US3893453A - Compressed data display system - Google Patents

Compressed data display system Download PDF

Info

Publication number
US3893453A
US3893453A US441684A US44168474A US3893453A US 3893453 A US3893453 A US 3893453A US 441684 A US441684 A US 441684A US 44168474 A US44168474 A US 44168474A US 3893453 A US3893453 A US 3893453A
Authority
US
United States
Prior art keywords
pen
recited
paper
electro
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US441684A
Inventor
Herbert E Goldberg
Robert L Cannon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Warner Lambert Co LLC
Original Assignee
American Optical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Optical Corp filed Critical American Optical Corp
Priority to US441684A priority Critical patent/US3893453A/en
Priority to IL46481A priority patent/IL46481A/en
Priority to CA218,702A priority patent/CA1047115A/en
Priority to DE19752503822 priority patent/DE2503822A1/en
Priority to FR7503838A priority patent/FR2260320B1/fr
Priority to SE7501435A priority patent/SE7501435L/xx
Priority to JP50016402A priority patent/JPS50114085A/ja
Priority to GB5802/75A priority patent/GB1499516A/en
Priority to NL7501596A priority patent/NL7501596A/en
Priority to US05/565,306 priority patent/US3951135A/en
Application granted granted Critical
Publication of US3893453A publication Critical patent/US3893453A/en
Priority to CA236,479A priority patent/CA1047116A/en
Assigned to WARNER LAMBERT COMPANY A CORP. OF DE reassignment WARNER LAMBERT COMPANY A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AMERICAN OPTICAL CORPORATION A CORP. OF DE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/333Recording apparatus specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7232Signal processing specially adapted for physiological signals or for diagnostic purposes involving compression of the physiological signal, e.g. to extend the signal recording period

