US3894833A - Waste grease-burning system and apparatus - Google Patents

Waste grease-burning system and apparatus Download PDF

Info

Publication number
US3894833A
US3894833A US352139A US35213973A US3894833A US 3894833 A US3894833 A US 3894833A US 352139 A US352139 A US 352139A US 35213973 A US35213973 A US 35213973A US 3894833 A US3894833 A US 3894833A
Authority
US
United States
Prior art keywords
nozzle
feed
chamber
flow
swirl chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US352139A
Inventor
Ulf F Rinecker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envirotech Corp
Original Assignee
Envirotech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Envirotech Corp filed Critical Envirotech Corp
Priority to US352139A priority Critical patent/US3894833A/en
Priority to AU67188/74A priority patent/AU485841B2/en
Priority to DE2418393A priority patent/DE2418393A1/en
Priority to GB1673074A priority patent/GB1433673A/en
Priority to GB3387775A priority patent/GB1433674A/en
Priority to JP49044393A priority patent/JPS5014165A/ja
Priority to US05/567,207 priority patent/US3991689A/en
Application granted granted Critical
Publication of US3894833A publication Critical patent/US3894833A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating

Definitions

  • tures includes a burner assembly or having a swirl 2 431/285 chamber whereinto the liquid is tangentially fed and Cli i swirled From a nozzle connected to the chamber a 1 Fleld Search 431/1 651 285 X; minor fraction of the feed mixture is emitted as a ro- 110/75 X; 122/7 C; 239/103- 125 600 tating, atomized spray for subsequent ignition.
  • a major fraction of the feed is continuously recycled 1 1 References C'led thereby maintaining a high liquid flow rate through UNlTED STATES PATENTS the burner assembly.
  • This invention generally relates to means for the disposal by combustion of grease, scum, and other organic floatage such as are produced during waste water treat ment processes; more particularly, this invention relates to means for conditioning and burning mixtures of such materials which have a fairly high water content.
  • Municipal and industrial waste water treatment processes usually produce not only sedimentary wastes, such as sedementary sewage sludge, but also foating wastes which usually comprise, for example, grease, oil, scum and other materials which float to the water surface. Such floatage is particularly found in primary treatment tanks. Because such materials are capable of being removed from the water surface by a skimming process, they are hereinafter referred to as skimmings".
  • a blade, chain-driven scoop or other devices can be used to skim the water surface; sometimes a weir is used and the water and/or weir height controlled so the skimmings run off over the weir.
  • skimmings comprise a large percentage of water (usually over 50%), together with the aforementioned grease, scum, wood chips and other floatage. Usually the skimmings comprise organic materials, but sometimes plastic pieces and synthetic filaments are also included. Such very non-homogeneous skimmings present difficult handling and disposal problems.
  • Equipment for burning the skimmings generally comprises a combustor or burner designed to handle a liquid waste through a steam, air, or mechanical atomizing nozzle.
  • the liquid feed is atomized as finely as possible to present the greatest surface area for mixing with combustion air.
  • a secondary incineration chamber is provided and that may comprise, for example, a verticallyarranged cylinder which acts as its own stack.
  • skimmings feed skimmings directly to sludge incinerators such as multiple-hearth furnaces, sometimes obviating the necessity of using auxiliary fuels to burn the solid sludge and at the same time disposing of the skimmings.
  • the skimmings must be fed slowly to the incinerator and then must be burned immediately or else there is the possibility of a subsequent uncontrollable flareup.
  • flare-ups can exceed the temperature capacity of the incinerator and, consequently, can destroy the furnace exhaust ducting and the like or even create an explosion.
  • the skimmings are not an evenly-flowing medium and often include large solid pieces or fibrous and synthetic strands, it is difficult to feed the skimmings to an incinerator while achieving therein an even distribution.
  • the skimmings generally are introduced to the incinerator through a single large pipe.
  • the flow from the single large pipe does not evenly distribute the skimming and, consequently, there is uneven burning inside the incinerator.
  • ash stalactites sometimes form in the furnace and eventually interfere with its operation.
  • grease may soak into the refractory brick of the furnace so that, after a period of time, the bricks are destroyed.
  • a burner assembly is provided for emitting a rotating, atomized spray of such a mixture for subsequent combustion, preferably in a multiplehearth incinerator.
  • the burner assembly includes a swirl chamber into which the skimmings are tangentially introduced to swirl therein and a nozzle is connected to the chamber for emitting a minor fraction, say 5 20%, of the incoming feed of skimmings as a rotating spray.
  • a return line from the chamber is for recycling the remaining, major portion of the feed thereby to maintain a high liquid flow rate through the burner assembly to preclude clogging.
  • a primary object of my invention is to provide means for burning grease-laden aqueous mixtures containing some solids such as are obtained from primary sewage treatment operations;
  • Another object is to provide an apparatus for emitting a spray of such grease-laden mixtures for subsequent burning
  • Yet another object is to provide a burner assembly for use in burning mixtures like those previously mentioned where the burner assembly includes means to return a substantial percentage of the total feed mixture flow so that the assembly can handle mixtures containing relatively large solid particles without clogging.
  • FIG. 1 is a side view, partially cut away, of a burner assembly according to the invention
  • FIG. 2 is a side view, partially in section and enlarged for purposes of clarity, of a portion of the assembly of FIG. 1',
  • FIG. 3 is a generally schematic diagram of a system for use in conjunction with the burner assembly of FIG. 1.
