US3892969A - Neutron detector with gamma compensated cable - Google Patents
Neutron detector with gamma compensated cable Download PDFInfo
- Publication number
- US3892969A US3892969A US458152A US45815274A US3892969A US 3892969 A US3892969 A US 3892969A US 458152 A US458152 A US 458152A US 45815274 A US45815274 A US 45815274A US 3892969 A US3892969 A US 3892969A
- Authority
- US
- United States
- Prior art keywords
- leadwire
- sheath
- cable
- neutron
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims abstract description 37
- 239000004020 conductor Substances 0.000 claims abstract description 19
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 50
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 229910001055 inconels 600 Inorganic materials 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 2
- 239000000615 nonconductor Substances 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract description 17
- 238000000034 method Methods 0.000 abstract description 6
- 230000005251 gamma ray Effects 0.000 description 10
- 229960000869 magnesium oxide Drugs 0.000 description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 8
- 235000012245 magnesium oxide Nutrition 0.000 description 8
- 239000000395 magnesium oxide Substances 0.000 description 8
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 230000004907 flux Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910001026 inconel Inorganic materials 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000031264 response to gamma radiation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/16—Rigid-tube cables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T3/00—Measuring neutron radiation
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C17/00—Monitoring; Testing ; Maintaining
- G21C17/10—Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
- G21C17/116—Passages or insulators, e.g. for electric cables
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- An illustrative embodiment of the invention describes a technique for essentially eliminating the radiation induced background currents that are generated in the cable that connects an in-core neutron detector to an electrical terminal that is outside of the reactors radiation field. This undesirable radiation-induced cable current is suppressed through an appropriate selection of conductor and cable sheath materials and sizes that generally satisfy the equation:
- a typical cable that does meet this criterion at low temperatures has a centrally disposed Zircaloy-2 inner conductor of 0.011 inch diameter, an annular insulation of magnesium oxide powder compacted to 100% density, and an Inconel sheath with an outside diameter of 0.062 inch and 0.011 inch wall thickness.
- a self-powered detector of this sort has a centrally disposed emitter that responds to neutron radiation by emitting relatively high energy electrons (beta particles").
- the energy of these electrons is sufficient to traverse a sleeve or annulus of insulating material that encloses the centrally disposed emitter to enable these electrons to impact on an electrically conductive outer sheath or collector.
- the intensity of incident neutrons is related to beta particle production. Consequently, the electrical current, which is a way of expressing electron flow through a conductor per unit time, provides a measure of the neutron population at the place of measurement within the reactor.
- the detector is coupled to instruments in a control panel by means of a coaxial cable.
- these cables have a centrally disposed leadwire that is electrically isolated, or insulated, from an encircling electrically conducting sheath.
- the cable materials are chosen from a group of materials that do not exhibit neutron sensitivity and exhibit a low probability for neutron-electron reactions. Substantiallengths of this connecting coaxial cable are nevertheless exposed to the gamma radiation that is generated within the core..
- the array of detectors that is lodged in a reactor core is provided with at least one cable that is not connected to a neutron detector.
- This unconnected cable produces a current that is subtracted from the other incore detector signals.
- This cable response subtracted either manually or through automatic computation from each of the observed detector. signals, approximately eliminates that portion of the uncorrected detector signal that is attributable to gamma ray induced electrical currents in the detectors cable.
- Another technique to compensate for these induced cable currents makes use of a single cable that has two insulated leadwires which are twisted about each other.
- One of the leadwires is connected to a neutron detector to provide a combined neutron detector and cable" signal.
- the other leadwire is not connected to a detector and thus generates only a background cable signal. Algebraic subtraction of these two signals should provide a result that is essentially an indication of the neutron population at the place of measurement within the reactor core. All of these correction systems require at least one extra leadwire and a provision for an algebraic subtraction, or its equivalent.