Definitions

  • ABSTRACT Filed 111 A compressed data display system. There is disclosed 21 A-ppl. No.: 441,684
  • the EKG waveform is recorded on looped paper supported by and/or wrapped around rotatable drum or drums which may have cylindrical shape.
  • the EKG is recorded in helical or spiral fashion by simultaneously rotating the drum and transversely moving a galvanometer pen in the di- [56] References Cited rection of the axis of rotation of the drum or cylinder.
  • OPT/C3 101 I03 ,107 I l 1 1 l r' ECG 94 E a LY/WW1! mtvnwonertn no cI/nRrPaPt-R PATIENT RMPLIFIER 1 DR'VER Perv nun on t r 20,1155 c E TiLECTRO/VICS CARRAGE mum H 106 r l 126 GEHR TRAIN POWER 1 HEART RATE SUPPLY 3 Z svncn RONOUS 1.24 MOTOR /129 1 1:10
  • the present invention relates generally to the field of medical electronics. More specifically, the present invention relates to means for monitoring and displaying vital signs including EKG ofa patient in a line-over-line compressed-data manner which facilitates analysis.
  • EKG strips are taken by a physician by attaching leads or conductors to the body of a patient (generally three leads). Electrical signal activity generated by the patients heart is sensed by these conductors or sensors. These electrical signals are extended to EKG and amplifiers and eventually to galvanometer pens for scribing on the surface of a paper.
  • the paper is generally spool-wound chart paper and advanced in a continuous manner, the direction of advance of paper being the direction of a time axis. Deflections of the galvanometer pen are generally perpendicular or transverse to direction of motion of the paper. The resultant trace, if the EKG is taken for any appreciable length of time, is very long.
  • the present invention is a solution to the prior art problem of recording and displaying large quantities of vital sign data and particularly the EKG ofa patient. It provides an automatic line-over-line compression of data in a compact and easily usable form and thus facilitates analysis.
  • the present invention relates to recording of vital sign data on a paper or chart paper wrapped around a cylindrical drum or drums.
  • the galvanometer pen is translated in a direction transverse to direction of movement of the chart paper.
  • the chart paper direction is one time axis, and the direction of motion of the galvanometer pen is a second quantized time axis.
  • Continuous transverse motion of the galvanometer pen permits scribing a helix on the surface of the cylinders chart paper. Deflections due to the EKG signal are in directions also transverse to direction of chart paper motion.
  • the display system includes EKG sensing and amplifying means, a rotatably mounted cylinder, closed loop chart paper fitted to the cylinder, and a transversely movable galvanometer pen assembly for scribing on the paper in the manner described above.
  • Another feature of the present invention includes circuitry for providing a dithering mark at selected portions of the recorded data either upon manual command or automatically to indicate the average rate of heartbeat for a given portion of EKG data.
  • An advantage of the present invention is that it compresses vital sign data, from a long paper trace readout into a single sheet line-over-line vital sign picture thereby facilitating analysis. It is thus advantageous to patient and physician alike.
  • FIG. 1 depicts a block diagram of an illustrative embodiment of the present invention
  • FIG. 2 depicts certain detail of the block diagram of FIG. 1;
  • FIG. 3 depicts a perspective view of certain mechanical detail of the illustrative embodiment of the present invention
  • FIG. 4 depicts another perspective view of other certain mechanical aspects of the illustrative embodiment of the present invention.
  • FIG. 5 depicts the resultant chart paper compressed data display generated by the present invention.
  • EKG amplifier electronics 103 EKG amplifier electronics 103.
  • ECG amplifier electronics 103 EKG amplifier electronics
  • ECG amplifier electronics 103 output from ECG amplifier electronics 103 is extended on conductor to heart rate module 117.
  • ECG amplifier electronics 103 is extended on conductor to heart rate module 117.
  • ECG switch 105 output from heart rate module 117 is extended to selector switch 105 on conductor 137.
  • Output from selector switch 105 is provided on conductor 106 to galvanometer drive electronics I07.
  • Output from electronics 107 is extended on conductor 108 to galvanometer pen and carriage assembly 109. Scribing output from carriage assembly 109 is provided to chart paper on drum 111 via input (pen) 110. This is the basic sensing, amplifying, monitoring, and recording (and/or displaying) functional chain.
  • Synchronous motor 129 provides rotational mechanical output 128 to gear train which, in turn, provides rotational outputs I26 and 127 to assembly 109 and drum 111, respectively.
  • Synchronous motor I29 is supplied by AC line power 131 through speed control on conductor 130.
  • AC line power 131 likewise provides power inputs to power supply 119 on conductor I32, and to dither circuitry 134 on conductor 133.
  • Power supply 119 is a DC power supply, and supplies DC voltage to dither circuitry 134 over conductor I24,
  • heart rate module 117 over conductor 123 selector switch 105 over conductor 122, electronics 107 over conductor 121, amplifier electronics 103 over conductor 120, and speed control 150 over conductor 151.
  • a rotational position input 112 is provided from cylindrical drum 111 to electro-optics 113.
  • the output from electro-optics 113 is provided to selector switch 105 on conductor 114.
  • a manual input 116 in the form of a pushbutton switch (not shown) or other switch, is provided to selector switch 105.
  • Electro-optics assembly 113 located in general at the periphery of the cylinder, provides input 114 through selector switch 105.
  • selector switch 105 In FIG. 2, phantom line 105 represents the outline of selector switch 105 as shown in FIG. 1.
  • Input 114 is provided to reset circuitry 213, output thereof being extended on conductor 210 to digital counter 204.
  • the other input to counter 204 is provided on conductor 203 from clock 202.
  • Counter 204 provides an output on conductor 205 to ramp generator 206. Output from ramp generator 206 is extended on conductor 207 to one input of comparator 208.
  • comparator 208 The other input of comparator 208 is provided by heart rate module 117 on conductor 137. Output from comparator 208 is extended on conductor 209 as an input to mono-stable circuitry 214. Another input to mono-stable circuitry 214 is manual input 116. Output from mono-stable circuitry 214 is provided to solid state switch 212 on conductor 211. Other inputs to solid state switch 212 include inputs on conductors 135, and 104. Output from solid state switch 212 is extended on conductor 106 to galvanometer drive electronics 107 as indicated in FIG. 1.
  • FIG. 3 depicts cylinder or writing surface 200 with slit 201, the writing surface rotatably mounted about a substantially vertical axis 350.
  • Writing surface 200 can have cylindrical, conical, or other shape.
  • Writing surface 200 is intended to be adapted for magnetic drum recording as well as paper displays. This axis need not be vertical; however, for purposes of clarity of illustration it is herein thus depicted.
  • Axis 350 is shown rotatably mounted to base or chassis 400 in FIG. 4.
  • Galvanometer pen 300 is arranged to scribe on the surface of cylinder or drum 200.
  • chartpaper or paper 351 (partially indicated for purposes of clarity of illustration) wrapped around and fastened in slit 201. It is to be understood that paper 351 extends the entire substantial length of cylinder or drum 200 and essentially wraps around and covers the surface area of the drum.
  • Pen 300 scribes or writes on paper 351.
  • Lead screw 302 is shown substantially parallel to axis 350 and is likewise rotatably mounted to chassis 400.
  • Rod 303 is fixedly mounted parallel to lead screw 302. Sliding on rod 303 is slidably mounted carriage 304 which, in turn, supports galvanometer 301.
  • Galvanometer 301 receives an electrical signal input on conductor wires (not shown in FIGS. 3, 4) which signals are transduced into mechanical motion of pen 300.
  • Motor 305 (depicted in FIG. 1 as 129) provides rotational output to gear train 307 (depicted in FIG. 1 as 125).
  • the gear train provides rotational motion 250 to cylinder 200 about axis 350, and provides rotational motion to lead screw 302 about its longitudinal axis.
  • Carriage 304 is threadingly engaged with threads of lead screw 302.
  • rotational motion of lead screw 302 provides translational motion of carriage 304 in a direction substantially parallel to axis 350.
  • Gears of gear train 307 are designed to provide a plurality of rotations of drum 200 corresponding to a single motion in a translational manner from the top of drum 350 (an initial position) to the bottom 'of drum 350 (a final position).
  • gear train 307 need not have the specific arrangement depicted in FIG. 3.
  • chassis 304 When chassis 304 reaches final position, it makes physical contact and operates micro-switch 306.
  • the micro-switch is electrically connected between power 131 and motor 305, and operation of the microswitch disconnects power to the motor thereby stopping the rotational and translational motions of the system.
  • carriage disengagement means (not shown) for rapid return of the galvanometer to the initial position, not causing the drum to rotate.
  • electro-optics 113 was depicted as being functionally connected between the drum and the selector switch 105.
  • the electro-optics which is comprised of phototransistors and photodiodes, commercially available, are mounted as shown.
  • Electro-optic elements 113a and 113b are approximately displaced on the periphery of one end of drum 200. These electro-optical elements rotate with the rotating drum.
  • Mounted on base or chassis 400 is a fixed electro-optic sensor 1l3c. As the rotatable electro-optical elements 113a and 11311 in turn pass adjacent electro-optical element 113e, optical communication is achieved there between. The purposes of these optical elements will be discussed more fully below.
  • Slit 201 is shown in FIGS. 2,3, and 4. Chart paper having fixed length and having substantially parallel edges may be wrapped around drum 200. Edges of paper 351 are inserted into slit 201 and are fastened therein by rotatable clamping control 352.
  • EKG or other vital sign
  • the EKG signal of patient 101 is amplified in electronics 103, extended to selector switch 105, extended to galvanometer driver electronics 107 which drives galvanometer pen means 301 which in turn causes pen 300 to scribe on paper 351 supported on cylinder 200. While this signal is being applied to pen 300 and while scribing motion is taking place, cylinder or drum 200 rotates in direction 250. Simultaneously carriage 304 translated in a downward vertical direction. This combined rotational and translational motion creates a helical base line on paper 351. (It is intended herein that the words helix, spiral and coil" can be used interchangeably.) The result can be seen in FIG. 5.
  • paper 500 (which is shown partially as paper 351 in FIG. 3) is depicted as having usable display length 511 which corresponds tothe circumference of drum 200. Dotted lines 501 indicate where folds of the paper are made for insertion of these folds into slit 201 as described earlier. Paper 500 is shown in a broken diagrammatic fashion for purposes of clarity of illustration. A time scale of zero through sixty seconds is provided and break 504 in the paper takes place at approximately between 23 seconds and 53 seconds.
  • the scribing of pen 300 on paper 500 provides EKG wave forms 502. As intended to be depicted by lines 508, 509, 512, and 513, the entire surface of the page can be scribed with EKG signals. As noted earlier, the base line scribed on the surface of paper 500 when mounted on drum 200 would be a helix or spiral. When the paper is removed from slit 201 and opened flat, straight lines with a slightly downward slope are observed. Thus, data line 2 identified by numeral 2 at the left-hand edge of the useable display paper. corresponds in time to the end of data line 1 identified as 2' at the right-hand data edge of the paper.
  • lines of EKG data are identified by numerals 1,2,3, and 4 .n, and the end of each line corresponds in time to the beginning of the next successive line.
  • the point marked 2 corresponds in time to the end of line 1 and the beginning of line 2.
  • the designation "n indicates that there are an extensive plurality of data lines obtained and limited only by size of paper and drum.
  • the preferred embodiments are designed to provide 60 seconds of data per line with 30 lines per sheet thereby displaying a half hour of electrical heart activity and to provide four minutes per line with 30 lines per sheet thus providing a two hour dis-
  • Reference numeral 510 depicts a selectable period of time during which heart rate is averaged in heart rate module 117 comprised of standard circuitry. Module 117 is triggered by each EKG wave to provide a constant width and constant amplitude pulse output in response thereto. This pulse train is then averaged on capacitor circuitry or other means to provide a DC level corresponding to average heart rate.
  • heart rate module 117 provides this DC voltage to comparator 208.
  • Digital counter 204 is reset by a signal coming from optics 113 when pen 300 is positioned at slit 201 as will be fully explained below. This is the zero or reset setting for the scribing motion.
  • Digital counter 204 is stepped by clock generator 202 once each second.
  • Clock generator 202 is synced to 60 hertz power 131.
  • ramp generator 206 is energized.
  • Counter 204 is constructed from standard digital circuitry and may be a ring counter.
  • Ramp generator 206 is likewise constructed from standard circuitry for charging a capacitor in a linear fashion.
  • ramp generator 206 is energized after about 56 seconds and this energization takes place at line 520 on FIG. 5.
  • Comparator 208 compares the two inputs and at coincidence between ramp generator voltage and DC voltage on conductor 137, the comparator output is extended on conductor 209 to monostable 214. Comparator 208 is likewise standard operational amplifier circuitry. Omission of detailed discussion of the circuit elements in these standard circuits does not inhibit full understanding of the present invention.
  • dither generator 134 is powered by AC line power 131 and is a conduit for 60 hertz power at a substantially reduced power value.
  • This 60 cycle/second signal is provided on conductor 135 in FIG. 2, to solid state switch 212.
  • Operation of monostable 214 causes connection of the dithering signal on conductor 135 to output conductor 106.
  • Solid state switch 212 is comprised of standard transistor switching circuitry and omission of detailed description does not detract from complete understanding of the present invention.
  • the average DC voltage generated byv heart rate module 117 corresponds to rate scale 506 inv FIG. 5 and thus, dithering mark 505 is indicated to be approximately 60 beats per minute.
  • solid state switch 212 After a predetermined period of time determined by time constants of monostable 214, solid state switch 212 returns to its prior connection of conductors 104 and 106, thereby reconnecting the EKG signal to pen 300.
  • Mark 505 indicates average heartbeat rate for time period 510 of line 1. Accordingly, a dithering rate mark is provided in the other lines of data. This is very useful information since it provides at a glance a histogram effect of heartbeat rate change of the patient over a long period of time.
  • Numeral 503a and 503b refer to ectopic beats, which are clearly visible in this display.
  • Another module which detects ventricular premature beats (a form of ectopic beats) can be connected between conductor 1 15 and selector switch 105 in a manner similar to connection of module 117.
  • a premature ventricular contraction detector is disclosed in US. Pat. No. 3,616,790 entitled MULTIFORM VENTRICULAR PREMATURE BEAT DETECTOR issued on Nov. 2, 1971 in the name of G. J. Harris and assigned to Americal Optical Corporation, the Assignee of the present invention. Background information disclosed in this patent is incorporated herein by reference.
  • circuitry disclosed in this patent can be used with other circuitry to provide a DC voltage corresponding to the number of PVC's per data line.
  • a separate histogram can be displayed at a different location on the paper having a different scale for indicating the number of occurrences of premature ventricular beats.
  • direction 522 represents direction of translational motion of carriage 304.
  • Numerical designation 507 represents cross hatching which may be spread throughout the page in a uniform manner as depicted. It is illustrated only in a portion of sheet 500 for the purpose of clarity of illustration.
  • FIG. 1 and FIG. 2 indicate manual input 116 to selector switch 105 and more specifically to monostable circuitry 214.
  • This utilizes a push-button or other manual switch arrangement whereby the physician or operator of the system can mark at will on sheet 500, a dither signal such as mark 521.