  • FIG. 1 illustrates a burner assembly 11 for burning feed mixtures such as are derived from sewage water skimmings.
  • the skimmings will have previously been conditioned as will be hereinafter described in detail.
  • the preferred feed material generally consists of a mixture of roughly 50% water and 50% grease which, preferably, has been conditioned as will be described hereinafter.
  • the precise chemical makeup of the feed liquid varies, depending upon the origin of the waters from which the liquid wastes are derived and, even in a single plant, depending upon the time of day.
  • the greases may, for example, include meat greases, industrial waste greases, various oils and pitches, and the like.
  • the feed liquid often will contain various entrained solids; such solids may comprise wood chips, plastic pieces, fruit pits and the like.
  • Rags and synthetic strings are usually present and have been a problem in prior grease incinerating systems because they may trangle and clog the system.
  • feed materials usually have a thermal content of 60,000 80,000 BTU per gallon.
  • the burner assembly 11 generally includes a nozzle assembly generally designated 13 having a body or swirl chamber 14 whose one end is connected to a generally converging frusto-conical nozzle 15.
  • a feed pipe 16 connects tangentially to the side of the chamber 14 for delivering the aforementioned mixtures into the chamber, and a return pipe 18 is connected to the rear of the chamber for returning a relatively large percentage, say up to 98%, of the feed from the chamber. The remaining fraction of the feed is sprayed outward from the nozzle.
  • the nozzle assembly is fixed generally coaxially in a relatively large conduit 21 and is directed toward an open end thereof.
  • a plurality of spaced-apart radially extending struts 24 (only one of which can be seen in FIG. 1) are supportively connected at their one end to the inner wall of the conduit 21 and at their other end to the nozzle assembly 11. Air is carried through the conduit 12 to mix with the spray from the nozzle assembly, as will be described hereinafter.
  • a gas pilot 22 is fed by gas pipe 23 and is fixedly mounted next to the nozzle assembly 13 in position to ignite the material sprayed therefrom.
  • Other means can be provided to ignite the material, and the gas pilot is not necessary to the invention. Because the flame from the nozzle assembly sometimes exceeds eight feet in diameter and is at least that long, the pilot 22 can be positioned quite a distance (e.g., several feet) ahead of the nozzle assembly 11, rather than immediately next to it as shown.
  • the chamber 14 of the nozzle assembly 13 has a generally cylindrical hollow interior with an open forward end and a rearward closed end having an aperture 26 formed centrally therein.
  • the aperture 26 is adapted for sealed connection to the return pipe 18.
  • the sidewall of the chamber has a slanted opening 31 formed therein into which an adapter pipe 32 is sealingly fitted for connection to the feed pipe 16 as by fitting 33. Accordingly, the feed material is introduced generally tangentially into the cup and swirls therein in a direction which, in the drawings, is counter-clockwise.
  • the larger end of the frustroconical nozzle is sealing connected to the forward open end of the chamber.
  • the nozzle converges outward at about a 45 angle, from the chamber to a smaller axial opening 28 from which the material is emitted.
  • the minimum diameter of the axial opening 28 is about one-half inch; with such a diameter, the nozzle can readily pass solid pieces which are entrained in the feed mixture.
  • the swirling or vortex-like action of the liquid feed in the swirl chamber 14 is quite important since the entering feed is thereby broken up or torn into discrete droplets which are then more readily and thoroughly burnable. Also, the swirling motion tends to keep the nozzle clear from clogging because the agitation tends to dislodge any particles which might otherwise lodge therein. Since the frustro-conical tip is smoothly tapered and the axial opening is large, the feed material continues to swirl as it sprays from the nozzle. In other words, the spray which leaves the nozzle also rotates in a counter-clockwise sense.
  • a straight tubular piece 29 is threaded into the forward end of the nozzle 15 and actually defines the opening 28.
  • the tubular piece allows ready replacement of this portion of the nozzle and allows selection of the size of opening 28 by using tubes having various inside diameters. Furthermore, in practice, it has been found that this straight section at the very end of the nozzle creates better flame characteristics.
  • the quantity of circulation through the nozzle substantially exceeds the quantity of material which is sprayed from the nozzle.
  • the spray comprises a maximum of 10% of the circulating flow.
  • 90-95% of the flow is recirculated. The excess circulation is provided so that relatively high flow rates may be achieved in the system as a whole and so that relatively larger piping can be used; accordingly, the system operates without clogging even when occasional large solid pieces are entrained in the feed mixture.
  • the spray from the nozzle is burned in the presence of air which is supplied through the conduit 21.
  • the air flowing through the conduit has a rotational component opposite to the rotation of the nozzle spray. This can be accomplished, as shown in FIG. 1, by introducing air from a blower, or the like, into an inlet duct 42 which generally tangentially converges with the conduit 21; thus the air flow through the conduit 21 will rotate clockwise.
  • the conduit 21 is closed behind the inlet duct 42 by a closure number 43 which may include appropriately-spaced apertures through which the inlet pipe 16, the return pipe 18, and the gas pilot pipe 23 extend and are supported.
  • the open end of the conduit 21 is connected directly into a multiple hearth incinerator so that the actual combustion occurs within one of the hearths thereof.
