US3891349A - Cooling fan construction and method of making same - Google Patents

Cooling fan construction and method of making same Download PDF

Info

Publication number
US3891349A
US3891349A US227922A US22792272A US3891349A US 3891349 A US3891349 A US 3891349A US 227922 A US227922 A US 227922A US 22792272 A US22792272 A US 22792272A US 3891349 A US3891349 A US 3891349A
Authority
US
United States
Prior art keywords
sheets
sheet
trailing
fan blade
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US227922A
Inventor
Jr William E Woollenweber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wallace Murray Corp
Original Assignee
Wallace Murray Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wallace Murray Corp filed Critical Wallace Murray Corp
Priority to US227922A priority Critical patent/US3891349A/en
Application granted granted Critical
Publication of US3891349A publication Critical patent/US3891349A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades

Definitions

  • ABSTRACT A cooling fan formed of two sheet metal layers joined to a centrally contained spider arm.
  • the configuration of the resulting blade is streamlined or an airfoil in cross section.
  • the surface pieces are normally spaced from the central support arm and during assembly are forced together and joined to the arm.
  • the resulting stress imposed on the leading and trailing edges of the surface sheets reduces vibratory stresses in the blade.
  • the trailing edge of one of the sheets is permitted to slide along the surface of the other sheet when the other sheet is decambering due to centrifugal and aerodynamic forces generated by rotation of the fan. The result is to vary the moment arm of the restraining forces imposed on the decambering trailing portion of the flexing sheet, thus giving better control of the decambering rate of that sheet.
  • a concept of the present invention is to take two sheets of metal, with at least one of the sheets having a curved cross-sectional configuration, and place these sheets on either side of a spider arm.
  • the two sheets are drawn together and fastened to the supporting spider arm by appropriate means such as rivets so that the edge portions of both sheets remain discrete but are placed in a continuous compressive stress similar to the edge portions of a Belleville spring when it is compressed.
  • One resulting benefit due to-the support given by one sheet to the other along the edge portions is the prevention of flutter or high frequency vibratorystresses which may be set up in the blade along the edge portions.
  • both sheets may be curved somewhat in excess of their desired final shape.
  • the assembly prostress I
  • the lower or pressure side sheet is extended beyond the rear edge of the upper' BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of the upstream side of an engine cooling fan embodying the present invention.
  • FIG. 5 is a plan view of the upstream side of a different embodiment of the present invention.
  • FIG. 6 is an enlarged sectional view of an arm and blade of the fan of FIG. 5 taken alongline 6--6.
  • FIG. 7 is a sectional'exploded view of the construction illustrated in FIG. 6 prior to assembly.
  • FIG. 8 is a sectional partial view of a modification of the.leading edge relationship of the present invention.
  • FIG. 9 is a sectional partial'view of a slight modificay tion of the trailing edge configuration of the construction of FIG. 6.
  • FIG. 1 there is illustrated a cool ing-fan generally referred to by the numeral 10"com'- posed of a spider 12 having a hub portion 13 and aplurality of spider arms 14. These arms are oriented perpendicularly to the axis of rotation ofthe fan. Joined to the spider arms are a plurality of fan blade constructions ge'nerally designated as 16.
  • each blade 16 is constructed of a front sheet 18 and a rear sheet 20 joined by rivets 22 to the spider arm 14.
  • the front sheet 18 is curved to the desiredfinal shape whereas the rear sheet 20, which may be of thinner stock, is straight prior to assembly.
  • rear sheet 20 could be pre-curved to a lesser degree than front sheet 18 and still accomplish the objectives of this invention or,'if sheets 18 and 20 were of the'same thickness, sheet 18 could be curved to a greater degree than the desired finalconfiguration and would then be straightened somewhat during'assembly with sheet 20.
  • the front and rear surfaces of thei' spider arml may be shaped to conform to the desiredcu'rvature of the final product.
  • FIG. 4 illustrates a different configuration that can be I obtained.
  • components corresponding to those in FIGS. 2 and 3 are given the same numeral with a subscript a.
  • the cross-sectional configuration is streamlined in that the outer surfaces of the front and rear sheets are both convex as viewed in cross section.
  • the configuration of FIG. 4 may be assembled in the same manner as that of FIG. 2.
  • FIGS. 5 through 7 illustrate the application of the present invention to a flexible bladed fan which results in greater strength and a more desirable flexing action of the blades.
  • the fan is geneally designated as and is composed of a spider 112 which is itself made up of a hub portion 113 and a plurality of spider arms 114.
  • each blade 116 of the fan consists of a semi-rigid resilient front sheet 118 and a flexibly resilient rear sheet 120 joined to the spider arm 114 by means of a plurality of rivets 122.
  • the rear sheet 120 is preferably of a thinner cross section than the front sheet 118 and extends to its trailing edge of a distance d 1 beyond the trailing edge 124 of front sheet 118.
  • the trailing edge of front sheet 118 is spaced a distance m 1 from the rearmost line of rivets 122 and constitutes the pivot edge about which the portion d 1 will rotate during flexure. Therefore the distance m 1 would also constitute the moment arm of the resisting force imposed by the trailing edge of the front sheet 118 against such flexure.
  • front and rear, and upper and lower as used in the specification and claims are for the purposes of relating various components to each other and are not intended to fix the construction of the invention in a particular spatial relationship.
  • a fan blade construction adapted for use in cooling systems for automotive and truck applications, said construction including,
  • said sheets each being secured to said spider arm, to sandwich the spider arm, the longitudinal axis of the arm and the said sheets being substantially par-' allel,