  • output 211 from monostable 214 causes solid state switch to make a connection between conductors and 106.
  • Dither generator 134 provides a 60 cycle dithering signal to conductor 106 and thus to pen 300 which scribes in a dithering or vibrating manner on chart paper 500.
  • Dither mark 521 is displayed at this point in FIG. 5 for a special reason. It marks the occurrence of a significant event such as patient complaints of discomfort, or infusion of a drug. or the beginning of exercise testing, etc.
  • a feature of the present invention is a speed-up switch as shown in FIG. 1.
  • This speed-up push-button switch which is designated on the chassis of the preferred embodiments as reset.” increases the speed of the synchronous motor 129 thereby operating gear train 125 more rapidly.
  • the galvanometer pen is translated to position 3' in a time which is equal to or less than the time between the last heartbeat and the next heartbeat.
  • the speed control 150 is returned to its standard speed arrangement.
  • Speed control 150 is a device which changes current flow to motor 129 (305).
  • the same display method can be utilized with other tests such as drug testing. If the patient is given certain drugs for medical reasons, the speed control can be operated to reset" the display, where the heartbeats begin from the left-hand side of the paper as described above.
  • Manual means 116 may also be operated to create designation 521 indicating the beginning of the increased heart rate.
  • Optical pick-ups 1130, 113b, and l 130 are utilized in the operation of speed control 150 as well as in other features of the present invention.
  • Speed control 150 is made to return to its original state when optical pickup ll3b is in optical communication with pick-up l 130.
  • galvanometer pen 300 is positioned at slit 201.
  • a signal from optical pick-up 1130 causes the switch in speed control 150 to return to its original state.
  • the optical pick-ups function in at least two modes.
  • the first mode was described above.
  • speed control 150 is operated and causes drum 200 to move rapidly until optical pick-up 1 13b is aligned with optical pick-up 113e, (thus causing pen 300 to line up with slit 201).
  • speed control 150 again increases speed of motor 129, thereby increasing speeds of rotation and translation of the system components.
  • optical pick-up 1130 is in optical communication with 113e, all motion of the system is stopped.
  • Control 150 disconnects motor I29 from AC power line 131.
  • This load button is depressed when it is desired to have the slit position to the front of the apparatus for easy access regarding loading and unloading of the paper. Depressing the run" button reconnects power to the motor.
  • the invention may be embodied in yet other specific forms without departing from the spirit or essential characteristics thereof.
  • Leads 102 generally are three in number, and each of these leads may be thus monitored.
  • lines 1, 2, and 3 in FIG. 5 could be made to represent the outputs from three leads 102 from patient
  • pitch or relative speed of lead screw 302 must be altered to accommodate this feature. in order for this to work properly, the end of line I would have to correspond to the beginning of line 4, being sufficiently displaced downward so as to not create interference with other lines corresponding to the other two leads.
  • other sensors may be used to sense other vital signs (eg: blood pressure) simultaneously with EKG.
  • An assembly cartridge including drum and paper could be used where one cylinder with paper is removed and another cylinder with paper is installed (where the paper is not a single sheet but is an endless loop or belt of paper).
  • a paper loop of the endless belt variety (not shown), can be used which has a circumference in excess of the circumference of drum 200.
  • the system works well if the scribing point of contact between pen 300 and the surface of the paper 351 on drum 200 remains smooth. Accordingly, even more data can be recorded and displayed.
  • another cylinder (not shown) can be installed at a remote distance, to provide pulley support means for this extended circumference endless paper loop.
  • a particularly advantageous utility of the present invention is in connection with the transcription of EKG cassette tape recorders.
  • portable tape recorders exist which record a patients EKG for long periods of time, 24 hours or more. Playback of 24 hours of EKG data at real time would take thus 24 hours.
  • both the tape recorder and the present inventions speed control can be increased by a factor of 20 or more (with respect to real time).
  • speed control can be increased by a factor of 20 or more (with respect to real time).
  • all of this data can be recorded on a large single sheet of paper in an hour or less.
  • a system for displaying vital signs of a patient comprising: means for sensing said vital signs and for providing analogous electrical signals, means for amplifying said electrical signals, a chassis, means axially-rotatably mounted to said chassis for providing a writing surface, looped paper fitted to and supported by said writing surface means, means supported by said chassis for rotating said writing surface means thereby advancing and recycling said paper, galvanometer pen means for scribing on said paper in scribing directions transverse to the direction of motion of said paper, means connected to said chassis for supporting said pen means and for translationally moving said pen means in one of said scribing directions from an initial position towards a final position, and means for extending said signals to said galvanometer pen means.
  • said writing surface means comprises a cylinder having axially directed slit means in the surface of said cylinder and extending the entire length of said cylinder for receiving two substantially parallel edges of said paper and for clamping said edges to create a smooth overlapping of said paper around said cylinder.
  • a system as recited in claim 4 further comprising two electro-optical devices employed in the control of the operation of at least said rotating means and mounted on the periphery of said cylinder, said two devices being relatively angularly displaced by approximately 90, one of two electro-optical devices being mounted adjacent said slit, and a third electro-optical device mounted on said chassis adjacent said periphery and in substantial alignment with the scribing point between said paper and said pen means and arranged to be in optical communication with each of said two electro-optical devices as each of said two electro-optical devices rotates adjacent said third electro-optical device.
  • a system as recited in claim 5 including means responsive to the optical communication between said third electro-optical device and said other of said two electro-optical devices for controlling speed of said rotating means when said other of said two electrooptical devices is adjacent said third electrooptical device.
  • a system as recited in claim 5 including means responsive to the optical communication between said third electro-optical device and said one of said two electro-optical devices for inhibiting operation of said rotating means and said translationally moving means when said one of said two electro-optical devices is adjacent said third electro-optical device.
  • said cylinder means further comprises two switching devices mounted on the periphery of said cylinder, said two devices being relatively angularly displaced by approximately 90", one of said two switching devices being mounted adjacent said slit, and a third switching device mounted on said chassis adjacent said periphery and in substantial alignment with the scribing point between said paper and said pen means and arranged to be in communication with each of said two switching devices as each of said two switching devices rotates adjacent said third switching device.
  • rotating means comprises an electrical motor and gear train means for connecting the rotational output of said motor to said rotatably mounted cylinder means.
  • said supporting and translationally moving means comprises a rod fixedly supported by said chassis and disposed substantially parallel to the longitudinal axis of said cylinder means, carriage means slidably mounted to said rod for holding said galvanometer pen means, a lead screw rotatably mounted parallel to said rod and engaged with said carriage, and said motor and gear train means including additional means for connecting said rotational output of said motor to said lead screw whereby rotational motion of said lead screw causes translational motion of said carriage.
  • a system as recited in claim 10 comprising a microswitch fixedly attached to said chassis near one end of said rod and arranged to be operated by contact with said carriage means in said final position, and means responsive to operation of said microswitch for disabling said rotating means and said translationally moving means.
  • a system as recited in claim l0 comprising a switch fixedly attached to said chassis near one end of said rod and arranged to be operated by contact with said carriage means in said final position, and means responsive to operation of said switch for disabling said rotating means and said translationally moving means.
  • said sensing means comprises a plurality of patientconnected sensors
  • said galvanometer pen means comprises a plurality of galvanometers, each of said plurality of galvanometers corresponding respectively to one of said plurality of sensors, each of said plurality of galvanometers having a respective pen, and means for extending each of said plurality of sensors to a respective one of said galvanometers.
  • a system as recited in claim 1 further comprising means for generating pen means dithering signals, and manually operated means for momentarily disabling said extending means and for conducting said dithering signals to said pen means, whereby a dither mark is scribed on said paper at will.
  • rotating means includes means to provide a plurality of rotations of said cylinder means to correspond to the translational motion distance of said pen means in moving from said initial position to said final position.
  • a system for displaying vital signs of a patient comprising means for sensing said vital signs and for providing analogous electrical signals, supporting means, a looped markable surface supported by said supporting means, means for advancing and recycling said surface about a first axis, and marking means responsive to said signals for coating said surface with representations of said signals in a helical path about said axis.
  • a system for displaying vital signs of a patient comprising: means for sensing said vital signs and for providing analogous electrical signals, means for amplifying said electrical signals, a chassis, means axially-rotatably mounted to said chassis for providing a writing surface, looped paper fitted to and supported by said writing surface means, means supported by said chassis for rotating said writing surface means thereby advancing and re-cycling said paper, means for establishing a recording rotational speed range, means for controlling said rotating means to operate within said recording rotational speed range, galvanometer pen means for scribing on said paper in scribing directions transverse to the direction of motion of said paper, means for extending said signals to said galvanometer pen means, means connected to said chassis for supporting said pen means and for translationally moving said pen means in one of said scribing directions from an initial position towards a final position, means for establishing a recording translational speed range as a function of said recording rotational speed range to permit said pen means to scribe said looped paper with representations of said
  • said writing surface means comprises a cylinder having axially directed slit means in the surface of said cylinder and extending the entire length of said cylinder for receiving two substantially parallel edges of said paper and for clamping said edges to create a smooth overlapping of said paper around said cylinder.
  • a system as recited in claim 17 further including manually-activated speed-control means for causing said rotating means and said translationally moving means to operate outside of said recording rotational speed range and said recording translational speed range respectively.
  • said speed control means further comprises two electrooptical devices employed in the control of the operation of at least said rotating means and mounted on the periphery of said cylinder, said two devices being relatively angularly displaced by approximately 90, one of said two eIectro-optical devices being mounted adjacent said slit, a third electro-optical device mounted on said chassis adjcent said periphery and in substantial alignment with the scribing point between said paper and said pen means, and means for controlling optical communication between each of said two electrooptical devices as each of said two electro-optical devices rotates adjacent said third electro-optical device.
  • a system as recited in claim 21 including means responsive to the optical communication between said third electro-optical device and said other of said two electro-optical devices for returning speed of said rotating means within said recording rotational speed range when said other of said two electro-optical devices is adjacent said third electro-optical device.
  • a system as recited in claim 21 including means responsive to the optical communication between said third electro-optical device and said one of said two electro-optical devices for inhibiting operation of said rotating means and sand translationally moving means when said one of said two electro-optical devices is adjacent said third electro-optical device.
  • a system is recited in claim 20 and wherein said speed control means further comprises two switching devices mounted on the periphery of said cylinder, said two devices being relatively angularly displaced by approximately 90, one of said two switching devices being mounted adjacent said slit, and a third switching device mounted on said chassis adjacent said periphery and in substantial alignment with the scribing point between said paper and said pen means and arranged to be in communication with each of said two switching devices as each of said two switching devices rotates adjacent said third switching device.
  • a system as recited in claim 26 further including manually-activated speed-control means for causing said rotating means and said translationally moving means to operate outside of said recording rotational speed range and said recording translational speed range respectively.
  • a system as recited in claim 29 further comprising means for generating pen means dithering signals, and manually operated means for momentarily disabling said extending means and for conducting said dithering signals to said pen means, whereby a dither mark is scribed on said paper at will.
  • a system as recited in claim 17 and wherein said rotating means comprises an electrical motor and gear train means for connecting the rotational output of said motor to said rotatably mounted cylinder means.
  • said supporting and translationally moving means comprises a rod fixedly supported by said chassis and disposed substantially parallel to the longitudinal axis of said cylinder means, carriage means slidably mounted to said rod for holding said galvanometer pen means, a lead screw rotatably mounted parallel to said rod and engaged with said carriage, and said motor and gear train means including additional means for connecting said rotational output of said motor to said lead screw whereby rotational motion of said lead screw causes translational motion of said carriage.
  • a system as recited in claim 34 comprising a microswitch fixedly attached to said chassis near one end of said rod and arranged to be operated by contact with said carriage means in said final position, and means responsive to operation of said microswitch for disabling said rotating means and said translationally moving means.
  • a system as recited in claim 34 comprising a switch fixedly attached to said chassis near one end of said rod and arranged to be operated by contact with said carriage means in said final position, and means responsive to operation of said switch for disabling said rotating means and said translationally moving means.
  • said sensing means comprises a plurality of patientconnected sensors.
  • said galvanometer pen means comprises a plurality of galvanometers, each of said plurality of galvanometers corresponding respectively to one of said plurality of sensors, each of said plurality of galvanometers having a respective pen, and means for extending each of said plurality of sensors to a respective one of said galvanometers.
  • a system as recited in claim 17 further comprising means for generating pen means dithering signals, and manually operated means for monentarily disabling said extending means and for conducting said dithering signals to said pen means, whereby a dither mark is scribed on said paper at will.
  • rotating means includes means to provide a plurality of rotations of said writing surface means to correspond to the translational motion distance of said pen means in moving from said initial position to said final position.