  • Said incinerators are, of course, well known. Since the spray evenly distributes the skimmings for burning across the hearth of the incinerator, the previously mentioned problems of uneven burning and ash stalactite formation are resolved. Furthermore, the heat from the burning skimmings can be used to dry and/or burn sludge in the incinerator, thereby eliminating the use of auxiliary fuel such as natural gas.
  • the multiple-hearth incinerator acts as a stack and combustion chamber for the burner assembly.
  • FIG. 3 shows one embodiment of a system for conditioning the previously-defined skimmings and then incinerating them by means of the burner assembly 11.
  • Skimmings directly derived from a waste-water treatment process. generally comprise -90% water and only 10% grease or other organic materials. As such, the skimmings are difficult or impossible to burn because their low calorific value will not reasonably support combustion.
  • the skimmings are first fed to a grinder 51.
  • a grinder is a commercially-available component which functions generally like a home garbage disposal unit. The grinder coarsely grinds or commutates the skimmings so that the solid particles therein are usually no greater than one-half inch in diameter.
  • the resulting coarsely-ground mixture may be characterized as a coarse dispersion. That dispersion is then passed, via a pipe 57, into a heat exchanger 56 which can be any one of the various well-known types.
  • a heat exchanger the mixture is subject to heat transferring contact with a medium such as steam or other hot fluid which elevates the temperature of the mixture to the preferred range of about l80200F.
  • the hot fluid is generated in a boiler 61 and fed, via pipe 62, to the heat exchanger; however, other means may be used to raise the temperature of the mixture.
  • Heating of the mixture accomplishes several results. If the mixture is very thick or stiff, it will flow much more readily after heating. If the mixture contains many relatively large pieces of animal fat, heating will either break down the pieces and thereby create a more homogenous dispersion, or the heating will allow water to enter the cells of the fat thereby creating a more readily burned material.
  • the heated mixture flows from the heat exchanger via line 63 to a partitioned holding tank 64 for decanting in a first compartment 65 thereof.
  • the influent to the tank 64 is relatively highly aqueous (e.g., about 80-90% water) and that the grease and particles of animal fat therein have a limited capacity for absorbing or entrapping water, even after heating. Consequently, the influent contains a substantial excess of water which is partially separable from the other materials by decanting in the tank 64.
  • the heavy solids in the influent mixture settle to the bottom of the compartment. Concomitantly, lighter liquids, such as oil and greases, and some solids rise to the water surface to thereby accomplish a phase separation.
  • the materials which rise to the water surface flow over a weir 66 which partitions the first compartment from a second compartment 69.
  • the overflow into compartment 69 comprises the feed to the burner assembly and, as previously mentioned, rougly consists of 50% water, 50% grease and oil, and some solid floatage. Conventional means, not shown, can be utilized to maintain the water surface height generally constant in the compartment 65.
  • the water and settled solids remaining in the first compartment 65 can be drained therefrom as an overflow through a drainage outlet 68 for subsequent disposal outside of the system.
  • the oil-water mixture is pumped, as by means of a conventional metering pump 71, into the previously-described burner assembly 11 via the inlet pipe 16.
  • the flow that returns from the burner assembly 11 via the pipe 18 re-enters the second compartment 69 of the decant tank 64 and is thereafter recycled through the burner.
  • This multiple recycling of the conditioned mixture produces a finer, more homogeneous feed mixture of the burner.
  • the return flow from the burner assembly can be returned to locations in the system other than the decant tank 64; for example, where heating is particularly important, the flow could be returned to the heat exchanger 56.
  • the effluent mixture from the grinder 51 may be first decanted in tank 64 and then heated.
  • the decanted effluent contains only a small percentage of water, (e.g., less than 30% water)
  • heating may be accomplished by directly mixing heated water with the effluent rather than by using a heat exchanger.
  • the heated water can be obtained, for example, from a boiler or from a wet scrubber which is used to clean particulate matter from the incinerator off gases.
  • the burner assembly can be used to burn industrial waste greases and the like rather than the previously mentioned sewage water skimmings.
  • An apparatus for burning combustible liquid-solid mixtures comprising:
  • a nozzle assembly which includes a swirl chamber and a nozzle which tapers outwardly and converg ingly from said chamber to an outlet end having a single opening therein of sufficient size to allow passage of solid particles therethrough;
  • an unobstructed return pipe connected in direct and immediate communication with a second opening in said swirl chamber, said second opening being in immediate flow communication with the interior of said chamber for unrestricted recycling through said return pipe of a major fraction of said feed, the remaining fraction of said feed being sprayed from said nozzle;
  • conduit means spacedly surrounding said nozzle assembly and having an open end surrounding said nozzle;
  • inlet means in communication with said conduit means for delivering a flow of oxygen-bearing gas thereinto to flow out said open end of said conduit to mix with the spray from said nozzle and to pro vide an oxidizing medium therefor.
  • said inlet means for said conduit means includes means tangentially connected thereto to introduce the gas in a flow which has a rotational component opposite to the rotation of the feed mixture in said chamber.
  • An apparatus including a straight tubular piece coaxially connected into said open end of said nozzle thereby defining the outlet from nozzle.
  • conduit mean annularly surrounds said nozzle assembly thereby to permit an annular flow of air therearound.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Incineration Of Waste (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

