US3893451A - Pressure transmission device - Google Patents
Pressure transmission device Download PDFInfo
- Publication number
- US3893451A US3893451A US405049A US40504973A US3893451A US 3893451 A US3893451 A US 3893451A US 405049 A US405049 A US 405049A US 40504973 A US40504973 A US 40504973A US 3893451 A US3893451 A US 3893451A
- Authority
- US
- United States
- Prior art keywords
- pressure
- tube
- inner diameter
- main sections
- transmission tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/0215—Measuring pressure in heart or blood vessels by means inserted into the body
Definitions
- the present invention relates to a pressure transmission tube for medical or veterinary purposes, and also to all apparatus or instruments provided with such a tube.
- cardiovascular diseases relies more and more on intra-vascular, intra-cardiac, rachidial, renal and similar pressure measurements, apart from the usual clinical clues and the results of different analyses.
- the blood pressure measurement method generally used consists in introducing a catheter into the cavity to be studied, the lumen of the catheter being previously filled with an isotonic solution: all variations in pressure, occuring at the catheter tip are completely transmitted by the incompressible liquid column filling the catheter lumen. Therefore, the measurement or the recording of the pressure variations transmitted to the external end of the catheter lumen will disclose the pressures occurring in the cavity under investigation. This is usually achieved by means of a so-called pressure transducer (of the Statham or another type), which provides an electric voltage proportional to the pressure variation.
- a catheter designed for transmitting pressure variations as well as the column of liquid filling same has its own resonance. This resonance arises whenever the hydraulic system, extending from the catheter lumen extremity to the transducer membrane, is stressed anywhere by a mechanical impulse or a pressure change. If no appropriate damping device is provided the pressure variations to be measured during their transmission to the transducer undergo significant distortions caused by the self-resonance phenomena occurring in the catheter and the pressure transmission tube.
- the selfresonance frequency of the most usual catheter lies between and 60 Hz. If the frequency of the pressure signals to be measured nears these resonance frequencies, these signals, during their transmission, will undergo an erroneous amplification which may even exceed 400 percent. Even with pressure signal of much lower frequencies, like those occurring in the cardiovascular system, an erroneous amplification of course less significant, is still observed, but this constitute a cause of measurement errors far from negligible and impossible to estimate because appropriate calibration means are not available.
- the pressure curves which can be recorded during a cardiac-catheterization are necessarily altered by the hydromechanical parasites as well as by the distortion which tends to widen erroneously the systolic pressure pulses.
- This pressure transmission tube is characterized in that it comprises along at least one fraction of its length a section having a smaller inner diameter differring from the inner diameter prevailing along the remaining section of its length, which ranges from 0.5 to 2.5 mm, the section of smaller diameter corresponding to a reduction in diameter of the order of 10 to percent.
- the tube of this invention Since its inner diameter is not uniform from end to end and comprises at least one dimensional variation, the tube of this invention has no inherent resonance and is therefore capable of efficiently filtering the pressure signals to be recorded while eliminating the greater part of the distortions to which these signals are exposed during their transmission.
- the resonance or damping frequencies depend on the tube length and more particularly on the fourth power of the inner diameter of this tube.
- the characteristics of the catheter selected by a practicioner for a given investigation cannot be modifled; therefore, the resonance frequencies should be eliminated in the pressure transmission tube by resorting to a sequence of pipe sections having mutually shifted resonance frequencies.
- the tube has an inner diameter of constant value, except in a section of smaller inner diameter which consists of a neck having a relatively reduced length, within the range of 5 to 50mm, this neck being positioned in the first third of the total length of the pipe system, adjacent the end connected to the member or apparatus for detecting the pressure to be transmitted, for example a catheter.
- the pressure transmission tube of this invention comprises the end to end assembly of at least two separate tube or pipe sections having inner diameters of different values, one section having an inner diameter within the range of 0.5 to 2.5 mm, the other section having a small inner diameter, the reduction in diameter corresponding to 10 to 85 percent of the inner diameter of said one section.
- the length of the pipe having the smaller inner diameter is equal to or less than the three-fourths of the total length of the tube assembly.