Abstract

A compressed data display system. There is disclosed a system for recording over extended periods of time EKG and other vital signs of a patient and for automatically displaying the waveforms in a compressed and readily interpretable manner. The EKG waveform is recorded on looped paper supported by and/or wrapped around rotatable drum or drums which may have cylindrical shape. The EKG is recorded in helical or spiral fashion by simultaneously rotating the drum and transversely moving a galvanometer pen in the direction of the axis of rotation of the drum or cylinder. After the paper is removed, if it is a continuous or closed loop, it can be slit and opened into a single sheet. The recorded EKG waveforms are thus displayed compressed in a line-over-line manner and provide the physician with a clear picture of the patient''s heart activity for extended periods of time.

Description

United States Patent Goldberg et al. 1 July 8, 1975 [54] COMPRESSED DATA DISPLAY SYSTEM 3,681,774 8/1972 Harris et al. 128/206 0 Inventors: Herbert E. Goldberg, Concord;
Robe],t L Cannon, watham' both Pr1mary Exammerwllliam E. Kamm of Mass Attorney, Agent, or Farm-Joel Wall; W1ll1ar1 C.
Nealon; H. R. Berkenstock, Jr.
[73] Assignee: American Optical Corporation,
Southhridge, Mass. [57] ABSTRACT Filed: 111 A compressed data display system. There is disclosed 21 A-ppl. No.: 441,684
128/206 B, 2.06 F, 2.06 G, 2.06 R, 2.06 V; 346/33 ME, 63, 68, 79, 101, 103, 112, 138
a system for recording over extended periods of time EKG and other vital signs of a patient and for automatically displaying the waveforms in a compressed and readily interpretable manner. The EKG waveform is recorded on looped paper supported by and/or wrapped around rotatable drum or drums which may have cylindrical shape. The EKG is recorded in helical or spiral fashion by simultaneously rotating the drum and transversely moving a galvanometer pen in the di- [56] References Cited rection of the axis of rotation of the drum or cylinder. UNITED STATES PATENTS After the paper is removed, if it is a continuous or 2,235,894 3/1941 Lee 128 205 R closed loop, it can be Slit and Opened into a single 2,539,009 1/1951 Chaney etal... 346/138 sheet. The recorded EKG waveforms are thus dis- 2,635,195 4/1953 Hancock 128/206 G played compressed in a line-over-line manner and pro- ,7 9/1955 Apstein 128/206 G vide the physician with a clear picture of the patients 2,741,530 4/1956 H11| i 346/138 heart activity f extended periods f mg 3,302,639 2/1967 Koffler..... l28/2.06 G 3,478,364 11/1969 Frank 128/206 B 40 Claims, 5 Drawing Figures MANUAL 114 Elk-CTR, n2
OPT/C3 101 I03 ,107 I l 1 1 l r' ECG 94 E a LY/WW1!" mtvnwonertn no cI/nRrPaPt-R PATIENT RMPLIFIER 1 DR'VER Perv nun on t r 20,1155 c E TiLECTRO/VICS CARRAGE mum H 106 r l 126 GEHR TRAIN POWER 1 HEART RATE SUPPLY 3 Z svncn RONOUS 1.24 MOTOR /129 1 1:10
Ac DITHER LINE 1 POWER J 113 1 COMPRESSED DATA DISPLAY SYSTEM BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to the field of medical electronics. More specifically, the present invention relates to means for monitoring and displaying vital signs including EKG ofa patient in a line-over-line compressed-data manner which facilitates analysis.
2. Description of Prior Art:
Over the years, various medical-electronic systems have been developed which aid physicians in diagnosing and providing therapy to patients. Particularly, in the area of cardiology and heart disease, there have been significant advances. For example, heart pacers and EKG monitoring equipment are but two of the types of equipment that have proved to be valuable to physician and patient alike. These devices are now tending to become somewhat familiar to laymen as well.
As is well known in the medical field, EKG strips are taken by a physician by attaching leads or conductors to the body of a patient (generally three leads). Electrical signal activity generated by the patients heart is sensed by these conductors or sensors. These electrical signals are extended to EKG and amplifiers and eventually to galvanometer pens for scribing on the surface of a paper. The paper is generally spool-wound chart paper and advanced in a continuous manner, the direction of advance of paper being the direction of a time axis. Deflections of the galvanometer pen are generally perpendicular or transverse to direction of motion of the paper. The resultant trace, if the EKG is taken for any appreciable length of time, is very long. Anyone with experience in this field knows that the accumulated chart paper is unwieldly and cumbersome. It is thus difficult to accurately compare a patients heart activity over periods of an hour or more when the EKG is left running continuously. Simply, too much paper exists for facile manual control and analysis. This is a severe problem of the prior art.
The present invention is a solution to the prior art problem of recording and displaying large quantities of vital sign data and particularly the EKG ofa patient. It provides an automatic line-over-line compression of data in a compact and easily usable form and thus facilitates analysis.
SUMMARY OF THE INVENTION The present invention relates to recording of vital sign data on a paper or chart paper wrapped around a cylindrical drum or drums. The galvanometer pen is translated in a direction transverse to direction of movement of the chart paper. The chart paper direction is one time axis, and the direction of motion of the galvanometer pen is a second quantized time axis. Continuous transverse motion of the galvanometer pen permits scribing a helix on the surface of the cylinders chart paper. Deflections due to the EKG signal are in directions also transverse to direction of chart paper motion. The display system includes EKG sensing and amplifying means, a rotatably mounted cylinder, closed loop chart paper fitted to the cylinder, and a transversely movable galvanometer pen assembly for scribing on the paper in the manner described above. Another feature of the present invention includes circuitry for providing a dithering mark at selected portions of the recorded data either upon manual command or automatically to indicate the average rate of heartbeat for a given portion of EKG data.
An advantage of the present invention is that it compresses vital sign data, from a long paper trace readout into a single sheet line-over-line vital sign picture thereby facilitating analysis. It is thus advantageous to patient and physician alike.
It is thus an object of the present invention to provide an improved system for displaying vital signs of a patient.
It is another object of the present invention to provide an improved EKG monitor and display device.
It is a further object of the present invention to provide an improved EKG display system that has means for indicating average heartbeat rate for a selectable period of time and has means for marking occurrences of other events on a chart paper trace.
Other objects and advantages of the present invention will become apparent to one having reasonable skill in the art after referring to the detailed description of the appended drawings in which:
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 depicts a block diagram of an illustrative embodiment of the present invention;
FIG. 2 depicts certain detail of the block diagram of FIG. 1;
FIG. 3 depicts a perspective view of certain mechanical detail of the illustrative embodiment of the present invention;
FIG. 4 depicts another perspective view of other certain mechanical aspects of the illustrative embodiment of the present invention; and
FIG. 5 depicts the resultant chart paper compressed data display generated by the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, patient 101 is connected by EKG leads 102 to EKG (ECG) amplifier electronics 103. (Herein, a conductor or lead is intended to imply conductors or leads if appropriate.) Output from amplifier electronics 103 is extended on conductor 104 to selector switch 105. Likewise, output from ECG amplifier electronics 103 is extended on conductor to heart rate module 117. Output from heart rate module 117 is extended to selector switch 105 on conductor 137. Output from selector switch 105 is provided on conductor 106 to galvanometer drive electronics I07. Output from electronics 107 is extended on conductor 108 to galvanometer pen and carriage assembly 109. Scribing output from carriage assembly 109 is provided to chart paper on drum 111 via input (pen) 110. This is the basic sensing, amplifying, monitoring, and recording (and/or displaying) functional chain.
Synchronous motor 129 provides rotational mechanical output 128 to gear train which, in turn, provides rotational outputs I26 and 127 to assembly 109 and drum 111, respectively. Synchronous motor I29 is supplied by AC line power 131 through speed control on conductor 130. AC line power 131 likewise provides power inputs to power supply 119 on conductor I32, and to dither circuitry 134 on conductor 133. Power supply 119 is a DC power supply, and supplies DC voltage to dither circuitry 134 over conductor I24,
heart rate module 117 over conductor 123, selector switch 105 over conductor 122, electronics 107 over conductor 121, amplifier electronics 103 over conductor 120, and speed control 150 over conductor 151.
A rotational position input 112 is provided from cylindrical drum 111 to electro-optics 113. The output from electro-optics 113 is provided to selector switch 105 on conductor 114. A manual input 116, in the form of a pushbutton switch (not shown) or other switch, is provided to selector switch 105.
Referring now to FIG. 2, cylindrical drum 200, which rotates in direction 250, shows axially directed slit 201 at its surface. Electro-optics assembly 113, located in general at the periphery of the cylinder, provides input 114 through selector switch 105. (In FIG. 2, phantom line 105 represents the outline of selector switch 105 as shown in FIG. 1.) Input 114 is provided to reset circuitry 213, output thereof being extended on conductor 210 to digital counter 204. The other input to counter 204 is provided on conductor 203 from clock 202. Counter 204 provides an output on conductor 205 to ramp generator 206. Output from ramp generator 206 is extended on conductor 207 to one input of comparator 208. The other input of comparator 208 is provided by heart rate module 117 on conductor 137. Output from comparator 208 is extended on conductor 209 as an input to mono-stable circuitry 214. Another input to mono-stable circuitry 214 is manual input 116. Output from mono-stable circuitry 214 is provided to solid state switch 212 on conductor 211. Other inputs to solid state switch 212 include inputs on conductors 135, and 104. Output from solid state switch 212 is extended on conductor 106 to galvanometer drive electronics 107 as indicated in FIG. 1.
Next, proceeding with description of FIGS. 3 and 4 prior to describing operation of the preferred embodiment, FIG. 3 depicts cylinder or writing surface 200 with slit 201, the writing surface rotatably mounted about a substantially vertical axis 350. Writing surface 200 can have cylindrical, conical, or other shape. Writing surface 200 is intended to be adapted for magnetic drum recording as well as paper displays. This axis need not be vertical; however, for purposes of clarity of illustration it is herein thus depicted. Axis 350 is shown rotatably mounted to base or chassis 400 in FIG. 4. Galvanometer pen 300 is arranged to scribe on the surface of cylinder or drum 200. there being chartpaper or paper 351 (partially indicated for purposes of clarity of illustration) wrapped around and fastened in slit 201. It is to be understood that paper 351 extends the entire substantial length of cylinder or drum 200 and essentially wraps around and covers the surface area of the drum. Pen 300 scribes or writes on paper 351.
Lead screw 302 is shown substantially parallel to axis 350 and is likewise rotatably mounted to chassis 400. Rod 303 is fixedly mounted parallel to lead screw 302. Sliding on rod 303 is slidably mounted carriage 304 which, in turn, supports galvanometer 301. Galvanometer 301 receives an electrical signal input on conductor wires (not shown in FIGS. 3, 4) which signals are transduced into mechanical motion of pen 300. Motor 305 (depicted in FIG. 1 as 129) provides rotational output to gear train 307 (depicted in FIG. 1 as 125). The gear train provides rotational motion 250 to cylinder 200 about axis 350, and provides rotational motion to lead screw 302 about its longitudinal axis. Carriage 304 is threadingly engaged with threads of lead screw 302. Thus, rotational motion of lead screw 302 provides translational motion of carriage 304 in a direction substantially parallel to axis 350. Gears of gear train 307 are designed to provide a plurality of rotations of drum 200 corresponding to a single motion in a translational manner from the top of drum 350 (an initial position) to the bottom 'of drum 350 (a final position). Thus, gear train 307 need not have the specific arrangement depicted in FIG. 3. When chassis 304 reaches final position, it makes physical contact and operates micro-switch 306. The micro-switch is electrically connected between power 131 and motor 305, and operation of the microswitch disconnects power to the motor thereby stopping the rotational and translational motions of the system. There is provided carriage disengagement means (not shown) for rapid return of the galvanometer to the initial position, not causing the drum to rotate.
In FIG. 1, electro-optics 113 was depicted as being functionally connected between the drum and the selector switch 105. In FIGS. 3 and 4, the electro-optics, which is comprised of phototransistors and photodiodes, commercially available, are mounted as shown. Electro-optic elements 113a and 113b are approximately displaced on the periphery of one end of drum 200. These electro-optical elements rotate with the rotating drum. Mounted on base or chassis 400 is a fixed electro-optic sensor 1l3c. As the rotatable electro-optical elements 113a and 11311 in turn pass adjacent electro-optical element 113e, optical communication is achieved there between. The purposes of these optical elements will be discussed more fully below.
Slit 201 is shown in FIGS. 2,3, and 4. Chart paper having fixed length and having substantially parallel edges may be wrapped around drum 200. Edges of paper 351 are inserted into slit 201 and are fastened therein by rotatable clamping control 352.
In operation, the preferred embodiment as described in FIGS. 1-4, and the obtained display of FIG. 5 to be described, provides a compressed EKG (or other vital sign) data display. The EKG signal of patient 101 is amplified in electronics 103, extended to selector switch 105, extended to galvanometer driver electronics 107 which drives galvanometer pen means 301 which in turn causes pen 300 to scribe on paper 351 supported on cylinder 200. While this signal is being applied to pen 300 and while scribing motion is taking place, cylinder or drum 200 rotates in direction 250. Simultaneously carriage 304 translated in a downward vertical direction. This combined rotational and translational motion creates a helical base line on paper 351. (It is intended herein that the words helix, spiral and coil" can be used interchangeably.) The result can be seen in FIG. 5.
In FIG. 5, paper 500 (which is shown partially as paper 351 in FIG. 3) is depicted as having usable display length 511 which corresponds tothe circumference of drum 200. Dotted lines 501 indicate where folds of the paper are made for insertion of these folds into slit 201 as described earlier. Paper 500 is shown in a broken diagrammatic fashion for purposes of clarity of illustration. A time scale of zero through sixty seconds is provided and break 504 in the paper takes place at approximately between 23 seconds and 53 seconds.
The scribing of pen 300 on paper 500 provides EKG wave forms 502. As intended to be depicted by lines 508, 509, 512, and 513, the entire surface of the page can be scribed with EKG signals. As noted earlier, the base line scribed on the surface of paper 500 when mounted on drum 200 would be a helix or spiral. When the paper is removed from slit 201 and opened flat, straight lines with a slightly downward slope are observed. Thus, data line 2 identified by numeral 2 at the left-hand edge of the useable display paper. corresponds in time to the end of data line 1 identified as 2' at the right-hand data edge of the paper.
In other words, lines of EKG data are identified by numerals 1,2,3, and 4 .n, and the end of each line corresponds in time to the beginning of the next successive line. Thus, the point marked 2 corresponds in time to the end of line 1 and the beginning of line 2. The designation "n indicates that there are an extensive plurality of data lines obtained and limited only by size of paper and drum. The preferred embodiments are designed to provide 60 seconds of data per line with 30 lines per sheet thereby displaying a half hour of electrical heart activity and to provide four minutes per line with 30 lines per sheet thus providing a two hour dis- Reference numeral 510 depicts a selectable period of time during which heart rate is averaged in heart rate module 117 comprised of standard circuitry. Module 117 is triggered by each EKG wave to provide a constant width and constant amplitude pulse output in response thereto. This pulse train is then averaged on capacitor circuitry or other means to provide a DC level corresponding to average heart rate.
Turning to FIG. 2, heart rate module 117 provides this DC voltage to comparator 208. Digital counter 204 is reset by a signal coming from optics 113 when pen 300 is positioned at slit 201 as will be fully explained below. This is the zero or reset setting for the scribing motion. Digital counter 204 is stepped by clock generator 202 once each second. Clock generator 202 is synced to 60 hertz power 131. At a predetermined count, which according to FIG. 5 is equal to about 56 counts (or 56 seconds), ramp generator 206 is energized. Counter 204 is constructed from standard digital circuitry and may be a ring counter. Ramp generator 206 is likewise constructed from standard circuitry for charging a capacitor in a linear fashion. Thus, ramp generator 206 is energized after about 56 seconds and this energization takes place at line 520 on FIG. 5. Comparator 208 compares the two inputs and at coincidence between ramp generator voltage and DC voltage on conductor 137, the comparator output is extended on conductor 209 to monostable 214. Comparator 208 is likewise standard operational amplifier circuitry. Omission of detailed discussion of the circuit elements in these standard circuits does not inhibit full understanding of the present invention.
In FIG. 1, dither generator 134 is powered by AC line power 131 and is a conduit for 60 hertz power at a substantially reduced power value. This 60 cycle/second signal is provided on conductor 135 in FIG. 2, to solid state switch 212. Operation of monostable 214 causes connection of the dithering signal on conductor 135 to output conductor 106. Solid state switch 212 is comprised of standard transistor switching circuitry and omission of detailed description does not detract from complete understanding of the present invention. The average DC voltage generated byv heart rate module 117 corresponds to rate scale 506 inv FIG. 5 and thus, dithering mark 505 is indicated to be approximately 60 beats per minute. After a predetermined period of time determined by time constants of monostable 214, solid state switch 212 returns to its prior connection of conductors 104 and 106, thereby reconnecting the EKG signal to pen 300. Mark 505 indicates average heartbeat rate for time period 510 of line 1. Accordingly, a dithering rate mark is provided in the other lines of data. This is very useful information since it provides at a glance a histogram effect of heartbeat rate change of the patient over a long period of time.
Numeral 503a and 503b refer to ectopic beats, which are clearly visible in this display. Another module which detects ventricular premature beats (a form of ectopic beats) can be connected between conductor 1 15 and selector switch 105 in a manner similar to connection of module 117. A premature ventricular contraction detector is disclosed in US. Pat. No. 3,616,790 entitled MULTIFORM VENTRICULAR PREMATURE BEAT DETECTOR issued on Nov. 2, 1971 in the name of G. J. Harris and assigned to Americal Optical Corporation, the Assignee of the present invention. Background information disclosed in this patent is incorporated herein by reference. Portions of circuitry disclosed in this patent can be used with other circuitry to provide a DC voltage corresponding to the number of PVC's per data line. Similarly to the histogram display of averageheartbeat rate for a patient on a line by line basis, a separate histogram can be displayed at a different location on the paper having a different scale for indicating the number of occurrences of premature ventricular beats.
In FIG. 5, direction 522 represents direction of translational motion of carriage 304. Numerical designation 507 represents cross hatching which may be spread throughout the page in a uniform manner as depicted. It is illustrated only in a portion of sheet 500 for the purpose of clarity of illustration.
FIG. 1 and FIG. 2 indicate manual input 116 to selector switch 105 and more specifically to monostable circuitry 214. This utilizes a push-button or other manual switch arrangement whereby the physician or operator of the system can mark at will on sheet 500, a dither signal such as mark 521. As before, output 211 from monostable 214 causes solid state switch to make a connection between conductors and 106. Dither generator 134 provides a 60 cycle dithering signal to conductor 106 and thus to pen 300 which scribes in a dithering or vibrating manner on chart paper 500. Dither mark 521 is displayed at this point in FIG. 5 for a special reason. It marks the occurrence of a significant event such as patient complaints of discomfort, or infusion of a drug. or the beginning of exercise testing, etc.