Apparatus for incinerating grease-laden aqueous mixtures includes a burner assembly or having a swirl chamber whereinto the liquid is tangentially fed and swirled. From a nozzle connected to the chamber, a minor fraction of the feed mixture is emitted as a rotating, atomized spray for subsequent ignition. A major fraction of the feed is continuously recycled thereby maintaining a high liquid flow rate through the burner assembly.

Description

United States Patent 1191 Rinecker July 15, 1975 1 WASTE GREASE-BURNING SYSTEM AND 2.261451 12/1941 Eweryd et 431/117 x APPARATUS 2.721,765 10/1955 Greenland i 239/125 3,129,777 4/1964 Haspert 239/600 X [75] In nt Ulf Rinecker, n Franusco. 3,757.706 9/1973 Pariel et al 110/75 Calif.
[73] Assignee: Envirotech Corporation, Menlo Primary Examiner Edward Favors Park. Calif. Attorney, Agent, or Firm-Robert E. Krebs; Thomas S. MacDonald [22] Filed: Apr. 18, 1973 [21] App]. N0: 352,139 57 ABSTRACT Apparatus for incinerating grease-laden aqueous mix- 1 CL 431/117; 110/75? 239/125; tures includes a burner assembly or having a swirl 2 431/285 chamber whereinto the liquid is tangentially fed and Cli i swirled From a nozzle connected to the chamber a 1 Fleld Search 431/1 651 285 X; minor fraction of the feed mixture is emitted as a ro- 110/75 X; 122/7 C; 239/103- 125 600 tating, atomized spray for subsequent ignition. A major fraction of the feed is continuously recycled 1 1 References C'led thereby maintaining a high liquid flow rate through UNlTED STATES PATENTS the burner assembly. 1.441.630 1/1923 Ray 239/406 X l,769,l97 7 1930 Wetmore 110/75 11 3 D'awmg guns WASTE GREASE-BURNING SYSTEM AND APPARATUS BACKGROUND OF THE INVENTION 1. Field of the Invention:
This invention generally relates to means for the disposal by combustion of grease, scum, and other organic floatage such as are produced during waste water treat ment processes; more particularly, this invention relates to means for conditioning and burning mixtures of such materials which have a fairly high water content.
2. State of the Art:
Municipal and industrial waste water treatment processes usually produce not only sedimentary wastes, such as sedementary sewage sludge, but also foating wastes which usually comprise, for example, grease, oil, scum and other materials which float to the water surface. Such floatage is particularly found in primary treatment tanks. Because such materials are capable of being removed from the water surface by a skimming process, they are hereinafter referred to as skimmings". A blade, chain-driven scoop or other devices can be used to skim the water surface; sometimes a weir is used and the water and/or weir height controlled so the skimmings run off over the weir.
The skimmings comprise a large percentage of water (usually over 50%), together with the aforementioned grease, scum, wood chips and other floatage. Usually the skimmings comprise organic materials, but sometimes plastic pieces and synthetic filaments are also included. Such very non-homogeneous skimmings present difficult handling and disposal problems.
Known methods of disposal of the skimmings include burial, chemical digestion and burning. Equipment for burning the skimmings generally comprises a combustor or burner designed to handle a liquid waste through a steam, air, or mechanical atomizing nozzle. The liquid feed is atomized as finely as possible to present the greatest surface area for mixing with combustion air. Sometimes a secondary incineration chamber is provided and that may comprise, for example, a verticallyarranged cylinder which acts as its own stack.
It is also known to feed skimmings directly to sludge incinerators such as multiple-hearth furnaces, sometimes obviating the necessity of using auxiliary fuels to burn the solid sludge and at the same time disposing of the skimmings. However, due to their high thermal values, the skimmings must be fed slowly to the incinerator and then must be burned immediately or else there is the possibility of a subsequent uncontrollable flareup. Such flare-ups can exceed the temperature capacity of the incinerator and, consequently, can destroy the furnace exhaust ducting and the like or even create an explosion.
Because the skimmings are not an evenly-flowing medium and often include large solid pieces or fibrous and synthetic strands, it is difficult to feed the skimmings to an incinerator while achieving therein an even distribution. To avoid clogging the supply system, the skimmings generally are introduced to the incinerator through a single large pipe. However, the flow from the single large pipe does not evenly distribute the skimming and, consequently, there is uneven burning inside the incinerator. As a result, ash stalactites sometimes form in the furnace and eventually interfere with its operation. Furthermore, grease may soak into the refractory brick of the furnace so that, after a period of time, the bricks are destroyed.
SUMMARY OF THE INVENTION Means are provided for disposing of floatage wastes or skimmings such as are accumulated, for example, as a by-product of wastewater treatment processes and which generally comprise non-homogeneous aqueous liquid-solid mixtures. A burner assembly is provided for emitting a rotating, atomized spray of such a mixture for subsequent combustion, preferably in a multiplehearth incinerator. The burner assembly includes a swirl chamber into which the skimmings are tangentially introduced to swirl therein and a nozzle is connected to the chamber for emitting a minor fraction, say 5 20%, of the incoming feed of skimmings as a rotating spray. A return line from the chamber is for recycling the remaining, major portion of the feed thereby to maintain a high liquid flow rate through the burner assembly to preclude clogging.
OBJECTS OF THE INVENTION A primary object of my invention is to provide means for burning grease-laden aqueous mixtures containing some solids such as are obtained from primary sewage treatment operations;
Another object is to provide an apparatus for emitting a spray of such grease-laden mixtures for subsequent burning;
Yet another object is to provide a burner assembly for use in burning mixtures like those previously mentioned where the burner assembly includes means to return a substantial percentage of the total feed mixture flow so that the assembly can handle mixtures containing relatively large solid particles without clogging.
BRIEF DESCRIPTION OF THE DRAWINGS These and other objects and advantages of the invention may be readily ascertained from the following description and appended illustrations which are offered by way of example only and not in limitation of the invention, the scope of which is defined by the appended claims and equivalents and not by any preceding description. In the drawings:
FIG. 1 is a side view, partially cut away, of a burner assembly according to the invention;
FIG. 2 is a side view, partially in section and enlarged for purposes of clarity, of a portion of the assembly of FIG. 1',