- the signal from a neutron detector coupled: to a cable built in accordance with these principles generally reflects the reactor core neutron population at the place of measurement to the exclusion of any straycurrents induced in the cable through gamma ray interactions with the leadwireand sheath materials. More specifically, the electrons that are released from the sheath and pass through the interposed insulator to the leadwire produce a net negative current. Those electrons that flow in an opposite direction from the leadwire to the sheath produce inturn, a net positive current when measured at the sheath and leadwire terminals. ln accordance with a feature of the invention, it has been noted that this gamma radiation induced electron emission is almost proportional to the area of the emitting surface.
- a relatively low Z material is chosen for the larger surface area sheath and a higher Z material for the smaller surface leadwire.
- the oppositely directed gamma ray induced electrical currents are brought into an essentially matching balance or mutual cancellation that approaches a zero net background current.
- a number of cables that specifically embody these principles of the invention can be made from an lnco nel 600 sheath that has an outside diameter of 0.062 inch and an inside diameter of 0.040 inch.
- the number of electrons leaving the cable sheath also are proportional to:
- the're isa further need to select materials that are metallurgically and mechanically compatible.
- the properties of the sheath and leadwire materials may be so different that it could be extremely difficult to anneal drawn or swaged cable.
- a number of cables were built in which a sheath formed of Inconel 600 having a 0.062 inch outside diameter and a 0.040 inch inside diameter was used in conjunction with a leadwire 11 formed from zirconium (Zircaloy-2) and having diameters in the range of 0.0085 inches up to 0.025.
- An insulator 12 of magnesium oxide was compacted in the annular space between the leadwire 11 and the enclosing sheath l0.
- neutron reactions with the insulation mate-. rial are also to be avoided 'as much as possible.
- lnconel 600 has, a typical, composition, by weight, of 76.5 parts nickel; 14.5 parts chromium; 8.2 parts iron; .19 parts copper; .26 parts silicon; .007 parts sulfur; .25 parts manganese; and .03 parts carbon;
- the manganese concentration should be reduced to,.l part byweight or less and cobalt, although not shown in the foregoing illustrative, composition, also should be avoided in order to reduce to a minimum the major source of undesired neutron, induced electron emissions.
- trace amounts of otherelements also can be present. 4
- Zircaloy-2 typically comprises Zirconium with a balance of 1.5% tin; .12% iron; .ll% chromium; 06% nickel, and as many as ten other elements present in trace concentrations, of which aluminium, boron, carbon, copper, and hafnium are illustrative.
- each of the cables were tested in the neutron and gamma ray environment established within a one megawatt pool-type reactor'at less than 300 "F.
- the background currents produced in each of the tested cables as a result of this'ne utron and gamma ray exposure was observed during a period of about minutes. It was found that the 0.01 1 inch diameter leadwire cable, exposed to an average neutron flux of about 1.6 X 10 nvwithin the reactor environment generated not more than 7 X 10 amps/nv-inch. This induced current is a factor of about less than the background current generated in a conventional cable containing an 0.009 inch diameter Inconel leadwire.
- An electrical conductor comprising a sheath havtions of all of the constituents of the composition under ing a material that has a low probability for neutronelectron reactions, a leadwire within said sheath, said leadwire being formed from another material that also has a low probability for neutron-electron reactions, said leadwire material also having anatomic number that is larger than the atomic number of the sheath material, in order to generally satisfy the equation in which I identifies said leadwire, s identifies said sheath, d is a size characteristic, Z is the atomic num- 5
- said leadwire further comprises a diameter in the range between 0.01 l and 0.013 inches.