Abstract

A cooling fan formed of two sheet metal layers joined to a centrally contained spider arm. The configuration of the resulting blade is streamlined or an airfoil in cross section. In constructing the fan the surface pieces are normally spaced from the central support arm and during assembly are forced together and joined to the arm. The resulting stress imposed on the leading and trailing edges of the surface sheets reduces vibratory stresses in the blade. In one embodiment the trailing edge of one of the sheets is permitted to slide along the surface of the other sheet when the other sheet is decambering due to centrifugal and aerodynamic forces generated by rotation of the fan. The result is to vary the moment arm of the restraining forces imposed on the decambering trailing portion of the flexing sheet, thus giving better control of the decambering rate of that sheet.

Description

United States Patent [191 Woollenweber, .11 r.
[11] 3,891,349 ]*June 24, 1975 [73] Assignee: Wallace-Murray Corporation, New
York, NY.
[ Notice: The portion of the term of this patent subsequent to June 24, 1991, has been disclaimed.
[22] Filed: Feb. 22, 1972 [21] Appl. No.: 227,922
8,734 4/1908 France 416/240 152,416 lO/l920 United Kingdom 416/210 450,992 7/1936 United Kingdom 416/210 Primary Examiner-Everette A. Powell, Jr. Attorney, Agent, or Firm-Thomas J. Greer, Jr.
[5 7] ABSTRACT A cooling fan formed of two sheet metal layers joined to a centrally contained spider arm. The configuration of the resulting blade is streamlined or an airfoil in cross section. In constructing the fan the surface pieces are normally spaced from the central support arm and during assembly are forced together and joined to the arm. The resulting stress imposed on the leading and trailing edges of the surface sheets reduces vibratory stresses in the blade. In one embodiment the trailing edge of one of the sheets is permitted to slide along the surface of the other sheet when the other sheet is decambering due to centrifugal and aerodynamic forces generated by rotation of the fan. The result is to vary the moment arm of the restraining forces imposed on the decambering trailing portion of the flexing sheet, thus giving better control of the decambering rate of that sheet.
8 Claims, 9 Drawing Figures sum PATENTED JUN 2 4' I975 1 COOLING FAN CONSTRUCTION AND METHOD OF MAKING SAME BACKGROUND OF THE INVENTION airfoil or streamlined cross-sectioned configuration,
and the method of making the same. 1
In the automotive and truck industry the goal sought for cooling fans has been that of achieving a highly efficient fan blade capable of moving large quantities of air in accordance with engine cooling requirements without generating excessive noise; capable of being produced in an economical manner, and capable of having a long service life.
In the past it has been recognized that an airfoil or streamlined cross-sectional configuration for a fan would give a greater efficiency at low speeds and less noise at higher speeds than the commonly used fan construction of the present day, which is a curved plate fastened to a single or double spider arm. The reason for the extensive use of the latter constructions isthe relative economy inherent in the single blade construction versus the airfoil or streamlined construction.
Therefore, the industry has chosen to live with excesor bonding sheets together in the desired shape, as by brazing or welding, such practices being relatively expensive.
A concept of the present invention is to take two sheets of metal, with at least one of the sheets having a curved cross-sectional configuration, and place these sheets on either side of a spider arm. The two sheets are drawn together and fastened to the supporting spider arm by appropriate means such as rivets so that the edge portions of both sheets remain discrete but are placed in a continuous compressive stress similar to the edge portions of a Belleville spring when it is compressed. One resulting benefit due to-the support given by one sheet to the other along the edge portions is the prevention of flutter or high frequency vibratorystresses which may be set up in the blade along the edge portions. Where a streamlined cross-sectional configuration is desired, both sheets may be curved somewhat in excess of their desired final shape. The assembly prostress. I In another embodiment the lower or pressure side sheet is extended beyond the rear edge of the upper' BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of the upstream side of an engine cooling fan embodying the present invention.