FIG. 3 is a generally schematic diagram of a system for use in conjunction with the burner assembly of FIG. 1.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 illustrates a burner assembly 11 for burning feed mixtures such as are derived from sewage water skimmings. In the preferred embodiment of the invention, the skimmings will have previously been conditioned as will be hereinafter described in detail. The preferred feed material generally consists of a mixture of roughly 50% water and 50% grease which, preferably, has been conditioned as will be described hereinafter. The precise chemical makeup of the feed liquid varies, depending upon the origin of the waters from which the liquid wastes are derived and, even in a single plant, depending upon the time of day. The greases may, for example, include meat greases, industrial waste greases, various oils and pitches, and the like. Furthermore, the feed liquid often will contain various entrained solids; such solids may comprise wood chips, plastic pieces, fruit pits and the like. Rags and synthetic strings are usually present and have been a problem in prior grease incinerating systems because they may trangle and clog the system. Generally speaking, such feed materials usually have a thermal content of 60,000 80,000 BTU per gallon.
The burner assembly 11 generally includes a nozzle assembly generally designated 13 having a body or swirl chamber 14 whose one end is connected to a generally converging frusto-conical nozzle 15. A feed pipe 16 connects tangentially to the side of the chamber 14 for delivering the aforementioned mixtures into the chamber, and a return pipe 18 is connected to the rear of the chamber for returning a relatively large percentage, say up to 98%, of the feed from the chamber. The remaining fraction of the feed is sprayed outward from the nozzle. The nozzle assembly is fixed generally coaxially in a relatively large conduit 21 and is directed toward an open end thereof. In the illustrated embodiment, a plurality of spaced-apart radially extending struts 24 (only one of which can be seen in FIG. 1) are supportively connected at their one end to the inner wall of the conduit 21 and at their other end to the nozzle assembly 11. Air is carried through the conduit 12 to mix with the spray from the nozzle assembly, as will be described hereinafter.
Usually, a gas pilot 22 is fed by gas pipe 23 and is fixedly mounted next to the nozzle assembly 13 in position to ignite the material sprayed therefrom. Other means, however, can be provided to ignite the material, and the gas pilot is not necessary to the invention. Because the flame from the nozzle assembly sometimes exceeds eight feet in diameter and is at least that long, the pilot 22 can be positioned quite a distance (e.g., several feet) ahead of the nozzle assembly 11, rather than immediately next to it as shown.
As is shown in detail in FIG. 2, the chamber 14 of the nozzle assembly 13 has a generally cylindrical hollow interior with an open forward end and a rearward closed end having an aperture 26 formed centrally therein. The aperture 26 is adapted for sealed connection to the return pipe 18. The sidewall of the chamber has a slanted opening 31 formed therein into which an adapter pipe 32 is sealingly fitted for connection to the feed pipe 16 as by fitting 33. Accordingly, the feed material is introduced generally tangentially into the cup and swirls therein in a direction which, in the drawings, is counter-clockwise. The larger end of the frustroconical nozzle is sealing connected to the forward open end of the chamber. The nozzle converges outward at about a 45 angle, from the chamber to a smaller axial opening 28 from which the material is emitted. In practice. it has been determined that the minimum diameter of the axial opening 28 is about one-half inch; with such a diameter, the nozzle can readily pass solid pieces which are entrained in the feed mixture.
The swirling or vortex-like action of the liquid feed in the swirl chamber 14 is quite important since the entering feed is thereby broken up or torn into discrete droplets which are then more readily and thoroughly burnable. Also, the swirling motion tends to keep the nozzle clear from clogging because the agitation tends to dislodge any particles which might otherwise lodge therein. Since the frustro-conical tip is smoothly tapered and the axial opening is large, the feed material continues to swirl as it sprays from the nozzle. In other words, the spray which leaves the nozzle also rotates in a counter-clockwise sense.
In the illustrated embodiment, a straight tubular piece 29 is threaded into the forward end of the nozzle 15 and actually defines the opening 28. The tubular piece allows ready replacement of this portion of the nozzle and allows selection of the size of opening 28 by using tubes having various inside diameters. Furthermore, in practice, it has been found that this straight section at the very end of the nozzle creates better flame characteristics.
As was previously mentioned, only a minor fraction of the feed material leaves the nozzle as a spray at any given time. The major portion of the feed is returned, or recycled, from the nozzle assembly via the pipe 18. In other words, the quantity of circulation through the nozzle substantially exceeds the quantity of material which is sprayed from the nozzle. Preferably, the spray comprises a maximum of 10% of the circulating flow. Thus, preferably 90-95% of the flow is recirculated. The excess circulation is provided so that relatively high flow rates may be achieved in the system as a whole and so that relatively larger piping can be used; accordingly, the system operates without clogging even when occasional large solid pieces are entrained in the feed mixture.
The spray from the nozzle is burned in the presence of air which is supplied through the conduit 21. Preferably, the air flowing through the conduit has a rotational component opposite to the rotation of the nozzle spray. This can be accomplished, as shown in FIG. 1, by introducing air from a blower, or the like, into an inlet duct 42 which generally tangentially converges with the conduit 21; thus the air flow through the conduit 21 will rotate clockwise. The conduit 21 is closed behind the inlet duct 42 by a closure number 43 which may include appropriately-spaced apertures through which the inlet pipe 16, the return pipe 18, and the gas pilot pipe 23 extend and are supported.
Preferably, the open end of the conduit 21 is connected directly into a multiple hearth incinerator so that the actual combustion occurs within one of the hearths thereof. Said incinerators are, of course, well known. Since the spray evenly distributes the skimmings for burning across the hearth of the incinerator, the previously mentioned problems of uneven burning and ash stalactite formation are resolved. Furthermore, the heat from the burning skimmings can be used to dry and/or burn sludge in the incinerator, thereby eliminating the use of auxiliary fuel such as natural gas. The multiple-hearth incinerator, in turn, acts as a stack and combustion chamber for the burner assembly.