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- Measurement Of Radiation (AREA)
- Communication Cables (AREA)
Priority Applications (10)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US458152A US3892969A (en) | 1974-04-05 | 1974-04-05 | Neutron detector with gamma compensated cable |
| CA218,134A CA1022634A (en) | 1974-04-05 | 1975-01-14 | Mineral insulated coaxial cable for neutron detectors |
| GB3683/75A GB1487271A (en) | 1974-04-05 | 1975-01-28 | Electrical conductors |
| AU77745/75A AU492097B2 (en) | 1975-01-30 | Gamma compensated conductor | |
| BE153107A BE825244A (fr) | 1974-04-05 | 1975-02-06 | Cable pour le genie nucleaire |
| IT20034/75A IT1031532B (it) | 1974-04-05 | 1975-02-07 | Conduttore elettrico specialmente per reattdri nucleari e simili |
| AT110575A AT334994B (de) | 1974-04-05 | 1975-02-14 | Koaxiales verbindungskabel zu neutronendetektoren |
| FR7506828A FR2266942B1 (show.php) | 1974-04-05 | 1975-03-05 | |
| SE7503832A SE429072B (sv) | 1974-04-05 | 1975-04-03 | Elektrisk signalkabel for anvendning i kernreaktorer |
| JP50040478A JPS5853443B2 (ja) | 1974-04-05 | 1975-04-04 | デンドウタイ |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US458152A US3892969A (en) | 1974-04-05 | 1974-04-05 | Neutron detector with gamma compensated cable |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3892969A true US3892969A (en) | 1975-07-01 |
Family
ID=23819585
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US458152A Expired - Lifetime US3892969A (en) | 1974-04-05 | 1974-04-05 | Neutron detector with gamma compensated cable |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US3892969A (show.php) |
| JP (1) | JPS5853443B2 (show.php) |
| AT (1) | AT334994B (show.php) |
| BE (1) | BE825244A (show.php) |
| CA (1) | CA1022634A (show.php) |
| FR (1) | FR2266942B1 (show.php) |
| GB (1) | GB1487271A (show.php) |
| IT (1) | IT1031532B (show.php) |
| SE (1) | SE429072B (show.php) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2737470A1 (de) * | 1976-08-26 | 1978-03-02 | Westinghouse Electric Corp | Elektrisches signalkabel |
| US4434370A (en) | 1980-12-04 | 1984-02-28 | Westinghouse Electric Corp. | Self-powered radiation detector with improved emitter |
| US5078956A (en) * | 1990-07-31 | 1992-01-07 | Westinghouse Electric Corp. | Neutron flux detector distribution system with improved drivability |
| US5305357A (en) * | 1992-06-24 | 1994-04-19 | Westinghouse Electric Corp. | Low activated incore instrument |
| EP1146523A3 (en) * | 2000-03-31 | 2002-02-13 | Whittaker Corporation | Black oxide-containing coaxial cable and method of making the same |
| FR2836246A1 (fr) * | 2002-02-15 | 2003-08-22 | Incore Services | Dispositif et procede de deplacement d'un element mobile fixe a une extremite d'un cable de deplacement et de commande, a l'interieur d'un conduit tubulaire |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112992418A (zh) * | 2020-12-30 | 2021-06-18 | 安徽华菱电缆集团有限公司 | 一种柔性防断裂光电复合电缆 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2976418A (en) * | 1957-11-22 | 1961-03-21 | Leslie E Johnson | Gamma-compensated ionization chamber |
| US3375370A (en) * | 1965-12-28 | 1968-03-26 | Ca Atomic Energy Ltd | Self-powered neutron detector |
| US3787697A (en) * | 1971-01-19 | 1974-01-22 | Ca Atomic Energy Ltd | Neutron and gamma flux detector |
-
1974
- 1974-04-05 US US458152A patent/US3892969A/en not_active Expired - Lifetime
-
1975
- 1975-01-14 CA CA218,134A patent/CA1022634A/en not_active Expired
- 1975-01-28 GB GB3683/75A patent/GB1487271A/en not_active Expired
- 1975-02-06 BE BE153107A patent/BE825244A/xx not_active IP Right Cessation
- 1975-02-07 IT IT20034/75A patent/IT1031532B/it active
- 1975-02-14 AT AT110575A patent/AT334994B/de not_active IP Right Cessation
