinic gasoline product of low conversion fluid catalytic cracking
US3928172A (en) Catalytic cracking of FCC gasoline and virgin naphtha
US3821103A (en) Conversion of sulfur contaminated hydrocarbons
US5154818A (en) Multiple zone catalytic cracking of hydrocarbons
US3679576A (en) Fluidized catalytic cracking apparatus and process
US2358888A (en) Catalytic conversion of hydrocarbons
CN109705905B (en) Method and device for producing more low-carbon olefins
US2908630A (en) Process for cracking a plurality of hydrocarbon oils in a suspension of catalyst particles in a riser reactor
GB1406837A (en) High temperature catalytic cracking with zeolite catalysts
CN109704903B (en) Method for producing more propylene and light aromatic hydrocarbon
US3926843A (en) Fcc ' 'multi-stage regeneration procedure
US3894936A (en) Conversion of hydrocarbons with {37 Y{38 {0 faujasite-type catalysts
US2883332A (en) Conversion process and apparatus with plural stages and intermediate stripping zone