cess will provide some straightening and the edge FIG. 5 is a plan view of the upstream side of a different embodiment of the present invention.
FIG. 6 is an enlarged sectional view of an arm and blade of the fan of FIG. 5 taken alongline 6--6. FIG. 7 is a sectional'exploded view of the construction illustrated in FIG. 6 prior to assembly.
FIG. 8 is a sectional partial view of a modification of the.leading edge relationship of the present invention.
FIG. 9 is a sectional partial'view of a slight modificay tion of the trailing edge configuration of the construction of FIG. 6.
' DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring initially to FIG. 1 there is illustrated a cool ing-fan generally referred to by the numeral 10"com'- posed of a spider 12 having a hub portion 13 and aplurality of spider arms 14. These arms are oriented perpendicularly to the axis of rotation ofthe fan. Joined to the spider arms are a plurality of fan blade constructions ge'nerally designated as 16.
As seen in FIGS. 2 and 3 each blade 16 is constructed of a front sheet 18 and a rear sheet 20 joined by rivets 22 to the spider arm 14. It willbe noted from the illustration of FIG. 3 that the front sheet 18 is curved to the desiredfinal shape whereas the rear sheet 20, which may be of thinner stock, is straight prior to assembly. In some/instances rear sheet 20) could be pre-curved to a lesser degree than front sheet 18 and still accomplish the objectives of this invention or,'if sheets 18 and 20 were of the'same thickness, sheet 18 could be curved to a greater degree than the desired finalconfiguration and would then be straightened somewhat during'assembly with sheet 20.
To assemble the'fan bladesthe' front sheet 18 and rear sheet20are locatedin a spaced sandwich relation ship to the spider arm 14 and then forced into contin guity with the spider arm 14 wIhilethe rivets 22 are in'- serted and are formedinto place. As can be noted from the illustrated spider arm cross section 14 the front and rear surfaces of thei' spider arml may be shaped to conform to the desiredcu'rvature of the final product. The curvature desi'redin FIG. Z'isthat of an airfoil'configuration in which thebuter surface of the back sheet is concave in its configuration and the outer surface of theback sheetis concave; in its configuration as viewed in cross section.
A FIG. 4 illustrates a different configuration that can be I obtained. In this illustration components corresponding to those in FIGS. 2 and 3 are given the same numeral with a subscript a. In this case the cross-sectional configuration is streamlined in that the outer surfaces of the front and rear sheets are both convex as viewed in cross section. The configuration of FIG. 4 may be assembled in the same manner as that of FIG. 2.
FIGS. 5 through 7 illustrate the application of the present invention to a flexible bladed fan which results in greater strength and a more desirable flexing action of the blades. The fan is geneally designated as and is composed of a spider 112 which is itself made up of a hub portion 113 and a plurality of spider arms 114.
3 Fastened to the spider arms are blade constructions Lookihg to the cross-sectional FIGS. 6 and 7 it is seen that each blade 116 of the fan consists of a semi-rigid resilient front sheet 118 and a flexibly resilient rear sheet 120 joined to the spider arm 114 by means of a plurality of rivets 122. As will be seen in these FIG- URES the rear sheet 120 is preferably of a thinner cross section than the front sheet 118 and extends to its trailing edge of a distance d 1 beyond the trailing edge 124 of front sheet 118. The trailing edge of front sheet 118 is spaced a distance m 1 from the rearmost line of rivets 122 and constitutes the pivot edge about which the portion d 1 will rotate during flexure. Therefore the distance m 1 would also constitute the moment arm of the resisting force imposed by the trailing edge of the front sheet 118 against such flexure.