- 1975-03-05 FR FR7506828A patent/FR2266942B1/fr not_active Expired
- 1975-04-03 SE SE7503832A patent/SE429072B/xx not_active IP Right Cessation
- 1975-04-04 JP JP50040478A patent/JPS5853443B2/ja not_active Expired
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2976418A (en) * | 1957-11-22 | 1961-03-21 | Leslie E Johnson | Gamma-compensated ionization chamber |
| US3375370A (en) * | 1965-12-28 | 1968-03-26 | Ca Atomic Energy Ltd | Self-powered neutron detector |
| US3787697A (en) * | 1971-01-19 | 1974-01-22 | Ca Atomic Energy Ltd | Neutron and gamma flux detector |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2737470A1 (de) * | 1976-08-26 | 1978-03-02 | Westinghouse Electric Corp | Elektrisches signalkabel |
| US4434370A (en) | 1980-12-04 | 1984-02-28 | Westinghouse Electric Corp. | Self-powered radiation detector with improved emitter |
| US5078956A (en) * | 1990-07-31 | 1992-01-07 | Westinghouse Electric Corp. | Neutron flux detector distribution system with improved drivability |
| US5305357A (en) * | 1992-06-24 | 1994-04-19 | Westinghouse Electric Corp. | Low activated incore instrument |
| EP1146523A3 (en) * | 2000-03-31 | 2002-02-13 | Whittaker Corporation | Black oxide-containing coaxial cable and method of making the same |
| FR2836246A1 (fr) * | 2002-02-15 | 2003-08-22 | Incore Services | Dispositif et procede de deplacement d'un element mobile fixe a une extremite d'un cable de deplacement et de commande, a l'interieur d'un conduit tubulaire |
Also Published As
| Publication number | Publication date |
|---|---|
| IT1031532B (it) | 1979-05-10 |
| GB1487271A (en) | 1977-09-28 |
| JPS5853443B2 (ja) | 1983-11-29 |
| JPS50136678A (show.php) | 1975-10-30 |
| CA1022634A (en) | 1977-12-13 |
| AT334994B (de) | 1977-02-10 |
| AU7774575A (en) | 1976-08-05 |
| BE825244A (fr) | 1975-05-29 |
| FR2266942A1 (show.php) | 1975-10-31 |
| SE429072B (sv) | 1983-08-08 |
| ATA110575A (de) | 1976-06-15 |
| SE7503832L (sv) | 1975-10-06 |
| FR2266942B1 (show.php) | 1981-06-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4284893A (en) | Self-powered neutron and gamma-ray flux detector | |
| US2728867A (en) | Generation of power | |
| US3787697A (en) | Neutron and gamma flux detector | |
| US3872311A (en) | Self-powered neutron detector | |
| US3892969A (en) | Neutron detector with gamma compensated cable | |
| US4197463A (en) | Compensated self-powered neutron detector | |
| US3400289A (en) | Neutron detector having a radioactive vanadium emitter | |
| CA1084176A (en) | Self-powered neutron flux detector assembly | |
| US3390270A (en) | Device for sensing thermal neutrons and utilizing such neutrons for producing an electrical signal | |
| US3904881A (en) | Neutron detector | |
| US4121106A (en) | Shielded regenerative neutron detector | |
| GB2063550A (en) | Neutron detectors | |
| US4118626A (en) | Gamma flux responsive self-powered radiation detector | |
| US3259745A (en) | Boron-12 beta decay neutron detector | |
| CN107316665A (zh) | 一种自给能中子探测器结构的优化设计方法 | |
| US4091288A (en) | Threshold self-powered gamma detector for use as a monitor of power in a nuclear reactor | |
| US5672928A (en) | Stabilized in-vessel direct current source | |
| US3742274A (en) | Neutron detector | |
| CN219609233U (zh) | 一种耐辐照型计数管探测器 | |
| US5608767A (en) | Neutron-activated direct current source | |
| US3903420A (en) | Long-life neutron detector for instrumentation of a nuclear reactor core | |
| Goldstein et al. | Gamma-sensitive self-powered detectors and their use for in-core flux-mapping | |
| Warren | Neutron detector with gamma compensated cable | |
| US4080533A (en) | Gamma compensated coaxial cable | |
| Baer et al. | A high sensitivity fission counter |