- FIG. 1 is a side clevational view of a first embodiment of a pressure transmission tube according to this invention
- H6. 2 is a fragmentary axial section of this tube
- H6. 3 is a cross-section taken along the line lll-lll of FIG. 2;
- FIG. 4 is a side elevational view of another embodiment wherein the tube consists of a pair of pipe sections of different diameter, disposed end to end;
- FIG. is a fragmentary axial section of this tube.
- FIG. 6 is a cross-section taken along the line VI-VI of FIG. 5.
- the pressure transmission tube according to this invention comprises a single tube section 1 of a length of 50 to 300 cm.
- the inner diameter of this tube is within the range of 0.5 to 2.5 mm.
- this tube consists of plastic material such as polyethylene. polyamide, P.V.C., E.V.A., etc.
- this tube carries a connector 2 for connecting the tube to a catheter adapted to be introduced into cavities of a patient or an animal for measuring pressures therein.
- this tube comprises another connector for connecting the tube to a transducer or a measuring instrument.
- this tube comprises a neck or constricted portion 3 where at its inner diameter is reduced by about to about 85 percent. If for instance the inner diameter of the tube is 1.5 mm, the inner diameter at this neck portion is reduced to 0.6 mm The length of this neck portion is extremely small and lies within the range of 5mm to 50mm. It will be noted that this neck portion is located in the first third of the length of tube 1, adjacent the connector 2 for connecting same to a catheter.
- the neck portion 3 may advantageously be obtained by fitting an external tubular insert 4 to the tube 1 and shrinking this insert by means of a suitable shrinking machine.
- This tubular insert 4 may consist of stainless steel, copper or aluminium.
- the pressure transmission tube of this invention consists of a pair of pipe sections having different inner diameters, which are assembled to each other at one end, i.e. a first section la having an inner diameter within the range of 0.5 to 2.5 mm and a second section lb having an inner diameter reduced by 10 to 85 percent with respect to the inner diameter of said first section 10.
- the first tube section la carries a connector 2 for connecting the tube to a catheter.
- the free end of the second tube section lb carries another connector for connecting the assembly to a transducer or other measuring instrument.
- the first section la may comprise a neck 30 similar to the neck 3 of the first embodiment shown in FIGS. 1-3.
- the two tube sections In and lb are assembled by means of a connector shown generally at 5.
- This connector 5 comprises a metal tube 6 having an evolutive inner diameter corresponding exactly on the one hand to the inner diameter of tube section 1a and on the other hand to the inner diameter of tube section lb, for it is essential in devices of this character to avoid any unevennesses likely to retain air bubbles, how small they are.
- This tube 6, like tube 4, may consist of stainless steel, aluminium or other suitable material.
- the reference numeral 8 designates a socket obtained by moulding a suitable elastomer over the ends of tubes la and lb, on the one hand, and connecting tube 6, the function of this socket 6 consisting simply of reinforcing this joint between tube sections la and lb of the pressure transmission tube and thus prevent any accidental rupture at this location.
- the problem consisted in making a I50 cm long pressure transmission tube, to be connected to a 125 cm long catheter Flexo-Pulmocath No. 13, having an inner diameter of 0.90 mm.
- the pressure transmission tube was according to the invention, comprised of two polyamide tube sections joined end to end: the first section was 100 cm long and had an inner diameter of 0.5 mm; the second section was 50 cm long, and had an inner diameter of 1.3 mm.
- the pressure transmission tube according to the invention consisted oftwo tube sections joined end to end: the first section was 90 cm long and had an inner diameter of0.5 mm, the second section was 90 cm long and had an inner diameter of L2 mm.
- the tubes or tube sections constituting the pressure transmission tube according to the invention may have an inner diameter from 0.5 to 2.0 mm; however the inner diameters and lengths of these tube sections must be selected as a function of the catheters to be equipped with due consideration for the above mentioned laws.
- the device according to this invention can be used whenever it is contemplated, to observe or record a pressure existing in a cavity, for instance, the bloodpressure, the intra-cardiac pressure, the intra-vascular pressure, the intra-cerebral pressure, the renal pressure, the amniotic cavity pressure, the intra-rachidial pressure, the peritioneal cavity pressure, etc.