Because it has become recognized as desirable in the fan art that the greatest rate of decambering flexing should occur initially during the rotative cycle of the fan (e.g., duringthe transition of the vehicle from idle to beginning speed) and then diminish so that no flexing into opposite camber will occur. It is desirable to proportion sheets 118 and 120 such that some flexing does occur in the rearward portion of 118 near its trailing edge 124but not as much as occurs in sheet 120. The result of this relationship is that as the extending portion (1, of sheet 120 flexes forwardly it will urge the trailing edge of 124 of front sheet 118 forwardly also, which will cause this trailing edge to slide along the extending portion d, by a distance shown as Am, this will increase the moment arm of the trailing edge 124 to a new value shown as m which in effect will increase the resistance to flexure against the portion d, as the fan increases its speed. Thus, with this type of construction all of the benefits of an airfoil shape will be derived plus the additional benefit of a variable flexing rate which can be controlled and tailored to fit the requirements of aparticular cooling problem.
Under some conditions, such as a desire'for a finer leading edge,.or the desire to protect the "thinner rear sheet from damage to its leading edge it may be advantageous to carry the leading .edge of the front sheet 20 over that of the rear sheet as shown. in FIG. 8.
lnsome applications of the FIG. v6'construction it may be found that unwanted and unduly high stress concentrations may occur at the line engagement of trailing edge 124 on sheet 120. Under such conditions it may be desirable to curlthe trailing edge somewhat as shown in FIG. 9. By having front sheet 118a engage rear sheet 1204 at the curved trailing edge 124a a rolling as well as sliding line of contact will occur in the vicinity of 125a when the sheet 120a flexes. This will help to prevent the build-up of high stress concentrations.
i The terms front and rear, and upper and lower as used in the specification and claims are for the purposes of relating various components to each other and are not intended to fix the construction of the invention in a particular spatial relationship.
I claim:
1. A fan blade construction adapted for use in cooling systems for automotive and truck applications, said construction including,
a. an elongated spider arm,
b. a pair of sheet metal, elongated sheets of generally rectangular configuration, each sheet having a leading lengthwise edge and a trailing lengthwise edge,
c. said sheets being of a width greater than the width of said spider arm,
d. said sheets each being secured to said spider arm, to sandwich the spider arm, the longitudinal axis of the arm and the said sheets being substantially par-' allel,
e. at least one of said sheets being convex with respect to said spider arm,
f. at least one of said leading lengthwise edges of said pair of sheets resiliently abuting the other sheet of 3. The fan blade construction of claim 1 wherein at least one of said trailing lengthwise edges of said pair of sheets resiliently abuts the other sheet of said pair of sheets, whereby force would have to be exerted to displace the resiliency abutting trailing lengthwise edge from the sheet against which it abuts.
4. The fan blade construction of claim 3 wherein said trailing lengthwise edges abut each other.
5. The fan blade construction of claim 2 wherein at least one of said trailing lengthwise edges of said pair of sheets resiliently abuts the other sheet of said pair of sheets, whereby force would have to be exerted to displace ,the resiliently abutting trailing lengthwise edge from the sheet against which it abuts.
6. The fan blade construction of claim 3 wherein one of said trailing lengthwise edges has a curled portion, curving away from the sheet which it abuts, to thereby reduce stress concentrations.
7. The fan blade construction of claim 1 wherein said sheets are of different degrees of resiliency.
8. The fan blade construction of claim 5 wherein said sheets are of different degrees of resiliency.