After one minute and 21 seconds of EKG recording, the patient is subjected to exercise testing (not shown. but can be treadmill walking with EKG leads attached to the patient). A feature of the present invention is a speed-up switch as shown in FIG. 1. This speed-up push-button switch, which is designated on the chassis of the preferred embodiments as reset." increases the speed of the synchronous motor 129 thereby operating gear train 125 more rapidly. As depicted in Flg. 5, line 2, after 22 seconds of recorded data. the galvanometer pen is translated to position 3' in a time which is equal to or less than the time between the last heartbeat and the next heartbeat. At point 3', the speed control 150 is returned to its standard speed arrangement. A purpose of this feature is to provide the beginning of exercise testing at a beginning point of line 3 for purposes of clarity of presentation for later analysis. Speed control 150 is a device which changes current flow to motor 129 (305).
Likewise, as noted the same display method can be utilized with other tests such as drug testing. If the patient is given certain drugs for medical reasons, the speed control can be operated to reset" the display, where the heartbeats begin from the left-hand side of the paper as described above.
From FIG. 5, it is seen that approximately 8 seconds elapse after exercise begins before a noticeable change in heart rate occurs. This time value may not be realistic but does not detract from understanding of the present invention. Manual means 116 may also be operated to create designation 521 indicating the beginning of the increased heart rate.
Optical pick-ups 1130, 113b, and l 130 are utilized in the operation of speed control 150 as well as in other features of the present invention. Speed control 150 is made to return to its original state when optical pickup ll3b is in optical communication with pick-up l 130. At this point, galvanometer pen 300 is positioned at slit 201. A signal from optical pick-up 1130 causes the switch in speed control 150 to return to its original state.
The optical pick-ups function in at least two modes. The first mode was described above. When the reset button" is depressed speed control 150 is operated and causes drum 200 to move rapidly until optical pick-up 1 13b is aligned with optical pick-up 113e, (thus causing pen 300 to line up with slit 201). in another feature, when a load button" is depressed, speed control 150 again increases speed of motor 129, thereby increasing speeds of rotation and translation of the system components. But, when optical pick-up 1130 is in optical communication with 113e, all motion of the system is stopped. Control 150 disconnects motor I29 from AC power line 131. This load button is depressed when it is desired to have the slit position to the front of the apparatus for easy access regarding loading and unloading of the paper. Depressing the run" button reconnects power to the motor.
The invention may be embodied in yet other specific forms without departing from the spirit or essential characteristics thereof. For example, one can use three galvanometers with three galvanometer pens to monitor EKG leads 102. Leads 102 generally are three in number, and each of these leads may be thus monitored. Thereby, lines 1, 2, and 3 in FIG. 5 could be made to represent the outputs from three leads 102 from patient However, pitch or relative speed of lead screw 302 must be altered to accommodate this feature. in order for this to work properly, the end of line I would have to correspond to the beginning of line 4, being sufficiently displaced downward so as to not create interference with other lines corresponding to the other two leads. Furthermore, other sensors may be used to sense other vital signs (eg: blood pressure) simultaneously with EKG. For another example, it is to be understood that speeds other than constant speeds can be utilized in the translational motion and rotational motions of the invention. Rather than providing continuous translational motion of carriage 304 transverse to direction of paper motion, one could provide ratchet means for stepping carriage 304 in transverse manner upon each completion of a revolution of drum 200.
It is to be understood that other means of paper attachment could be made. An assembly cartridge including drum and paper could be used where one cylinder with paper is removed and another cylinder with paper is installed (where the paper is not a single sheet but is an endless loop or belt of paper).
Furthermore, if cylinder 200 were held in a horizontal position (rather than vertical as shown for purposes of clarity of illustration only), a paper loop of the endless belt variety (not shown), can be used which has a circumference in excess of the circumference of drum 200. The system works well if the scribing point of contact between pen 300 and the surface of the paper 351 on drum 200 remains smooth. Accordingly, even more data can be recorded and displayed. And, another cylinder (not shown) can be installed at a remote distance, to provide pulley support means for this extended circumference endless paper loop. However, these are alternative embodiments and the preferred embodiment is that which is shown in the Figures.
It is to be further understood that more than seconds or less than 60 seconds per line can be recorded and that more than or less than 30 lines per page can be recorded.
A particularly advantageous utility of the present invention is in connection with the transcription of EKG cassette tape recorders. Presently, portable tape recorders exist which record a patients EKG for long periods of time, 24 hours or more. Playback of 24 hours of EKG data at real time would take thus 24 hours. On
ordinary EKG chart paper, this would amount to many feet of paper, But, to playback this portable tape recorder data in a transcribing manner utilizing the present invention, both the tape recorder and the present inventions speed control can be increased by a factor of 20 or more (with respect to real time). Thus, all of this data can be recorded on a large single sheet of paper in an hour or less. The tremendous advantage of being able to analyze 24 hours of EKG activity of a patient within an hour or less after receiving that data on tape from the patient is clear.
Thus, the present embodiments are to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description and all changes which come within the meaning and range of the equivalency of the claims are therefor intended to be embraced therein.
What is claimed is:
l. A system for displaying vital signs of a patient, said system comprising: means for sensing said vital signs and for providing analogous electrical signals, means for amplifying said electrical signals, a chassis, means axially-rotatably mounted to said chassis for providing a writing surface, looped paper fitted to and supported by said writing surface means, means supported by said chassis for rotating said writing surface means thereby advancing and recycling said paper, galvanometer pen means for scribing on said paper in scribing directions transverse to the direction of motion of said paper, means connected to said chassis for supporting said pen means and for translationally moving said pen means in one of said scribing directions from an initial position towards a final position, and means for extending said signals to said galvanometer pen means.
2. A system as recited in claim 1 and wherein said vital signs are the electrocardiogram of said patient.
3. A system as recited in claim 2 where said paper includes a heartbeat rate scale, said system further comprising means for providing an average heartbeat rate of said patient for a selectable period of time, means for generating a pen dithering signal, and means for momentarily disabling said extending means and for conducting said pen dithering signal to said galvanometer pen means when said pen is scribing on said paper at a point which corresponds on said heartbeat rate scale to said average heartbeat rate.
4. A system as recited in claim I and wherein said writing surface means comprises a cylinder having axially directed slit means in the surface of said cylinder and extending the entire length of said cylinder for receiving two substantially parallel edges of said paper and for clamping said edges to create a smooth overlapping of said paper around said cylinder.
5. A system as recited in claim 4 further comprising two electro-optical devices employed in the control of the operation of at least said rotating means and mounted on the periphery of said cylinder, said two devices being relatively angularly displaced by approximately 90, one of two electro-optical devices being mounted adjacent said slit, and a third electro-optical device mounted on said chassis adjacent said periphery and in substantial alignment with the scribing point between said paper and said pen means and arranged to be in optical communication with each of said two electro-optical devices as each of said two electro-optical devices rotates adjacent said third electro-optical device.
6. A system as recited in claim 5 including means responsive to the optical communication between said third electro-optical device and said other of said two electro-optical devices for controlling speed of said rotating means when said other of said two electrooptical devices is adjacent said third electrooptical device.
7. A system as recited in claim 5 including means responsive to the optical communication between said third electro-optical device and said one of said two electro-optical devices for inhibiting operation of said rotating means and said translationally moving means when said one of said two electro-optical devices is adjacent said third electro-optical device.
8. A system as recited in claim 4 and wherein said cylinder means further comprises two switching devices mounted on the periphery of said cylinder, said two devices being relatively angularly displaced by approximately 90", one of said two switching devices being mounted adjacent said slit, and a third switching device mounted on said chassis adjacent said periphery and in substantial alignment with the scribing point between said paper and said pen means and arranged to be in communication with each of said two switching devices as each of said two switching devices rotates adjacent said third switching device.
9. A system as recited in claim 1 and wherein said rotating means comprises an electrical motor and gear train means for connecting the rotational output of said motor to said rotatably mounted cylinder means.
10. A system as recited in claim 9 and wherein said supporting and translationally moving means comprises a rod fixedly supported by said chassis and disposed substantially parallel to the longitudinal axis of said cylinder means, carriage means slidably mounted to said rod for holding said galvanometer pen means, a lead screw rotatably mounted parallel to said rod and engaged with said carriage, and said motor and gear train means including additional means for connecting said rotational output of said motor to said lead screw whereby rotational motion of said lead screw causes translational motion of said carriage.
11. A system as recited in claim 10 comprising a microswitch fixedly attached to said chassis near one end of said rod and arranged to be operated by contact with said carriage means in said final position, and means responsive to operation of said microswitch for disabling said rotating means and said translationally moving means.
12. A system as recited in claim l0 comprising a switch fixedly attached to said chassis near one end of said rod and arranged to be operated by contact with said carriage means in said final position, and means responsive to operation of said switch for disabling said rotating means and said translationally moving means.
13. A system as recited in claim 1 and wherein said sensing means comprises a plurality of patientconnected sensors, said galvanometer pen means comprises a plurality of galvanometers, each of said plurality of galvanometers corresponding respectively to one of said plurality of sensors, each of said plurality of galvanometers having a respective pen, and means for extending each of said plurality of sensors to a respective one of said galvanometers.
14. A system as recited in claim 1 further comprising means for generating pen means dithering signals, and manually operated means for momentarily disabling said extending means and for conducting said dithering signals to said pen means, whereby a dither mark is scribed on said paper at will.
15. A system as recited in claim 1 and wherein said rotating means includes means to provide a plurality of rotations of said cylinder means to correspond to the translational motion distance of said pen means in moving from said initial position to said final position.
16. A system for displaying vital signs of a patient, said system comprising means for sensing said vital signs and for providing analogous electrical signals, supporting means, a looped markable surface supported by said supporting means, means for advancing and recycling said surface about a first axis, and marking means responsive to said signals for coating said surface with representations of said signals in a helical path about said axis.
17. A system for displaying vital signs of a patient, said system comprising: means for sensing said vital signs and for providing analogous electrical signals, means for amplifying said electrical signals, a chassis, means axially-rotatably mounted to said chassis for providing a writing surface, looped paper fitted to and supported by said writing surface means, means supported by said chassis for rotating said writing surface means thereby advancing and re-cycling said paper, means for establishing a recording rotational speed range, means for controlling said rotating means to operate within said recording rotational speed range, galvanometer pen means for scribing on said paper in scribing directions transverse to the direction of motion of said paper, means for extending said signals to said galvanometer pen means, means connected to said chassis for supporting said pen means and for translationally moving said pen means in one of said scribing directions from an initial position towards a final position, means for establishing a recording translational speed range as a function of said recording rotational speed range to permit said pen means to scribe said looped paper with representations of said signals in a non-overlapping path, and means for controlling said supporting and translationally moving means to operate within said recording translational speed range.
18. A system as recited in claim 17 and wherein said representations of said signals are scribed on said looped paper in a compressed manner.
l9. A system as recited in claim 17 and wherein said writing surface means comprises a cylinder having axially directed slit means in the surface of said cylinder and extending the entire length of said cylinder for receiving two substantially parallel edges of said paper and for clamping said edges to create a smooth overlapping of said paper around said cylinder.
20. A system as recited in claim 17 further including manually-activated speed-control means for causing said rotating means and said translationally moving means to operate outside of said recording rotational speed range and said recording translational speed range respectively.
21. A system as recited in claim 20 and wherein said speed control means further comprises two electrooptical devices employed in the control of the operation of at least said rotating means and mounted on the periphery of said cylinder, said two devices being relatively angularly displaced by approximately 90, one of said two eIectro-optical devices being mounted adjacent said slit, a third electro-optical device mounted on said chassis adjcent said periphery and in substantial alignment with the scribing point between said paper and said pen means, and means for controlling optical communication between each of said two electrooptical devices as each of said two electro-optical devices rotates adjacent said third electro-optical device.
22. A system as recited in claim 21 including means responsive to the optical communication between said third electro-optical device and said other of said two electro-optical devices for returning speed of said rotating means within said recording rotational speed range when said other of said two electro-optical devices is adjacent said third electro-optical device.
23. A system as recited in claim 21 including means responsive to the optical communication between said third electro-optical device and said one of said two electro-optical devices for inhibiting operation of said rotating means and sand translationally moving means when said one of said two electro-optical devices is adjacent said third electro-optical device.
24. A system is recited in claim 20 and wherein said speed control means further comprises two switching devices mounted on the periphery of said cylinder, said two devices being relatively angularly displaced by approximately 90, one of said two switching devices being mounted adjacent said slit, and a third switching device mounted on said chassis adjacent said periphery and in substantial alignment with the scribing point between said paper and said pen means and arranged to be in communication with each of said two switching devices as each of said two switching devices rotates adjacent said third switching device.
25. A system as recited in claim 19 and wherein said rotating means includes means to provide a plurality of rotations of said writing surface means to correspond to the translational motion distance of said pen means in moving from said initial position to said final position.
26. A system as recited in claim 25 and wherein said recording rotational speed range establishing means permits said representations of said signals to be scribed on said paper in a compressed manner.
27. A system as recited in claim 26 further including manually-activated speed-control means for causing said rotating means and said translationally moving means to operate outside of said recording rotational speed range and said recording translational speed range respectively.
28. A system as recited in claim 27 and wherein said vital signs are the electrocardiogram of said patent.
29. A system as recited in claim 28 where said paper includes a heartbeat rate scale, said system further comprising means for providing an average heartbeat rate of said patient for a selectable period of time, means for generating a pen dithering signal, and means for monentarily disabling said extending means for conducting said pen dithering signal to said galvanometer pen means when said pen is scribing on said paper at a point which corresponds on said heartbeat rate scale to said average heartbeat rate.
30. A system as recited in claim 29 further comprising means for generating pen means dithering signals, and manually operated means for momentarily disabling said extending means and for conducting said dithering signals to said pen means, whereby a dither mark is scribed on said paper at will.
31. A system as recited in claim 17 and wherein said vital signs are the electrocardiogram of said patient.
32. A system as recited in claim 31 where said paper includes a heartbeat rate scale, said system further comprising means for providing an average heartbeat rate of said patient for a selectable period of time, means for generating a pen dithering signal, and means for momentarily disabling said extending means for conducting said pen dithering signal to said galvanometer pen means when said pen is scribing on said paper at a point which corresponds on said heartbeat rate scale to said average heartbeat rate.
33. A system as recited in claim 17 and wherein said rotating means comprises an electrical motor and gear train means for connecting the rotational output of said motor to said rotatably mounted cylinder means.
34. A system as recited in claim 33 and wherein said supporting and translationally moving means comprises a rod fixedly supported by said chassis and disposed substantially parallel to the longitudinal axis of said cylinder means, carriage means slidably mounted to said rod for holding said galvanometer pen means, a lead screw rotatably mounted parallel to said rod and engaged with said carriage, and said motor and gear train means including additional means for connecting said rotational output of said motor to said lead screw whereby rotational motion of said lead screw causes translational motion of said carriage.
35. A system as recited in claim 34 comprising a microswitch fixedly attached to said chassis near one end of said rod and arranged to be operated by contact with said carriage means in said final position, and means responsive to operation of said microswitch for disabling said rotating means and said translationally moving means.
36. A system as recited in claim 34 comprising a switch fixedly attached to said chassis near one end of said rod and arranged to be operated by contact with said carriage means in said final position, and means responsive to operation of said switch for disabling said rotating means and said translationally moving means.
37. A system as recited in claim 17 and wherein said sensing means comprises a plurality of patientconnected sensors. said galvanometer pen means comprises a plurality of galvanometers, each of said plurality of galvanometers corresponding respectively to one of said plurality of sensors, each of said plurality of galvanometers having a respective pen, and means for extending each of said plurality of sensors to a respective one of said galvanometers.
38. A system as recited in claim 17 further comprising means for generating pen means dithering signals, and manually operated means for monentarily disabling said extending means and for conducting said dithering signals to said pen means, whereby a dither mark is scribed on said paper at will.
39. A system as recited in claim 17 and wherein said rotating means includes means to provide a plurality of rotations of said writing surface means to correspond to the translational motion distance of said pen means in moving from said initial position to said final position.
40. A system as recited in claim 17 and wherein said recording rotational speed range establishing means permits said representations of said signals to be scribed on said paper in a compressed manner.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 5, 95 55 D d u y 975 lnventor(s) Herbert E. Goldberg It; is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Cancel claims 5, 6, 7, 8, 19-23, 2L!- and 25-50.
Signed and Sealed this eleventh Day Of N0vember1975 [SEAL Arrest:
RUTH C. MASON C. MARSHALL DANN .-lmslmg Officer (mmm'ssinm-r nf Parents and Trademurkx l PO-IOSO (1 USCOMM-DC wan-ps9 U 5 GOVERNMENT PRINYING OFFICE 869. 9