- This device can be used in the medical and the verterinary arts, as well as in all laboratories, for any kind of researches.
- the present invention also included all pressure transmission tubes, also referred to as connecting tubes, having different inner diameters, having or not constricted ,or widened sections which, when joined end to end, permit of obtaining a composite tube having a non-uniform inner diameter.
- the present invention may also include pressure transmission tubes made of tube sections of which the cross-sectional contour is not a circle but any other configuration.
- the present invention may also include a pressure transmission tube. made from a tubular element having a variable or evolutive inner diameter; this result can be obtained, during the actual manufacture, by using an extruder having movable punch and die members.
- a combination comprising a pressure transmission tube having two spaced end portions and adapted to be filled with a substantially immobile liquid pressure transmission medium, said end portions respectively communicating with said catheter tube and said transducer, and said pressure transmission tube defining an internal passage free of turbulence-producing projections and composed of at least two communicating main sections, one of said main sections having a constant inner diameter of between 0.5 and 2.5 mm and having a first self-resonant frequency, and the other of said main sections having a second self-resonant frequency and being of narrower diameter than said one main section and having a constant inner diameter of between through 85 percent of said inner diameter of said one main section, whereby the self-resonant frequencies of said catheter tube and said pressure transmission tube are shifted away from the frequencies of the pressure variation signals to be measured so as to
- a device as defined in claim 1, wherein said one main section is composed of at least two spaced portions and the other of said main sections is located intermediate said two portionsv 3.
- the other of said main sections is the first third of the total length of said pressure-transmission tube as measured from that one of said spaced end portions which communicates with said catheter.
- each of said main sections is between 30 cm and [50 cm; and wherein said inner diameter of one of said main sections is between 1.0 and 1.5 mm., and said inner diameter of the other of said main sections is between 0.3 and 0.8 mm.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Physiology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Vascular Medicine (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7236033A FR2155689A5 (US06350818-20020226-C00016.png) | 1972-10-11 | 1972-10-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3893451A true US3893451A (en) | 1975-07-08 |
Family
ID=9105489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US405049A Expired - Lifetime US3893451A (en) | 1972-10-11 | 1973-10-10 | Pressure transmission device |
Country Status (7)
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4813431A (en) * | 1987-07-22 | 1989-03-21 | David Brown | Intrapulmonary pressure monitoring system |
US4846191A (en) * | 1988-05-27 | 1989-07-11 | Data Sciences, Inc. | Device for chronic measurement of internal body pressure |
US5147336A (en) * | 1990-06-05 | 1992-09-15 | The Kendall Company | Adapter kit for a catheter introducer |
US5222497A (en) * | 1991-01-25 | 1993-06-29 | Nissho Corporation | Hollow needle for use in measurement of viscosity of liquid |
US5408546A (en) * | 1993-12-02 | 1995-04-18 | Medamicus, Inc. | Optical fiber pressure transducer and method of manufacturing the same |
US5499968A (en) * | 1990-03-08 | 1996-03-19 | Macnaught Pty Limited | Flow controllers for fluid infusion sets |
US5546935A (en) * | 1993-03-09 | 1996-08-20 | Medamicus, Inc. | Endotracheal tube mounted pressure transducer |
US20020035331A1 (en) * | 1997-10-14 | 2002-03-21 | Data Sciences International, Inc. | Pressure measurement device |
US6758217B1 (en) * | 1993-02-05 | 2004-07-06 | University Of Manitoba | Control of airway pressure during mechanical ventilation |
US20050044958A1 (en) * | 2003-08-28 | 2005-03-03 | Subhradeep Chowdhury | Non resonating close coupled probe |
US7658196B2 (en) | 2005-02-24 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device orientation |