Claims (8)

1. A fan blade construction adapted for use in cooling systems for automotive and truck applications, said construction including, a. an elongated spider arm, b. a pair of sheet metal, elongated sheets of generally rectangular configuration, each sheet having a leading lengthwise edge and a trailing lengthwise edge, c. said sheets being of a width greater than the width of said spider arm, d. said sheets each being secured to said spider arm, to sandwich the spider arm, the longitudinal axis of the arm and the said sheets being substantially parallel, e. at least one of said sheets being convex with respect to said spider arm, f. at least one of said leading lengthwise edges of said pair of sheets resiliently abuting the other sheet of said pair of sheets, g. whereby force would have to be exerted to displace the resiliently abutting leading lengthwise edge from the sheet against which it bears.
2. The fan blade construction of claim 1 wherein said leading lengthwise edges abut each other.
3. The fan blade construction of claim 1 wherein at least one of said trailing lengthwise edges of said pair of sheets resiliently abuts the other sheet of said pair of sheets, whereby force would have to be exerted to displace the resiliency abutting trailing lengthwise edge from the sheet against which it abuts.
4. The fan blade construction of claim 3 wherein said trailing lengthwise edges abut each other.
5. The fan blade construction of claim 2 wherein at least one of said trailing lengthwise edges of said pair of sheets resiliently abuts the other sheet of said pair of sheets, whereby force would have to be exerted to displace the resiliently abutting trailing lengthwise edge from the sheet against which it abuts.
6. The fan blade construction of claim 3 wherein one of said trailing lengthwise edges has a curled portion, curving away from the sheet which it abuts, to thereby reduce stress concentrations.
7. The fan blade construction of claim 1 wherein said sheets are of different degrees of resiliency.
8. The fan blade construction of claim 5 wherein said sheets are of different degrees of resiliency.
US227922A 1972-02-22 1972-02-22 Cooling fan construction and method of making same Expired - Lifetime US3891349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US227922A US3891349A (en) 1972-02-22 1972-02-22 Cooling fan construction and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US227922A US3891349A (en) 1972-02-22 1972-02-22 Cooling fan construction and method of making same

Publications (1)

Publication Number Publication Date
US3891349A true US3891349A (en) 1975-06-24

Family

ID=22854991

Family Applications (1)

Application Number Title Priority Date Filing Date
US227922A Expired - Lifetime US3891349A (en) 1972-02-22 1972-02-22 Cooling fan construction and method of making same

Country Status (1)

Country Link
US (1) US3891349A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037987A (en) * 1975-06-30 1977-07-26 Fram Corporation Flexible bladed fan with increased natural frequency
US4249861A (en) * 1979-03-05 1981-02-10 Canadian Fram Limited Fan blade reinforcement plate
GB2280225A (en) * 1993-07-08 1995-01-25 Truflo Air Movement Ltd Fan impeller
US6250886B1 (en) 1999-09-03 2001-06-26 Chittom International, Inc. Axial flow fan and fan blade
US20020197162A1 (en) * 2000-04-21 2002-12-26 Revcor, Inc. Fan blade
US20030223875A1 (en) * 2000-04-21 2003-12-04 Hext Richard G. Fan blade
US20040101407A1 (en) * 2002-11-27 2004-05-27 Pennington Donald R. Fan assembly and method
KR100764078B1 (en) * 1999-12-23 2007-10-09 보그워너 인코포레이티드 Molded cooling fan
EP2351935A1 (en) * 2008-10-22 2011-08-03 Sharp Kabushiki Kaisha Propeller fan, fluid feeder and mold
US20130236328A1 (en) * 2010-09-16 2013-09-12 Grundfos Pump (Suzhou) Co. Ltd Axial flow impeller
USD880680S1 (en) 2018-07-10 2020-04-07 Hunter Fan Company Ceiling fan blade
USD880681S1 (en) 2018-07-10 2020-04-07 Hunter Fan Company Ceiling fan blade
USD880684S1 (en) 2018-07-10 2020-04-07 Hunter Fan Company Ceiling fan blade
USD880683S1 (en) 2018-07-10 2020-04-07 Hunter Fan Company Ceiling fan blade
USD880682S1 (en) 2018-07-10 2020-04-07 Hunter Fan Company Ceiling fan blade
USD902377S1 (en) 2018-07-10 2020-11-17 Hunter Fan Company Ceiling fan blade
USD903092S1 (en) 2018-07-10 2020-11-24 Hunter Fan Company Ceiling fan blade
USD903091S1 (en) 2018-07-10 2020-11-24 Hunter Fan Company Ceiling fan blade
USD905227S1 (en) 2018-07-10 2020-12-15 Hunter Fan Company Ceiling fan blade
USD905226S1 (en) 2018-07-10 2020-12-15 Hunter Fan Company Ceiling fan blade
USD905845S1 (en) 2018-07-10 2020-12-22 Hunter Fan Company Ceiling fan blade
USD906511S1 (en) 2018-07-10 2020-12-29 Hunter Fan Company Ceiling fan blade
CN113036607A (en) * 2021-04-26 2021-06-25 王芳 Switch board with dust removal and heat radiation structure
US11111930B2 (en) 2018-07-10 2021-09-07 Hunter Fan Company Ceiling fan blade
US11193502B2 (en) 2015-12-14 2021-12-07 Hunter Fan Company Ceiling fan
USD957617S1 (en) 2018-07-10 2022-07-12 Hunter Fan Company Ceiling fan blade
USD957619S1 (en) 2018-07-10 2022-07-12 Hunter Fan Company Ceiling fan blade
USD957618S1 (en) 2018-07-10 2022-07-12 Hunter Fan Compnay Ceiling fan blade
USD980408S1 (en) 2018-07-10 2023-03-07 Hunter Fan Company Ceiling fan blade