FIG. 3 shows one embodiment of a system for conditioning the previously-defined skimmings and then incinerating them by means of the burner assembly 11. Skimmings, directly derived from a waste-water treatment process. generally comprise -90% water and only 10% grease or other organic materials. As such, the skimmings are difficult or impossible to burn because their low calorific value will not reasonably support combustion. According to the system of FIG. I, the skimmings are first fed to a grinder 51. Such a grinder is a commercially-available component which functions generally like a home garbage disposal unit. The grinder coarsely grinds or commutates the skimmings so that the solid particles therein are usually no greater than one-half inch in diameter. Some mixing is also accomplished in the grinder and the resulting coarsely-ground mixture may be characterized as a coarse dispersion. That dispersion is then passed, via a pipe 57, into a heat exchanger 56 which can be any one of the various well-known types. In the heat exchanger, the mixture is subject to heat transferring contact with a medium such as steam or other hot fluid which elevates the temperature of the mixture to the preferred range of about l80200F. In the illustrated system, the hot fluid is generated in a boiler 61 and fed, via pipe 62, to the heat exchanger; however, other means may be used to raise the temperature of the mixture.
Heating of the mixture accomplishes several results. If the mixture is very thick or stiff, it will flow much more readily after heating. If the mixture contains many relatively large pieces of animal fat, heating will either break down the pieces and thereby create a more homogenous dispersion, or the heating will allow water to enter the cells of the fat thereby creating a more readily burned material.
The heated mixture flows from the heat exchanger via line 63 to a partitioned holding tank 64 for decanting in a first compartment 65 thereof. It should be understood that the influent to the tank 64 is relatively highly aqueous (e.g., about 80-90% water) and that the grease and particles of animal fat therein have a limited capacity for absorbing or entrapping water, even after heating. Consequently, the influent contains a substantial excess of water which is partially separable from the other materials by decanting in the tank 64. The heavy solids in the influent mixture settle to the bottom of the compartment. Concomitantly, lighter liquids, such as oil and greases, and some solids rise to the water surface to thereby accomplish a phase separation. The materials which rise to the water surface flow over a weir 66 which partitions the first compartment from a second compartment 69. The overflow into compartment 69 comprises the feed to the burner assembly and, as previously mentioned, rougly consists of 50% water, 50% grease and oil, and some solid floatage. Conventional means, not shown, can be utilized to maintain the water surface height generally constant in the compartment 65. The water and settled solids remaining in the first compartment 65 can be drained therefrom as an overflow through a drainage outlet 68 for subsequent disposal outside of the system. It has been found that a relatively small percentage of the materials, such as rags and fibers, which enter the first compartment of the decanting tank neither really float nor sink; in the illustrated system, such materials are periodically withdrawn through line 70 and returned for further grinding in the grinder 51.
From the compartment 69, the oil-water mixture is pumped, as by means of a conventional metering pump 71, into the previously-described burner assembly 11 via the inlet pipe 16. The flow that returns from the burner assembly 11 via the pipe 18 re-enters the second compartment 69 of the decant tank 64 and is thereafter recycled through the burner. This multiple recycling of the conditioned mixture produces a finer, more homogeneous feed mixture of the burner. Under some cir cumstances the return flow from the burner assembly can be returned to locations in the system other than the decant tank 64; for example, where heating is particularly important, the flow could be returned to the heat exchanger 56.
It should be clearly understood that the previouslydescribed system of FIG. 3 is by way of example only and that many variations thereon, while still within the spirit of the invention, will readily suggest themselves to a person skilled in the art of the invention. For example, the effluent mixture from the grinder 51 may be first decanted in tank 64 and then heated. Where the decanted effluent contains only a small percentage of water, (e.g., less than 30% water), heating may be accomplished by directly mixing heated water with the effluent rather than by using a heat exchanger. The heated water can be obtained, for example, from a boiler or from a wet scrubber which is used to clean particulate matter from the incinerator off gases. Also, the burner assembly can be used to burn industrial waste greases and the like rather than the previously mentioned sewage water skimmings.
I claim:
1. An apparatus for burning combustible liquid-solid mixtures, such as waste-water skimmings or the like comprising:
a. a nozzle assembly which includes a swirl chamber and a nozzle which tapers outwardly and converg ingly from said chamber to an outlet end having a single opening therein of sufficient size to allow passage of solid particles therethrough;
b. means in flow communication with the intertior of said swirl chamber for delivering a feed ofa liquidsolid mixture thereinto in a generally tangential direction whereby said entering feed swirls about in said chamber;
c. an unobstructed return pipe connected in direct and immediate communication with a second opening in said swirl chamber, said second opening being in immediate flow communication with the interior of said chamber for unrestricted recycling through said return pipe of a major fraction of said feed, the remaining fraction of said feed being sprayed from said nozzle;
d. conduit means spacedly surrounding said nozzle assembly and having an open end surrounding said nozzle; and
e. inlet means in communication with said conduit means for delivering a flow of oxygen-bearing gas thereinto to flow out said open end of said conduit to mix with the spray from said nozzle and to pro vide an oxidizing medium therefor.
2. An apparatus according to claim 1 wherein said inlet means for said conduit means includes means tangentially connected thereto to introduce the gas in a flow which has a rotational component opposite to the rotation of the feed mixture in said chamber.
3. An apparatus according to claim 1 wherein said swirl chamber has a generally cylindrical interior.
4. An apparatus according to claim I wherein said opening in the end of said nozzle is axially located.
5. An apparatus according to claim 4 including a straight tubular piece coaxially connected into said open end of said nozzle thereby defining the outlet from nozzle.
6. An apparatus according to claim 5 wherein the inside diameter of said tubular piece is at least 0.5 inches.
7. An apparatus according to claim 1 wherein said open end is at least 0.5 inches in diameter.
tween -98% of the feed is returned from said swirl chamber through said return means.
11. An apparatus according to claim 1 wherein said conduit mean annularly surrounds said nozzle assembly thereby to permit an annular flow of air therearound.
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT N0. 3 394, 833 DATED y 15, 1975 v g omg Ulf F. Rinecker It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Col. 1, line 15, "foating" should read as floating Col. 3, line 8, "trangle" should read as tangle Col. 3, line 14, "frusto" should read as frustro Col. 3, line 28, "12" should read as 21 Col. 5, line 65, "of" should read as to Col. 6, line 30, "intertior" should read as interior Signed and Sealed this seventeenth D 3) 0f February I 976 [SEAL] Arrest:
RUTH C. MASON Arresting Officer C. MARSHALL DANN Commissioner oj'larems and Trademarks