Claims (40)

1. A system for displaying vital signs of a patient, said system comprising: means for sensing said vital signs and for providing analogous electrical signals, means for amplifying said electrical signals, a chassis, means axially-rotatably mounted to said chassis for providing a writing surface, looped paper fitted to and supported by said writing surface means, means supported by said chassis for rotating said writing surface means thereby advancing and re-cycling said paper, galvanometer pen means for scribing on said paper in scribing directions transverse to the direction of motion of said paper, means connected to said chassis for supporting said pen means and for translationally moving said pen means in one of said scribing directions from an initial position towards a final position, and means for extending said signals to said galvanometer pen means.
2. A system as recited in claim 1 and wherein said vital signs are the electrocardiogram of said patient.
3. A system as recited in claim 2 where said paper includes a heartbeat rate scale, said system further comprising means for providing an average heartbeat rate of said patient for a selectable period of time, means for generating a pen dithering signal, and means for momentarily disabling said extending means and for conducting said pen dithering signal to said galvanometer pen means when said pen is scribing on said paper at a point which corresponds on said heartbeat rate scale to said average heartbeat rate.
4. A system as recited in claim 1 and wherein said writing surface means comprises a cylinder having axially directed slit means in the surface of said cylinder and extending the entire length of said cylinder for receiving two substantially parallel edges of said paper and for clamping said edges to create a smooth overlapping of said paper around said cylinder.
5. A system as recited in claim 4 further comprising two electro-optical devices employed in the control of the operation of at least said rotating means and mounted on the periphery of said cylinder, said two devices being relatively angularly displaced by approximately 90*, one of two electro-optical devices being mounted adjacent said slit, and a third electro-optical device mounted on said chassis adjacent said periphery and in substantial alignment with the scribing point between said paper and said pen means and arranged to be in optical communication with each of said two electro-optical devices as each of said two electro-optical devices rotates adjacent said third electro-optical device.
6. A system as recited in claim 5 including means responsive to the optical communication between said third electro-optical device and said other of said two electro-optical devices for controlling speed of said rotating means when said other of said two electro-optical devices is adjacent said third electro-optical device.
7. A system as recited in claim 5 including means responsive to the optical communication between said third electro-optical device and said one of said two electro-optical devices for inhibiting operation of said rotating means and said translationally moving means when said one of said two electro-optical devices is adjacent said third electro-optical device.
8. A system as recited in claim 4 and wherein said cylinder means further comprises two switching devices mounted on the periphery of said cylinder, said two devices being relatively angularly displaced by approximately 90*, one of said two switching devices being mounted adjacent said slit, and a third switching device mounted on said chassis adjacent said periphery and in substantial alignment with the scribing point between said paper and said pen means and arranged to be in communication with each of said two switching devices as each of said two switching devices rotates adjacent said third switching device.
9. A system as recited in claim 1 and wherein said rotating means comprises an electrical motor and gear train means for connecting the rotational output of said motor to said rotatably mounted cylinder means.
10. A system as recited in claim 9 and wherein said supporting and translationally moving means comprises a rod fixedly supported by said chassis and disposed substantially parallel to the longitudinal axis of said cylinder means, carriage means slidably mounted to said rod for holding said galvanometer pen means, a lead screw rotatably mounted parallel to said rod and engaged with said carriage, and said motor and gear train means including additional means for connecting said rotational output of said motor to said lead screw whereby rotational motion of said lead screw causes translational motion of said carriage.
11. A system as recited in claim 10 comprising a microswitch fixedly attached to said chassis near one end of said rod and arranged to be operated by contact with said carriage means in said final position, and means responsive to operation of said microswitch for disabling said rotating means and said translationally moving means.
12. A system as recited in claim 10 comprising a switch fixedly attached to said chassis near one end of said rod and arranged to be operated by contact with said carriage means in said final position, and means responsive to operation of said switch for disabling said rotating means and said translationally moving means.
13. A system as recited in claim 1 and wherein said sensing means comprises a plurality of patient-connected sensors, said galvanometer pen means comprises a plurality of galvanometers, each of said plurality of galvanometers corresponding respectively to one of said plurality of sensors, each of said plurality of galvanometers having a respective pen, and means for extending each of said plurality of sensors to a respective one of said galvanometers.
14. A system as recited in claim 1 further comprising means for generating pen means dithering signals, and manually operated means for momentarily disabling said extending means and for conducting said dithering signals to said pen means, whereby a dither mark is scribed on said paper at will.
15. A system as recited in claim 1 and wherein said rotating means includes means to provide a plurality of rotations of said cylinder means to correspond to the translational motion distance of said pen means in moving from said initial position to said final position.
16. A system for displaying vital signs of a patient, said system comprising means for sensing said vital signs and for providing analogous electrical signals, supporting means, a looped markable surface supported by said supporting means, means for advancing and recycling said surface about a first axis, and marking means responsive to said signals for coating said surface with representations of said signals in a helical path about said axis.
17. A system for displaying vital signs of a patient, said system comprising: means for sensing said vital signs and for providing analogous electrical signals, means for amplifying said electrical signals, a chassis, means axially-rotatably mounted to said chassis for providing a writing surface, looped paper fitted to and supported by saId writing surface means, means supported by said chassis for rotating said writing surface means thereby advancing and re-cycling said paper, means for establishing a recording rotational speed range, means for controlling said rotating means to operate within said recording rotational speed range, galvanometer pen means for scribing on said paper in scribing directions transverse to the direction of motion of said paper, means for extending said signals to said galvanometer pen means, means connected to said chassis for supporting said pen means and for translationally moving said pen means in one of said scribing directions from an initial position towards a final position, means for establishing a recording translational speed range as a function of said recording rotational speed range to permit said pen means to scribe said looped paper with representations of said signals in a non-overlapping path, and means for controlling said supporting and translationally moving means to operate within said recording translational speed range.
18. A system as recited in claim 17 and wherein said representations of said signals are scribed on said looped paper in a compressed manner.
19. A system as recited in claim 17 and wherein said writing surface means comprises a cylinder having axially directed slit means in the surface of said cylinder and extending the entire length of said cylinder for receiving two substantially parallel edges of said paper and for clamping said edges to create a smooth overlapping of said paper around said cylinder.
20. A system as recited in claim 17 further including manually-activated speed-control means for causing said rotating means and said translationally moving means to operate outside of said recording rotational speed range and said recording translational speed range respectively.
21. A system as recited in claim 20 and wherein said speed control means further comprises two electro-optical devices employed in the control of the operation of at least said rotating means and mounted on the periphery of said cylinder, said two devices being relatively angularly displaced by approximately 90*, one of said two electro-optical devices being mounted adjacent said slit, a third electro-optical device mounted on said chassis adjcent said periphery and in substantial alignment with the scribing point between said paper and said pen means, and means for controlling optical communication between each of said two electro-optical devices as each of said two electro-optical devices rotates adjacent said third electro-optical device.
22. A system as recited in claim 21 including means responsive to the optical communication between said third electro-optical device and said other of said two electro-optical devices for returning speed of said rotating means within said recording rotational speed range when said other of said two electro-optical devices is adjacent said third electro-optical device.
23. A system as recited in claim 21 including means responsive to the optical communication between said third electro-optical device and said one of said two electro-optical devices for inhibiting operation of said rotating means and sand translationally moving means when said one of said two electro-optical devices is adjacent said third electro-optical device.
24. A system is recited in claim 20 and wherein said speed control means further comprises two switching devices mounted on the periphery of said cylinder, said two devices being relatively angularly displaced by approximately 90*, one of said two switching devices being mounted adjacent said slit, and a third switching device mounted on said chassis adjacent said periphery and in substantial alignment with the scribing point between said paper and said pen means and arranged to be in communication with each of said two switching devices as each of said two switching devices rotates adjacent said third switching device.
25. A system as recited in claim 19 And wherein said rotating means includes means to provide a plurality of rotations of said writing surface means to correspond to the translational motion distance of said pen means in moving from said initial position to said final position.
26. A system as recited in claim 25 and wherein said recording rotational speed range establishing means permits said representations of said signals to be scribed on said paper in a compressed manner.
27. A system as recited in claim 26 further including manually-activated speed-control means for causing said rotating means and said translationally moving means to operate outside of said recording rotational speed range and said recording translational speed range respectively.
28. A system as recited in claim 27 and wherein said vital signs are the electrocardiogram of said patent.
29. A system as recited in claim 28 where said paper includes a heartbeat rate scale, said system further comprising means for providing an average heartbeat rate of said patient for a selectable period of time, means for generating a pen dithering signal, and means for monentarily disabling said extending means for conducting said pen dithering signal to said galvanometer pen means when said pen is scribing on said paper at a point which corresponds on said heartbeat rate scale to said average heartbeat rate.
30. A system as recited in claim 29 further comprising means for generating pen means dithering signals, and manually operated means for momentarily disabling said extending means and for conducting said dithering signals to said pen means, whereby a dither mark is scribed on said paper at will.
31. A system as recited in claim 17 and wherein said vital signs are the electrocardiogram of said patient.
32. A system as recited in claim 31 where said paper includes a heartbeat rate scale, said system further comprising means for providing an average heartbeat rate of said patient for a selectable period of time, means for generating a pen dithering signal, and means for momentarily disabling said extending means for conducting said pen dithering signal to said galvanometer pen means when said pen is scribing on said paper at a point which corresponds on said heartbeat rate scale to said average heartbeat rate.
33. A system as recited in claim 17 and wherein said rotating means comprises an electrical motor and gear train means for connecting the rotational output of said motor to said rotatably mounted cylinder means.
34. A system as recited in claim 33 and wherein said supporting and translationally moving means comprises a rod fixedly supported by said chassis and disposed substantially parallel to the longitudinal axis of said cylinder means, carriage means slidably mounted to said rod for holding said galvanometer pen means, a lead screw rotatably mounted parallel to said rod and engaged with said carriage, and said motor and gear train means including additional means for connecting said rotational output of said motor to said lead screw whereby rotational motion of said lead screw causes translational motion of said carriage.
35. A system as recited in claim 34 comprising a microswitch fixedly attached to said chassis near one end of said rod and arranged to be operated by contact with said carriage means in said final position, and means responsive to operation of said microswitch for disabling said rotating means and said translationally moving means.
36. A system as recited in claim 34 comprising a switch fixedly attached to said chassis near one end of said rod and arranged to be operated by contact with said carriage means in said final position, and means responsive to operation of said switch for disabling said rotating means and said translationally moving means.
37. A system as recited in claim 17 and wherein said sensing means comprises a plurality of patient-connected sensors, said galvanometer pen means comprises a plurality of galvanometers, each of said plurality of galvanometers correSponding respectively to one of said plurality of sensors, each of said plurality of galvanometers having a respective pen, and means for extending each of said plurality of sensors to a respective one of said galvanometers.
38. A system as recited in claim 17 further comprising means for generating pen means dithering signals, and manually operated means for monentarily disabling said extending means and for conducting said dithering signals to said pen means, whereby a dither mark is scribed on said paper at will.
39. A system as recited in claim 17 and wherein said rotating means includes means to provide a plurality of rotations of said writing surface means to correspond to the translational motion distance of said pen means in moving from said initial position to said final position.
40. A system as recited in claim 17 and wherein said recording rotational speed range establishing means permits said representations of said signals to be scribed on said paper in a compressed manner.
US441684A 1974-02-11 1974-02-11 Compressed data display system Expired - Lifetime US3893453A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US441684A US3893453A (en) 1974-02-11 1974-02-11 Compressed data display system
IL46481A IL46481A (en) 1974-02-11 1975-01-21 Data display system
CA218,702A CA1047115A (en) 1974-02-11 1975-01-27 Compressed data display system
DE19752503822 DE2503822A1 (en) 1974-02-11 1975-01-30 DATA PLAYBACK ARRANGEMENT
FR7503838A FR2260320B1 (en) 1974-02-11 1975-02-07
JP50016402A JPS50114085A (en) 1974-02-11 1975-02-10
SE7501435A SE7501435L (en) 1974-02-11 1975-02-10
GB5802/75A GB1499516A (en) 1974-02-11 1975-02-11 Patient's vital sign recording apparatus
NL7501596A NL7501596A (en) 1974-02-11 1975-02-11 SYSTEM FOR DISPLAYING LIFE FUNCTIONS AND PATIENT RELATED SIGNALS.
US05/565,306 US3951135A (en) 1974-02-11 1975-04-04 Compressed data display system
CA236,479A CA1047116A (en) 1974-02-11 1975-09-26 Compressed data display system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US441684A US3893453A (en) 1974-02-11 1974-02-11 Compressed data display system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/565,306 Division US3951135A (en) 1974-02-11 1975-04-04 Compressed data display system