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2033345A (en) * 1931-03-04 1936-03-10 Roger K Lee Fan blade
US2388464A (en) * 1944-06-13 1945-11-06 Bergen Bernhard Airplane propeller
US3373930A (en) * 1966-04-29 1968-03-19 Gen Motors Corp Fan structure
US3628888A (en) * 1970-02-24 1971-12-21 Brookside Corp Light weight fan assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2033345A (en) * 1931-03-04 1936-03-10 Roger K Lee Fan blade
US2388464A (en) * 1944-06-13 1945-11-06 Bergen Bernhard Airplane propeller
US3373930A (en) * 1966-04-29 1968-03-19 Gen Motors Corp Fan structure
US3628888A (en) * 1970-02-24 1971-12-21 Brookside Corp Light weight fan assembly

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037987A (en) * 1975-06-30 1977-07-26 Fram Corporation Flexible bladed fan with increased natural frequency
US4249861A (en) * 1979-03-05 1981-02-10 Canadian Fram Limited Fan blade reinforcement plate
GB2280225A (en) * 1993-07-08 1995-01-25 Truflo Air Movement Ltd Fan impeller
GB2280225B (en) * 1993-07-08 1997-04-02 Truflo Air Movement Ltd Fan impeller
US6250886B1 (en) 1999-09-03 2001-06-26 Chittom International, Inc. Axial flow fan and fan blade
KR100764078B1 (en) * 1999-12-23 2007-10-09 보그워너 인코포레이티드 Molded cooling fan
US20050123404A1 (en) * 2000-04-21 2005-06-09 Revcor, Inc. Fan blade
US6712584B2 (en) 2000-04-21 2004-03-30 Revcor, Inc. Fan blade
US6814545B2 (en) 2000-04-21 2004-11-09 Revcor, Inc. Fan blade
US20020197162A1 (en) * 2000-04-21 2002-12-26 Revcor, Inc. Fan blade
US20030223875A1 (en) * 2000-04-21 2003-12-04 Hext Richard G. Fan blade
US20040101407A1 (en) * 2002-11-27 2004-05-27 Pennington Donald R. Fan assembly and method
US6942457B2 (en) 2002-11-27 2005-09-13 Revcor, Inc. Fan assembly and method
US20060088418A1 (en) * 2002-11-27 2006-04-27 Revcor, Inc. Fan assembly and method
EP2351935A1 (en) * 2008-10-22 2011-08-03 Sharp Kabushiki Kaisha Propeller fan, fluid feeder and mold
EP2351935A4 (en) * 2008-10-22 2017-05-03 Sharp Kabushiki Kaisha Propeller fan, fluid feeder and mold
US9435349B2 (en) * 2010-09-16 2016-09-06 Grundfos Holding A/S Axial flow impeller
US20130236328A1 (en) * 2010-09-16 2013-09-12 Grundfos Pump (Suzhou) Co. Ltd Axial flow impeller
US11788556B2 (en) 2015-12-14 2023-10-17 Hunter Fan Company Ceiling fan
US11668327B2 (en) 2015-12-14 2023-06-06 Hunter Fan Company Ceiling fan
US11193502B2 (en) 2015-12-14 2021-12-07 Hunter Fan Company Ceiling fan
US11525462B2 (en) 2015-12-14 2022-12-13 Hunter Fan Compnay Ceiling fan
USD880684S1 (en) 2018-07-10 2020-04-07 Hunter Fan Company Ceiling fan blade
US11111930B2 (en) 2018-07-10 2021-09-07 Hunter Fan Company Ceiling fan blade