Claims (11)

1. An apparatus for burning combustible liquid-solid mixtures, such as waste-water skimmings or the like comprising: a. a nozzle assembly which includes a swirl chamber and a nozzle which tapers outwardly and convergingly from said chamber to an outlet end having a single opening therein of sufficient size to allow passage of solid particles therethrough; b. means in flow communication with the intertior of said swirl chamber for delivering a feed of a liquid-solid mixture thereinto in a generally tangential direction whereby said entering feed swirls about in said chamber; c. an unobstructed return pipe connected in direct and immediate communication with a second opening in said swirl chamber, said second opening being in immediate flow communication with the interior of said chamber for unrestricted reCycling through said return pipe of a major fraction of said feed, the remaining fraction of said feed being sprayed from said nozzle; d. conduit means spacedly surrounding said nozzle assembly and having an open end surrounding said nozzle; and e. inlet means in communication with said conduit means for delivering a flow of oxygen-bearing gas thereinto to flow out said open end of said conduit to mix with the spray from said nozzle and to provide an oxidizing medium therefor.
2. An apparatus according to claim 1 wherein said inlet means for said conduit means includes means tangentially connected thereto to introduce the gas in a flow which has a rotational component opposite to the rotation of the feed mixture in said chamber.
3. An apparatus according to claim 1 wherein said swirl chamber has a generally cylindrical interior.
4. An apparatus according to claim 1 wherein said opening in the end of said nozzle is axially located.
5. An apparatus according to claim 4 including a straight tubular piece coaxially connected into said open end of said nozzle thereby defining the outlet from nozzle.
6. An apparatus according to claim 5 wherein the inside diameter of said tubular piece is at least 0.5 inches.
7. An apparatus according to claim 1 wherein said open end is at least 0.5 inches in diameter.
8. An apparatus according to claim 1 further including gas pilot means stationarily fixed relative to said nozzle for igniting the material sprayed therefrom.
9. An apparatus according to claim 1 where at least 80% of the feed is returned from said swirl chamber through said return means.
10. An apparatus according to claim 1 where between 80-98% of the feed is returned from said swirl chamber through said return means.
11. An apparatus according to claim 1 wherein said conduit mean annularly surrounds said nozzle assembly thereby to permit an annular flow of air therearound.
US352139A 1973-04-18 1973-04-18 Waste grease-burning system and apparatus Expired - Lifetime US3894833A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US352139A US3894833A (en) 1973-04-18 1973-04-18 Waste grease-burning system and apparatus
AU67188/74A AU485841B2 (en) 1973-04-18 1974-03-27 Waste grease-burning system and apparatus
DE2418393A DE2418393A1 (en) 1973-04-18 1974-04-16 DEVICE FOR THE PROCESSING AND INCINERATION OF WASTE PRODUCTS
GB1673074A GB1433673A (en) 1973-04-18 1974-04-17 Waste grease-burning apparatus
GB3387775A GB1433674A (en) 1973-04-18 1974-04-17 Waste grease-burning plant
JP49044393A JPS5014165A (en) 1973-04-18 1974-04-18
US05/567,207 US3991689A (en) 1973-04-18 1975-04-11 Waste grease-burning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US352139A US3894833A (en) 1973-04-18 1973-04-18 Waste grease-burning system and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/567,207 Division US3991689A (en) 1973-04-18 1975-04-11 Waste grease-burning system

Publications (1)

Publication Number Publication Date
US3894833A true US3894833A (en) 1975-07-15

Family

ID=23383946

Family Applications (1)

Application Number Title Priority Date Filing Date
US352139A Expired - Lifetime US3894833A (en) 1973-04-18 1973-04-18 Waste grease-burning system and apparatus

Country Status (4)