US7775215B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device positioning and obtaining pressure data |
US7775966B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | Non-invasive pressure measurement in a fluid adjustable restrictive device |
US7844342B2 (en) | 2008-02-07 | 2010-11-30 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using light |
US7927270B2 (en) | 2005-02-24 | 2011-04-19 | Ethicon Endo-Surgery, Inc. | External mechanical pressure sensor for gastric band pressure measurements |
US8016745B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | Monitoring of a food intake restriction device |
US8016744B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | External pressure-based gastric band adjustment system and method |
US8034065B2 (en) | 2008-02-26 | 2011-10-11 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8057492B2 (en) | 2008-02-12 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Automatically adjusting band system with MEMS pump |
US8066629B2 (en) | 2005-02-24 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Apparatus for adjustment and sensing of gastric band pressure |
US8100870B2 (en) | 2007-12-14 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Adjustable height gastric restriction devices and methods |
US8114345B2 (en) | 2008-02-08 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | System and method of sterilizing an implantable medical device |
US8142452B2 (en) | 2007-12-27 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8152710B2 (en) | 2006-04-06 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Physiological parameter analysis for an implantable restriction device and a data logger |
US20120096961A1 (en) * | 2010-10-21 | 2012-04-26 | General Electric Company | Probe holder for turbine engine sensor |
US20120096946A1 (en) * | 2010-10-21 | 2012-04-26 | General Electric Company | Sensor packaging for turbine engine |
US8187162B2 (en) | 2008-03-06 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Reorientation port |
US8187163B2 (en) | 2007-12-10 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Methods for implanting a gastric restriction device |
US8192350B2 (en) | 2008-01-28 | 2012-06-05 | Ethicon Endo-Surgery, Inc. | Methods and devices for measuring impedance in a gastric restriction system |
US8221439B2 (en) | 2008-02-07 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using kinetic motion |
US8233995B2 (en) | 2008-03-06 | 2012-07-31 | Ethicon Endo-Surgery, Inc. | System and method of aligning an implantable antenna |
US8337389B2 (en) | 2008-01-28 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Methods and devices for diagnosing performance of a gastric restriction system |
US8377079B2 (en) | 2007-12-27 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Constant force mechanisms for regulating restriction devices |
US8591532B2 (en) | 2008-02-12 | 2013-11-26 | Ethicon Endo-Sugery, Inc. | Automatically adjusting band system |
US8591395B2 (en) | 2008-01-28 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Gastric restriction device data handling devices and methods |
US8870742B2 (en) | 2006-04-06 | 2014-10-28 | Ethicon Endo-Surgery, Inc. | GUI for an implantable restriction device and a data logger |
US10385996B2 (en) * | 2014-09-10 | 2019-08-20 | International Business Machines Corporation | Tapering couplers for connecting fluid flow components |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1459666A (en) * | 1922-06-07 | 1923-06-19 | Adams Victor Leslie | Pressure-controlling device |
US2667184A (en) * | 1952-02-05 | 1954-01-26 | Alltools Ltd | Hydrostatic coupling |
US2904076A (en) * | 1955-10-22 | 1959-09-15 | Engel | Pulsation dampener |
US2909196A (en) * | 1956-10-11 | 1959-10-20 | Jr Robert F Jeffreys | Flow restrictor |
US3128993A (en) * | 1964-04-14 | Device for commingling slowly flowing liquids | ||
US3581733A (en) * | 1967-12-30 | 1971-06-01 | Philips Corp | Heart catheterization device |
US3635089A (en) * | 1969-12-02 | 1972-01-18 | Carborundum Co | Apparatus and process for the measurement of the pressure of corrosive material |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE7128264U (de) * | 1971-12-30 | Hellige F & Co Gmbh | Fluidische Signalübertragungsleitung, insbesondere für intrakorporale Druckmessung |
-
1972
- 1972-10-11 FR FR7236033A patent/FR2155689A5/fr not_active Expired
-
1973