USD903092S1 (en) 2018-07-10 2020-11-24 Hunter Fan Company Ceiling fan blade
USD903091S1 (en) 2018-07-10 2020-11-24 Hunter Fan Company Ceiling fan blade
USD905227S1 (en) 2018-07-10 2020-12-15 Hunter Fan Company Ceiling fan blade
USD905226S1 (en) 2018-07-10 2020-12-15 Hunter Fan Company Ceiling fan blade
USD905845S1 (en) 2018-07-10 2020-12-22 Hunter Fan Company Ceiling fan blade
USD906511S1 (en) 2018-07-10 2020-12-29 Hunter Fan Company Ceiling fan blade
US11927196B2 (en) 2018-07-10 2024-03-12 Hunter Fan Company Ceiling fan blade
USD902377S1 (en) 2018-07-10 2020-11-17 Hunter Fan Company Ceiling fan blade
USD880682S1 (en) 2018-07-10 2020-04-07 Hunter Fan Company Ceiling fan blade
USD957617S1 (en) 2018-07-10 2022-07-12 Hunter Fan Company Ceiling fan blade
USD957619S1 (en) 2018-07-10 2022-07-12 Hunter Fan Company Ceiling fan blade
USD957618S1 (en) 2018-07-10 2022-07-12 Hunter Fan Compnay Ceiling fan blade
USD880683S1 (en) 2018-07-10 2020-04-07 Hunter Fan Company Ceiling fan blade
US11566633B2 (en) 2018-07-10 2023-01-31 Hunter Fan Company Ceiling fan blade
USD980408S1 (en) 2018-07-10 2023-03-07 Hunter Fan Company Ceiling fan blade
USD880681S1 (en) 2018-07-10 2020-04-07 Hunter Fan Company Ceiling fan blade
USD880680S1 (en) 2018-07-10 2020-04-07 Hunter Fan Company Ceiling fan blade
CN113036607A (en) * 2021-04-26 2021-06-25 王芳 Switch board with dust removal and heat radiation structure

Similar Documents

Publication Publication Date Title
US3891349A (en) Cooling fan construction and method of making same
US6059532A (en) Axial flow turbo-machine fan blade having shifted tip center of gravity axis
US3637325A (en) Blade structure
US5328330A (en) Extruded aluminum fan blade
US6386830B1 (en) Quiet and efficient high-pressure fan assembly
US4543041A (en) Impellor for centrifugal compressor
US4630787A (en) Airframe and propulsion system
US3406760A (en) Flexible blade fan
US4408957A (en) Supersonic blading
US2965180A (en) Propeller fan wheel
US3044557A (en) Variable pitch fan blade
GB2129501A (en) Gas turbine engine casing
US6106232A (en) Propeller structure
US20050042083A1 (en) Guide vane
CA1114792A (en) Fan blade with bends forming general blade curvature
DE2214858C3 (en) Multi-blade fan wheel
US3356154A (en) Flexible blade engine cooling fan
US3628888A (en) Light weight fan assembly
US4025231A (en) Propeller fan construction
US4105366A (en) Twisted flex fan
US4037987A (en) Flexible bladed fan with increased natural frequency
US3825369A (en) Lightweight fan
CA1106332A (en) Automotive cooling fan with biased flexible blades
US3850545A (en) Flex fan
US3698835A (en) Fan construction