Country Link
US (1) US3894833A (en)
JP (1) JPS5014165A (en)
DE (1) DE2418393A1 (en)
GB (2) GB1433674A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716843A (en) * 1986-11-03 1988-01-05 Aqua-Chem, Inc. Waste fuel combustion system
US4785748A (en) * 1987-08-24 1988-11-22 The Marquardt Company Method sudden expansion (SUE) incinerator for destroying hazardous materials & wastes
US4949655A (en) * 1989-02-17 1990-08-21 Greer Fred C Process for the utilization of powdered solid waste
US5055031A (en) * 1990-05-07 1991-10-08 John Werner Fire vortex display
US20050258261A1 (en) * 2002-11-30 2005-11-24 Gast Karl H Method for operating heating systems, heating system for carrying out the method and use thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562927A (en) * 1978-11-04 1980-05-12 Matsushita Electric Works Ltd Method of making thermosetting resin in the solid form
EP0042891A1 (en) * 1980-06-30 1982-01-06 Kilmaurs Engineering Company Limited Waste oil burner
JPS5792617A (en) * 1980-12-01 1982-06-09 Kobe Steel Ltd Control method of slurry fuel combustion
JPS6026895U (en) * 1983-07-29 1985-02-23 株式会社 タカラ Water wetness display board
GB2155599B (en) * 1984-03-09 1988-10-12 Tsung-Hsien Kuo Improved refuse incineration system
CN113357650A (en) * 2021-03-03 2021-09-07 徐丹丹 Water environment is administered and is used silt cleaning device with self-cleaning function

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1441630A (en) * 1919-04-01 1923-01-09 William R Ray Oil burner
US1769197A (en) * 1924-10-23 1930-07-01 Anoilcoal Burner Co Method and apparatus for burning fuels
US2267451A (en) * 1938-10-06 1941-12-23 Goetaverken Ab Adjustable oil burner
US2721765A (en) * 1952-03-27 1955-10-25 Hobson Ltd H M Nozzles
US3129777A (en) * 1962-08-07 1964-04-21 Hughes Tool Co Replaceable nozzle having completely shrouded retainer
US3757706A (en) * 1970-04-20 1973-09-11 Heurtey Sa Method and apparatus for incinerating polluted liquids and mud

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1441630A (en) * 1919-04-01 1923-01-09 William R Ray Oil burner
US1769197A (en) * 1924-10-23 1930-07-01 Anoilcoal Burner Co Method and apparatus for burning fuels
US2267451A (en) * 1938-10-06 1941-12-23 Goetaverken Ab Adjustable oil burner
US2721765A (en) * 1952-03-27 1955-10-25 Hobson Ltd H M Nozzles
US3129777A (en) * 1962-08-07 1964-04-21 Hughes Tool Co Replaceable nozzle having completely shrouded retainer
US3757706A (en) * 1970-04-20 1973-09-11 Heurtey Sa Method and apparatus for incinerating polluted liquids and mud

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716843A (en) * 1986-11-03 1988-01-05 Aqua-Chem, Inc. Waste fuel combustion system
US4785748A (en) * 1987-08-24 1988-11-22 The Marquardt Company Method sudden expansion (SUE) incinerator for destroying hazardous materials & wastes
US4949655A (en) * 1989-02-17 1990-08-21 Greer Fred C Process for the utilization of powdered solid waste
US5055031A (en) * 1990-05-07 1991-10-08 John Werner Fire vortex display
WO1991017396A1 (en) * 1990-05-07 1991-11-14 Wet Design Fire vortex display
US20050258261A1 (en) * 2002-11-30 2005-11-24 Gast Karl H Method for operating heating systems, heating system for carrying out the method and use thereof

Also Published As

Publication number Publication date
AU6718874A (en) 1975-10-02
JPS5014165A (en) 1975-02-14
GB1433674A (en) 1976-04-28
GB1433673A (en) 1976-04-28
DE2418393A1 (en) 1974-10-31

Similar Documents

Publication Publication Date Title
US4133273A (en) System for the disposal of sludge, hazardous and other wastes
US3894833A (en) Waste grease-burning system and apparatus
US4159000A (en) Method for sootless combustion and furnace for said combustion
US6216610B1 (en) Process and device for incineration of particulate solids
JPS6023855B2 (en) Fluidized bed reactor
KR860000967B1 (en) Volume reduction of low-level radiation waste by incineration
US3991689A (en) Waste grease-burning system
US3738289A (en) Counter-flow sludge burner
US3875357A (en) Sewage disposal system
US3559596A (en) Method and apparatus for incinerating sludge
DE3101973C2 (en)
CZ279736B6 (en) Combustion process of solid combustible residues from chemical plants and apparatus for making same
US3766867A (en) Burning apparatus and method
US3628473A (en) Sewage mud sludge drying and incinerating installation
KR101940960B1 (en) Closed loop incineration system with dry/wet waste as the heat source
US3862821A (en) Apparatus for atomization and combustion of fluid industrial wastes having low and variable calorific value
JPH1114026A (en) Combustion method of waste in circulation type fluidization bed
CA2415239A1 (en) Method and apparatus for sodium recovery in a semi-chemical pulping operation
US6105515A (en) Portable cyclone burner
JPH10185115A (en) Powder combustion burner of industrial waste incinerator
US4716843A (en) Waste fuel combustion system
SU1135968A1 (en) Incinerator
JPH09310830A (en) Rotary kiln type drying combustion apparatus
US3853076A (en) Furnaces
RU2682253C1 (en) Aggregate for thermochemical treatment of carbon-containing raw material