- 1973-10-05 DE DE2350175A patent/DE2350175C2/de not_active Expired
- 1973-10-07 CH CH1421973A patent/CH577303A5/xx not_active IP Right Cessation
- 1973-10-09 IT IT29898/73A patent/IT995700B/it active
- 1973-10-10 US US405049A patent/US3893451A/en not_active Expired - Lifetime
- 1973-10-10 GB GB4732773A patent/GB1444423A/en not_active Expired
- 1973-10-10 BE BE136526A patent/BE805894A/xx unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3128993A (en) * | 1964-04-14 | Device for commingling slowly flowing liquids | ||
US1459666A (en) * | 1922-06-07 | 1923-06-19 | Adams Victor Leslie | Pressure-controlling device |
US2667184A (en) * | 1952-02-05 | 1954-01-26 | Alltools Ltd | Hydrostatic coupling |
US2904076A (en) * | 1955-10-22 | 1959-09-15 | Engel | Pulsation dampener |
US2909196A (en) * | 1956-10-11 | 1959-10-20 | Jr Robert F Jeffreys | Flow restrictor |
US3581733A (en) * | 1967-12-30 | 1971-06-01 | Philips Corp | Heart catheterization device |
US3635089A (en) * | 1969-12-02 | 1972-01-18 | Carborundum Co | Apparatus and process for the measurement of the pressure of corrosive material |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4813431A (en) * | 1987-07-22 | 1989-03-21 | David Brown | Intrapulmonary pressure monitoring system |
US4846191A (en) * | 1988-05-27 | 1989-07-11 | Data Sciences, Inc. | Device for chronic measurement of internal body pressure |
WO1989011244A1 (en) * | 1988-05-27 | 1989-11-30 | Data Sciences, Inc. | A device for chronic measurement of internal body pressure |
US5499968A (en) * | 1990-03-08 | 1996-03-19 | Macnaught Pty Limited | Flow controllers for fluid infusion sets |
US5147336A (en) * | 1990-06-05 | 1992-09-15 | The Kendall Company | Adapter kit for a catheter introducer |
US5222497A (en) * | 1991-01-25 | 1993-06-29 | Nissho Corporation | Hollow needle for use in measurement of viscosity of liquid |
US6758217B1 (en) * | 1993-02-05 | 2004-07-06 | University Of Manitoba | Control of airway pressure during mechanical ventilation |
US5546935A (en) * | 1993-03-09 | 1996-08-20 | Medamicus, Inc. | Endotracheal tube mounted pressure transducer |
US5408546A (en) * | 1993-12-02 | 1995-04-18 | Medamicus, Inc. | Optical fiber pressure transducer and method of manufacturing the same |
US20020035331A1 (en) * | 1997-10-14 | 2002-03-21 | Data Sciences International, Inc. | Pressure measurement device |
US7025727B2 (en) * | 1997-10-14 | 2006-04-11 | Transoma Medical, Inc. | Pressure measurement device |
US20060094966A1 (en) * | 1997-10-14 | 2006-05-04 | Transoma Medical, Inc. | Pressure measurement device |
US7347822B2 (en) | 1997-10-14 | 2008-03-25 | Transoma Medical, Inc. | Pressure measurement device |
US20080171942A1 (en) * | 1997-10-14 | 2008-07-17 | Transoma Medical, Inc. | Pressure Measurement Device |
US20050044958A1 (en) * | 2003-08-28 | 2005-03-03 | Subhradeep Chowdhury | Non resonating close coupled probe |
US6925883B2 (en) | 2003-08-28 | 2005-08-09 | United Technologies Corporation | Non resonating close coupled probe |
US8016744B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | External pressure-based gastric band adjustment system and method |
US8066629B2 (en) | 2005-02-24 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Apparatus for adjustment and sensing of gastric band pressure |
US7775966B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | Non-invasive pressure measurement in a fluid adjustable restrictive device |
US7775215B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device positioning and obtaining pressure data |
US7927270B2 (en) | 2005-02-24 | 2011-04-19 | Ethicon Endo-Surgery, Inc. | External mechanical pressure sensor for gastric band pressure measurements |
US8016745B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | Monitoring of a food intake restriction device |
US7658196B2 (en) | 2005-02-24 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device orientation |
US8870742B2 (en) | 2006-04-06 | 2014-10-28 | Ethicon Endo-Surgery, Inc. | GUI for an implantable restriction device and a data logger |
US8152710B2 (en) | 2006-04-06 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Physiological parameter analysis for an implantable restriction device and a data logger |
US8187163B2 (en) | 2007-12-10 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Methods for implanting a gastric restriction device |