Publications (1)

Publication Number Publication Date
US3893453A true US3893453A (en) 1975-07-08

Family

ID=23753877

Family Applications (1)

Application Number Title Priority Date Filing Date
US441684A Expired - Lifetime US3893453A (en) 1974-02-11 1974-02-11 Compressed data display system

Country Status (9)

Country Link
US (1) US3893453A (en)
JP (1) JPS50114085A (en)
CA (1) CA1047115A (en)
DE (1) DE2503822A1 (en)
FR (1) FR2260320B1 (en)
GB (1) GB1499516A (en)
IL (1) IL46481A (en)
NL (1) NL7501596A (en)
SE (1) SE7501435L (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051482A (en) * 1976-04-26 1977-09-27 American Optical Corporation Graticule with cursors
US4103678A (en) * 1977-04-21 1978-08-01 American Medical Systems, Inc. Nocturnal penile tumescense monitor
US4184487A (en) * 1977-04-18 1980-01-22 U.S. Philips Corporation Electrocardiograph
US4214590A (en) * 1977-11-28 1980-07-29 International Medical Corporation Method and apparatus for processing and displaying data in compressed form
US4331159A (en) * 1979-12-31 1982-05-25 Pfizer Inc. Electrocardiographic storage system using a rotating film drum
US4417254A (en) * 1979-10-24 1983-11-22 Del Mar Avionics Validator for electrocardial data processing system
US4506881A (en) * 1982-12-20 1985-03-26 International Business Machines Corporation Duplexing paper handling system
US20130271470A1 (en) * 2012-04-16 2013-10-17 Airstrip Ip Holdings, Llc Systems and methods for displaying patient data
US9408551B2 (en) * 2013-11-14 2016-08-09 Bardy Diagnostics, Inc. System and method for facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US9433380B1 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US9504423B1 (en) 2015-10-05 2016-11-29 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer
US9545228B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography and respiration-monitoring patch
US9545204B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US9554715B2 (en) 2013-09-25 2017-01-31 Bardy Diagnostics, Inc. System and method for electrocardiographic data signal gain determination with the aid of a digital computer
US9619660B1 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Computer-implemented system for secure physiological data collection and processing
US9615763B2 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation
US9655538B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US9655537B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US9700227B2 (en) 2013-09-25 2017-07-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US9717432B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrocardiography patch using interlaced wire electrodes
US9717433B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US9730641B2 (en) 2013-09-25 2017-08-15 Bardy Diagnostics, Inc. Monitor recorder-implemented method for electrocardiography value encoding and compression
US9737224B2 (en) 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Event alerting through actigraphy embedded within electrocardiographic data
US9775536B2 (en) 2013-09-25 2017-10-03 Bardy Diagnostics, Inc. Method for constructing a stress-pliant physiological electrode assembly
US9820665B2 (en) 2013-09-25 2017-11-21 Bardy Diagnostics, Inc. Remote interfacing of extended wear electrocardiography and physiological sensor monitor
US10165946B2 (en) 2013-09-25 2019-01-01 Bardy Diagnostics, Inc. Computer-implemented system and method for providing a personal mobile device-triggered medical intervention
US10251576B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US10402782B2 (en) 2012-04-16 2019-09-03 Airstrip Ip Holdings, Llc Systems and methods for and displaying patient data
US10433751B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data
US10433748B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US10463269B2 (en) 2013-09-25 2019-11-05 Bardy Diagnostics, Inc. System and method for machine-learning-based atrial fibrillation detection
US10624551B2 (en) 2013-09-25 2020-04-21 Bardy Diagnostics, Inc. Insertable cardiac monitor for use in performing long term electrocardiographic monitoring
US10667711B1 (en) 2013-09-25 2020-06-02 Bardy Diagnostics, Inc. Contact-activated extended wear electrocardiography and physiological sensor monitor recorder
US10736531B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection
US10736529B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable electrocardiography monitor
US10799137B2 (en) 2013-09-25 2020-10-13 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10806360B2 (en) 2013-09-25 2020-10-20 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US10820801B2 (en) 2013-09-25 2020-11-03 Bardy Diagnostics, Inc. Electrocardiography monitor configured for self-optimizing ECG data compression
US10888239B2 (en) 2013-09-25 2021-01-12 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US11096579B2 (en) 2019-07-03 2021-08-24 Bardy Diagnostics, Inc. System and method for remote ECG data streaming in real-time
US11116451B2 (en) 2019-07-03 2021-09-14 Bardy Diagnostics, Inc. Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities
US11213237B2 (en) 2013-09-25 2022-01-04 Bardy Diagnostics, Inc. System and method for secure cloud-based physiological data processing and delivery
US11324441B2 (en) 2013-09-25 2022-05-10 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US11403795B2 (en) 2012-04-16 2022-08-02 Airstrip Ip Holdings, Llc Systems and methods for displaying patient data
US11678830B2 (en) 2017-12-05 2023-06-20 Bardy Diagnostics, Inc. Noise-separating cardiac monitor
US11696681B2 (en) 2019-07-03 2023-07-11 Bardy Diagnostics Inc. Configurable hardware platform for physiological monitoring of a living body
US11723575B2 (en) 2013-09-25 2023-08-15 Bardy Diagnostics, Inc. Electrocardiography patch

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102483U (en) * 1979-01-12 1980-07-17
JP5030338B2 (en) * 2001-06-26 2012-09-19 勇治 大須賀 Deep fermentation tank

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2235894A (en) * 1938-01-18 1941-03-25 Clarence D Lee Device for recording pulse waves, respiration, and blood pressure changes
US2539009A (en) * 1945-10-26 1951-01-23 Sun Oil Co Cylindrical recording chart construction
US2635195A (en) * 1951-03-12 1953-04-14 Northrop Aircraft Inc Graph sensing device
US2718224A (en) * 1952-07-01 1955-09-20 Apstein Maurice Miniature direct-writing electro-cardiograph
US2741530A (en) * 1952-05-06 1956-04-10 Times Facsimile Corp Electric facsimile recorders
US3302639A (en) * 1964-06-23 1967-02-07 Koffler Arthur Recording diagnostic machines
US3478364A (en) * 1967-07-02 1969-11-11 Hellige & Co Gmbh F Recorder having distinguishable records
US3681774A (en) * 1971-01-26 1972-08-01 American Optical Corp Two-variable strip chart recorder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2235894A (en) * 1938-01-18 1941-03-25 Clarence D Lee Device for recording pulse waves, respiration, and blood pressure changes
US2539009A (en) * 1945-10-26 1951-01-23 Sun Oil Co Cylindrical recording chart construction
US2635195A (en) * 1951-03-12 1953-04-14 Northrop Aircraft Inc Graph sensing device
US2741530A (en) * 1952-05-06 1956-04-10 Times Facsimile Corp Electric facsimile recorders
US2718224A (en) * 1952-07-01 1955-09-20 Apstein Maurice Miniature direct-writing electro-cardiograph
US3302639A (en) * 1964-06-23 1967-02-07 Koffler Arthur Recording diagnostic machines
US3478364A (en) * 1967-07-02 1969-11-11 Hellige & Co Gmbh F Recorder having distinguishable records
US3681774A (en) * 1971-01-26 1972-08-01 American Optical Corp Two-variable strip chart recorder