US8100870B2 (en) | 2007-12-14 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Adjustable height gastric restriction devices and methods |
US8142452B2 (en) | 2007-12-27 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8377079B2 (en) | 2007-12-27 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Constant force mechanisms for regulating restriction devices |
US8591395B2 (en) | 2008-01-28 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Gastric restriction device data handling devices and methods |
US8337389B2 (en) | 2008-01-28 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Methods and devices for diagnosing performance of a gastric restriction system |
US8192350B2 (en) | 2008-01-28 | 2012-06-05 | Ethicon Endo-Surgery, Inc. | Methods and devices for measuring impedance in a gastric restriction system |
US7844342B2 (en) | 2008-02-07 | 2010-11-30 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using light |
US8221439B2 (en) | 2008-02-07 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using kinetic motion |
US8114345B2 (en) | 2008-02-08 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | System and method of sterilizing an implantable medical device |
US8057492B2 (en) | 2008-02-12 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Automatically adjusting band system with MEMS pump |
US8591532B2 (en) | 2008-02-12 | 2013-11-26 | Ethicon Endo-Sugery, Inc. | Automatically adjusting band system |
US8034065B2 (en) | 2008-02-26 | 2011-10-11 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8233995B2 (en) | 2008-03-06 | 2012-07-31 | Ethicon Endo-Surgery, Inc. | System and method of aligning an implantable antenna |
US8187162B2 (en) | 2008-03-06 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Reorientation port |
US20120096946A1 (en) * | 2010-10-21 | 2012-04-26 | General Electric Company | Sensor packaging for turbine engine |
US20120096961A1 (en) * | 2010-10-21 | 2012-04-26 | General Electric Company | Probe holder for turbine engine sensor |
US8998568B2 (en) * | 2010-10-21 | 2015-04-07 | General Electric Company | Sensor packaging for turbine engine |
US10385996B2 (en) * | 2014-09-10 | 2019-08-20 | International Business Machines Corporation | Tapering couplers for connecting fluid flow components |
US10422451B2 (en) * | 2014-09-10 | 2019-09-24 | International Business Machines Corporation | Tapering couplers for connecting fluid flow components |
Also Published As
Publication number | Publication date |
---|---|
IT995700B (it) | 1975-11-20 |
BE805894A (fr) | 1974-02-01 |
GB1444423A (en) | 1976-07-28 |
DE2350175A1 (de) | 1974-04-18 |
FR2155689A5 (US06350818-20020226-C00016.png) | 1973-05-18 |
DE2350175C2 (de) | 1982-12-02 |
CH577303A5 (US06350818-20020226-C00016.png) | 1976-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3893451A (en) | Pressure transmission device | |
US11998356B2 (en) | Sensor jacket | |
US4966161A (en) | Apparatus for continuously measuring intracompartmental pressure within a body cavity | |
CA2024977C (en) | Apparatus for a catheter sensor support and method for using the support | |
CN106456018B (zh) | 具有来自弯曲应力的减小误差的压力测量导管 | |
AU651147B2 (en) | Apparatus for carrying a sensor in a connector for a catheter adapter and method of use | |
US4941473A (en) | Guide for mechanical guiding of a catheter in connection with cardio and vascular examination | |
EP1911484B1 (en) | Intra-aortic balloon catheter having a fiberoptic sensor | |
US20120265079A1 (en) | Sensor guide wire | |
EP2275162A2 (en) | Intra-aortic balloon catheter having a fiberoptic sensor | |
US5279308A (en) | Intrauterine pressure catheter system | |
US8551022B2 (en) | Sensor guide wire | |
EP2658438A2 (en) | Lumen based pressure sensing guidewire system with distortion correction | |
Omari et al. | Intraluminal micromanometry: an evaluation of the dynamic performance of micro‐extrusions and sleeve sensors | |
JPH08507453A (ja) | 較正ポートを有するトランスデューサ・ハウジング | |
US4834108A (en) | Blocking filter to prevent air flow into a fluid conduit to a transducer | |
JPWO2018180976A1 (ja) | カテーテル | |
EP1423047B1 (en) | Multi-lumen, manometry catheters | |
US20200245944A1 (en) | Pressure Catheter and Guide Wire Assembly | |
EP0983745B1 (en) | Site coding for medical devices for introduction into a patient's body | |
US20240065560A1 (en) | Lumen design within intravenous tube to transmit blood pressure wave for invasive blood pressure monitoring |