Cited By (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051482A (en) * 1976-04-26 1977-09-27 American Optical Corporation Graticule with cursors
US4184487A (en) * 1977-04-18 1980-01-22 U.S. Philips Corporation Electrocardiograph
US4103678A (en) * 1977-04-21 1978-08-01 American Medical Systems, Inc. Nocturnal penile tumescense monitor
US4214590A (en) * 1977-11-28 1980-07-29 International Medical Corporation Method and apparatus for processing and displaying data in compressed form
US4417254A (en) * 1979-10-24 1983-11-22 Del Mar Avionics Validator for electrocardial data processing system
US4331159A (en) * 1979-12-31 1982-05-25 Pfizer Inc. Electrocardiographic storage system using a rotating film drum
US4506881A (en) * 1982-12-20 1985-03-26 International Business Machines Corporation Duplexing paper handling system
US20130271470A1 (en) * 2012-04-16 2013-10-17 Airstrip Ip Holdings, Llc Systems and methods for displaying patient data
US11403795B2 (en) 2012-04-16 2022-08-02 Airstrip Ip Holdings, Llc Systems and methods for displaying patient data
US11238983B2 (en) 2012-04-16 2022-02-01 Airstrip Ip Holdings, Llc Systems and methods for and displaying patient data
AU2013249502B2 (en) * 2012-04-16 2017-12-14 Airstrip Ip Holdings, Llc Systems and methods for displaying patient data
US9524569B2 (en) * 2012-04-16 2016-12-20 Airstrip Ip Holdings, Llc Systems and methods for displaying patient data
US10402782B2 (en) 2012-04-16 2019-09-03 Airstrip Ip Holdings, Llc Systems and methods for and displaying patient data
US10561326B2 (en) 2013-09-25 2020-02-18 Bardy Diagnostics, Inc. Monitor recorder optimized for electrocardiographic potential processing
US10736531B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection
US9619660B1 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Computer-implemented system for secure physiological data collection and processing
US9615763B2 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation
US9642537B2 (en) 2013-09-25 2017-05-09 Bardy Diagnostics, Inc. Ambulatory extended-wear electrocardiography and syncope sensor monitor
US9655538B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US9655537B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US9700227B2 (en) 2013-09-25 2017-07-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US9717432B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrocardiography patch using interlaced wire electrodes
US9717433B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US9730641B2 (en) 2013-09-25 2017-08-15 Bardy Diagnostics, Inc. Monitor recorder-implemented method for electrocardiography value encoding and compression
US9730593B2 (en) 2013-09-25 2017-08-15 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US9737211B2 (en) 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Ambulatory rescalable encoding monitor recorder
US9737224B2 (en) 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Event alerting through actigraphy embedded within electrocardiographic data
US9775536B2 (en) 2013-09-25 2017-10-03 Bardy Diagnostics, Inc. Method for constructing a stress-pliant physiological electrode assembly
US11918364B2 (en) 2013-09-25 2024-03-05 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US9820665B2 (en) 2013-09-25 2017-11-21 Bardy Diagnostics, Inc. Remote interfacing of extended wear electrocardiography and physiological sensor monitor
US9545204B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US9901274B2 (en) 2013-09-25 2018-02-27 Bardy Diagnostics, Inc. Electrocardiography patch
US11826151B2 (en) 2013-09-25 2023-11-28 Bardy Diagnostics, Inc. System and method for physiological data classification for use in facilitating diagnosis
US9955911B2 (en) 2013-09-25 2018-05-01 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor recorder
US9955885B2 (en) 2013-09-25 2018-05-01 Bardy Diagnostics, Inc. System and method for physiological data processing and delivery
US9955888B2 (en) 2013-09-25 2018-05-01 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder optimized for internal signal processing
US10004415B2 (en) 2013-09-25 2018-06-26 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US10045709B2 (en) 2013-09-25 2018-08-14 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10052022B2 (en) 2013-09-25 2018-08-21 Bardy Diagnostics, Inc. System and method for providing dynamic gain over non-noise electrocardiographic data with the aid of a digital computer
US10111601B2 (en) 2013-09-25 2018-10-30 Bardy Diagnostics, Inc. Extended wear electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation
US11793441B2 (en) 2013-09-25 2023-10-24 Bardy Diagnostics, Inc. Electrocardiography patch
US10154793B2 (en) 2013-09-25 2018-12-18 Bardy Diagnostics, Inc. Extended wear electrocardiography patch with wire contact surfaces
US10165946B2 (en) 2013-09-25 2019-01-01 Bardy Diagnostics, Inc. Computer-implemented system and method for providing a personal mobile device-triggered medical intervention
US10172534B2 (en) 2013-09-25 2019-01-08 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US10251576B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US10251575B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US10264992B2 (en) 2013-09-25 2019-04-23 Bardy Diagnostics, Inc. Extended wear sewn electrode electrocardiography monitor
US10265015B2 (en) 2013-09-25 2019-04-23 Bardy Diagnostics, Inc. Monitor recorder optimized for electrocardiography and respiratory data acquisition and processing
US10271756B2 (en) 2013-09-25 2019-04-30 Bardy Diagnostics, Inc. Monitor recorder optimized for electrocardiographic signal processing
US10271755B2 (en) 2013-09-25 2019-04-30 Bardy Diagnostics, Inc. Method for constructing physiological electrode assembly with sewn wire interconnects
US10278603B2 (en) 2013-09-25 2019-05-07 Bardy Diagnostics, Inc. System and method for secure physiological data acquisition and storage
US10278606B2 (en) 2013-09-25 2019-05-07 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation
US11786159B2 (en) 2013-09-25 2023-10-17 Bardy Diagnostics, Inc. Self-authenticating electrocardiography and physiological sensor monitor
US9545228B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography and respiration-monitoring patch
US10398334B2 (en) 2013-09-25 2019-09-03 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US10413205B2 (en) 2013-09-25 2019-09-17 Bardy Diagnostics, Inc. Electrocardiography and actigraphy monitoring system
US10433751B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data
US10433743B1 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Method for secure physiological data acquisition and storage
US10433748B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US10463269B2 (en) 2013-09-25 2019-11-05 Bardy Diagnostics, Inc. System and method for machine-learning-based atrial fibrillation detection
US10478083B2 (en) 2013-09-25 2019-11-19 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US10499812B2 (en) 2013-09-25 2019-12-10 Bardy Diagnostics, Inc. System and method for applying a uniform dynamic gain over cardiac data with the aid of a digital computer
US11744513B2 (en) 2013-09-25 2023-09-05 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US10561328B2 (en) 2013-09-25 2020-02-18 Bardy Diagnostics, Inc. Multipart electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation
US10602977B2 (en) 2013-09-25 2020-03-31 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US10624551B2 (en) 2013-09-25 2020-04-21 Bardy Diagnostics, Inc. Insertable cardiac monitor for use in performing long term electrocardiographic monitoring
US10624552B2 (en) 2013-09-25 2020-04-21 Bardy Diagnostics, Inc. Method for constructing physiological electrode assembly with integrated flexile wire components
US10631748B2 (en) 2013-09-25 2020-04-28 Bardy Diagnostics, Inc. Extended wear electrocardiography patch with wire interconnects
US10716516B2 (en) 2013-09-25 2020-07-21 Bardy Diagnostics, Inc. Monitor recorder-implemented method for electrocardiography data compression
US10667711B1 (en) 2013-09-25 2020-06-02 Bardy Diagnostics, Inc. Contact-activated extended wear electrocardiography and physiological sensor monitor recorder
US9554715B2 (en) 2013-09-25 2017-01-31 Bardy Diagnostics, Inc. System and method for electrocardiographic data signal gain determination with the aid of a digital computer
US11678832B2 (en) 2013-09-25 2023-06-20 Bardy Diagnostics, Inc. System and method for atrial fibrillation detection in non-noise ECG data with the aid of a digital computer
US10736529B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable electrocardiography monitor
US10799137B2 (en) 2013-09-25 2020-10-13 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10806360B2 (en) 2013-09-25 2020-10-20 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US10813567B2 (en) 2013-09-25 2020-10-27 Bardy Diagnostics, Inc. System and method for composite display of subcutaneous cardiac monitoring data
US10813568B2 (en) 2013-09-25 2020-10-27 Bardy Diagnostics, Inc. System and method for classifier-based atrial fibrillation detection with the aid of a digital computer
US10820801B2 (en) 2013-09-25 2020-11-03 Bardy Diagnostics, Inc. Electrocardiography monitor configured for self-optimizing ECG data compression
US10849523B2 (en) 2013-09-25 2020-12-01 Bardy Diagnostics, Inc. System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders
US11723575B2 (en) 2013-09-25 2023-08-15 Bardy Diagnostics, Inc. Electrocardiography patch
US10888239B2 (en) 2013-09-25 2021-01-12 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US10939841B2 (en) 2013-09-25 2021-03-09 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US11006883B2 (en) 2013-09-25 2021-05-18 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US11013446B2 (en) 2013-09-25 2021-05-25 Bardy Diagnostics, Inc. System for secure physiological data acquisition and delivery
US11051743B2 (en) 2013-09-25 2021-07-06 Bardy Diagnostics, Inc. Electrocardiography patch
US11051754B2 (en) 2013-09-25 2021-07-06 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US11701044B2 (en) 2013-09-25 2023-07-18 Bardy Diagnostics, Inc. Electrocardiography patch
US11103173B2 (en) 2013-09-25 2021-08-31 Bardy Diagnostics, Inc. Electrocardiography patch
US11701045B2 (en) 2013-09-25 2023-07-18 Bardy Diagnostics, Inc. Expended wear ambulatory electrocardiography monitor
US11179087B2 (en) 2013-09-25 2021-11-23 Bardy Diagnostics, Inc. System for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US11213237B2 (en) 2013-09-25 2022-01-04 Bardy Diagnostics, Inc. System and method for secure cloud-based physiological data processing and delivery
US9433380B1 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US11272872B2 (en) 2013-09-25 2022-03-15 Bardy Diagnostics, Inc. Expended wear ambulatory electrocardiography and physiological sensor monitor
US11324441B2 (en) 2013-09-25 2022-05-10 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US10736532B2 (en) 2013-09-25 2020-08-11 Bardy Diagnotics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US11445962B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor
US11445964B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. System for electrocardiographic potentials processing and acquisition
US11445966B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US11445908B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Subcutaneous electrocardiography monitor configured for self-optimizing ECG data compression
US11445907B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Ambulatory encoding monitor recorder optimized for rescalable encoding and method of use
US11445965B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long-term electrocardiographic monitoring
US11445970B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. System and method for neural-network-based atrial fibrillation detection with the aid of a digital computer
US11445961B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Self-authenticating electrocardiography and physiological sensor monitor
US11445969B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. System and method for event-centered display of subcutaneous cardiac monitoring data
US11445967B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Electrocardiography patch
US11457852B2 (en) 2013-09-25 2022-10-04 Bardy Diagnostics, Inc. Multipart electrocardiography monitor
US11647941B2 (en) 2013-09-25 2023-05-16 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US11647939B2 (en) 2013-09-25 2023-05-16 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US11653869B2 (en) 2013-09-25 2023-05-23 Bardy Diagnostics, Inc. Multicomponent electrocardiography monitor
US11653870B2 (en) 2013-09-25 2023-05-23 Bardy Diagnostics, Inc. System and method for display of subcutaneous cardiac monitoring data
US11653868B2 (en) 2013-09-25 2023-05-23 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for electrocardiographic (ECG) signal acquisition
US11678799B2 (en) 2013-09-25 2023-06-20 Bardy Diagnostics, Inc. Subcutaneous electrocardiography monitor configured for test-based data compression
US11660035B2 (en) 2013-09-25 2023-05-30 Bardy Diagnostics, Inc. Insertable cardiac monitor
US11660037B2 (en) 2013-09-25 2023-05-30 Bardy Diagnostics, Inc. System for electrocardiographic signal acquisition and processing
US9408551B2 (en) * 2013-11-14 2016-08-09 Bardy Diagnostics, Inc. System and method for facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US10869601B2 (en) 2015-10-05 2020-12-22 Bardy Diagnostics, Inc. System and method for patient medical care initiation based on physiological monitoring data with the aid of a digital computer
US10390700B2 (en) 2015-10-05 2019-08-27 Bardy Diagnostics, Inc. Health monitoring apparatus for initiating a treatment of a patient based on physiological data with the aid of a digital computer
US9504423B1 (en) 2015-10-05 2016-11-29 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer
US10123703B2 (en) 2015-10-05 2018-11-13 Bardy Diagnostics, Inc. Health monitoring apparatus with wireless capabilities for initiating a patient treatment with the aid of a digital computer
US9936875B2 (en) 2015-10-05 2018-04-10 Bardy Diagnostics, Inc. Health monitoring apparatus for initiating a treatment of a patient with the aid of a digital computer
US9788722B2 (en) 2015-10-05 2017-10-17 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer
US11678830B2 (en) 2017-12-05 2023-06-20 Bardy Diagnostics, Inc. Noise-separating cardiac monitor
US11678798B2 (en) 2019-07-03 2023-06-20 Bardy Diagnostics Inc. System and method for remote ECG data streaming in real-time
US11696681B2 (en) 2019-07-03 2023-07-11 Bardy Diagnostics Inc. Configurable hardware platform for physiological monitoring of a living body
US11653880B2 (en) 2019-07-03 2023-05-23 Bardy Diagnostics, Inc. System for cardiac monitoring with energy-harvesting-enhanced data transfer capabilities
US11116451B2 (en) 2019-07-03 2021-09-14 Bardy Diagnostics, Inc. Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities
US11096579B2 (en) 2019-07-03 2021-08-24 Bardy Diagnostics, Inc. System and method for remote ECG data streaming in real-time

Also Published As

Publication number Publication date
SE7501435L (en) 1975-08-12
FR2260320A1 (en) 1975-09-05
NL7501596A (en) 1975-08-13
IL46481A (en) 1977-06-30
FR2260320B1 (en) 1977-11-18
JPS50114085A (en) 1975-09-06
IL46481A0 (en) 1975-04-25
DE2503822A1 (en) 1975-08-14
GB1499516A (en) 1978-02-01
CA1047115A (en) 1979-01-23

Similar Documents

Publication Publication Date Title
US3893453A (en) Compressed data display system
USRE29921E (en) Electrocardiographic computer
US4428380A (en) Method and improved apparatus for analyzing activity
US4475558A (en) System for providing short-term event data and long-term trend data
JPS60103936A (en) Heart potential recorder
US3951135A (en) Compressed data display system
JP2947151B2 (en) In particular, a sensor device for transmitting a signal representing the patient's breathing
EP0365564A1 (en) Combined pacemaker parameter and vital sign monitor.
US3894533A (en) Vital sign trend intuitive display system
CA1047116A (en) Compressed data display system
US4214590A (en) Method and apparatus for processing and displaying data in compressed form
US3163486A (en) Synchronized recording device
US3188645A (en) Stethoscopic spectrograph
US4051482A (en) Graticule with cursors
GB2142727A (en) Ultra portable electrocardiograph
Tursky Integrators as measuring devices of bioelectric output
US4457312A (en) Method and apparatus for providing records of events during a cardiac arrest
EP0463620B1 (en) Recorder for pulse and oxygen in breathing
Parson et al. Clinical instrumentation for the intra‐operative mapping of ventricular arrhythmias
WO1989000061A1 (en) Combined pacemaker parameter and vital sign monitor
Hoodless et al. A portable physiological data recording/decoding system
Barnett et al. Versatile digital data logger: storage of gastrointestinal motility data
JPS5937929A (en) Pulse meter
SU1202550A1 (en) Apparatus for measuring thorax flexure
AU625593B2 (en) Combined pacemaker parameter and vital sign monitor

Legal Events

Date Code Title Description
AS Assignment

Owner name: WARNER LAMBERT COMPANY 201 TABOR ROAD, MORRIS PLAI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AMERICAN OPTICAL CORPORATION A CORP. OF DE;REEL/FRAME:004054/0502

Effective date: 19820315