US3891121A - Method of operating a drop generator that includes the step of pre-pressurizing the liquid manifold - Google Patents

Method of operating a drop generator that includes the step of pre-pressurizing the liquid manifold Download PDF

Info

Publication number
US3891121A
US3891121A US277998A US27799872A US3891121A US 3891121 A US3891121 A US 3891121A US 277998 A US277998 A US 277998A US 27799872 A US27799872 A US 27799872A US 3891121 A US3891121 A US 3891121A
Authority
US
United States
Prior art keywords
manifold
coating material
pumping
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US277998A
Inventor
Leonard G Stoneburner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Mead Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mead Corp filed Critical Mead Corp
Priority to US277998A priority Critical patent/US3891121A/en
Priority to CA176,769A priority patent/CA974292A/en
Priority to DE2338102A priority patent/DE2338102C3/en
Priority to JP48085055A priority patent/JPS5230327B2/ja
Priority to GB3699173A priority patent/GB1436215A/en
Priority to JP1156674A priority patent/JPS5410451B2/ja
Application granted granted Critical
Publication of US3891121A publication Critical patent/US3891121A/en
Priority to HK812/79A priority patent/HK81279A/en
Assigned to EASTMAN KODAK COMPANY A NJ CORP. reassignment EASTMAN KODAK COMPANY A NJ CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MEAD CORPORATION THE A CORP. OF OH
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16517Cleaning of print head nozzles
    • B41J2/1652Cleaning of print head nozzles by driving a fluid through the nozzles to the outside thereof, e.g. by applying pressure to the inside or vacuum at the outside of the print head
    • B41J2/16526Cleaning of print head nozzles by driving a fluid through the nozzles to the outside thereof, e.g. by applying pressure to the inside or vacuum at the outside of the print head by applying pressure only

Definitions

  • ABSTRACT Method of operating a drop generator while avoiding spattering during start up and termination of operations.
  • the method includes pressurizing the drop generator manifold with air or other gas and with a flushing liquid formulated to leave substantially no residue upon evaporation, before pumping coating material to the manifold.
  • a flushing liquid formulated to leave substantially no residue upon evaporation, before pumping coating material to the manifold.
  • the flow of coating material to the manifold is replaced with a flow of flushing liquid and the flow of flushing liquid is then terminated and, simultaneously, an evacuation line leading to a low pressure source is opened.
  • An electrostatic deflecting field is set up downstream of the charge rings and all drops which receive a charge while passing through the charge rings are deflected from their trajectory by the deflecting field.
  • a catcher is also associated with the system to catch those drops which it is desired to prevent from reaching the receiving member. In this way it will be seen, a patterned coating, such as printing, is applied to the receiving member.
  • the coating material does not contact the filament forming orifices until the pressure necessary to form a free filament of coating material has been reached in the manifold. This is accomplished by first pressurizing the manifold with a gas, such as air, to a pressure at least equal to or preferably substantially above the operating pressurerequired for production of a free standing filament of coating material.
  • a gas such as air
  • the coating material is pumped to the manifold at or above operating pressure and, since the manifold has already been pressurized before introducing the coating material, the coating material arrives at each of the orifices at or above operating pressure and immediately forms a free standing filament issuing from the orifice and forming a series of discrete drops.
  • a flushing liquid characterized by a substantial absence of residue upon evaporation may be pumped to the manifold before the coating material is pumped thereto.
  • the liquid will quickly evaporate, with negligible residue resulting.
  • free standing filaments of flushing liquid are established at each of the orifices the supply of flushing liquid to the manifold is terminated and simultaneously replaced with a flow of coating material at or above operating pressure. Also, at this point any gas which remains entrained in the manifold may be bled therefrom.
  • the supply of coating material is terminated and simultaneously replaced with a supply of the flushing liquid. Thereafter, the supply of flushing liquid is terminated and simultaneously a line is opened from the manifold to a waste sump operating at a pressure substantially below atmospheric. This sudden reduction of pressure in the manifold is sufficient to terminate the jets of flushing liquid without producing masses of liquid at the orifices or the formation of erratic drops.
  • Air may conveniently be used as the pressurizing gas and the flushing liquid may be any liquid which evaporates without appreciable deposit of residue.
  • the flushing liquid may be any liquid which evaporates without appreciable deposit of residue.
  • a mixture of approximately 50 percent distilled, deionized water and 50 percent denatured alcohol appears satisfactory.
  • FIG. 1 is a somewhat schematic showing of a drop generator in accordance with the present invention
  • FIG. 2 is a cross sectional view taken on line 2-2 of FIG. 1;
  • FIG. 3 is an enlarged cross sectional view showing the formation of coating material accumulations that result when pressure is allowed to build up gradually at the orifices; and 7 FIG. 4 is an enlarged cross sectional view similar to FIG. 3 but showing the formation of filaments and drops of coating material in accordance with the present invention.
  • a drop generator in accordance with the present invention may include manifold 12 having a chamber 14 formed therein. Mounted beneath the manifold 12 is an orifice plate 16, a spacer plate 18, a charge ring plate 20, a pair of deflecting'electrodes 22 attached to the charge ring plate, as at 23, and a catcher 24 spaced from the electrodes by mounting means 26.
  • Coating material supplied to the chamber 14 will be ejected through the orifices 28 to, form fine filaments which break up into discrete dropsof coating material. Itis desirable that if a charge is to be applied to a particular drop it is applied at approximately the point at which the drops'break from the filaments.
  • the spacer plate l8 having a series of openings 30 formed therethrough, spaces the charge ring plate at the proper distance from the orifice plate 16 such that the charge rings 32 charge each of the drops of coating material just as they break fromtheir respective filaments of coating material.
  • the coating material will tend to form pendulous masses, as indicated at 38 in FIG. 3 of the drawings,
  • chamber 14 is prepressurized with the system shown somewhat schematically in FIG. 1 of the drawings.
  • a gas port 40 is provided leadingto one end of the chamber 14 while a liquid port 52 communicates with the opposite end of the chamber.
  • a gas such as air, is pumped through line 44 and valve 46 by means indicated at 4 8.
  • a second line 50 also communicates with the gas port 40 and is provided with a valve 52 and a source of negative pressure as indicated at 54.
  • a bleed line 55 also branches from port 40, controlled by valve 56.
  • Liquid port 42 may be fed by line 57, which includes a'valve 58 and is connected with means, as indicated at 60, for pumping a flushing liquid through the line 57. Also connected to port 42 is a line 62, controlled by valve 64, and through which coating material may be.
  • valve 46 is opened, allowing air or other pressurizing gas to be pumped through line 44 by means of pump 48 at a pressure in excess of operating pressure.
  • the pressure and flow rate of, gas issuch that the pressure in the chamber 14 quickly rises to a pressure above normal operating pressure, despite the escape of gas through the orifices 28.
  • Coating material may then be introduced into the system by opening valve 64 and pumping. the coating at or above operating pressure through liquid port 42.
  • the coating material will advance through the chamber 14 in a coherent wave, from right to left as seen in FIG. 1 of the drawings. Since it is at or above operating pressure as it reaches each of the orifices, free standing jets are formed, as seen at 70 in FIG. 4 of the drawings,
  • valve 46 is closed about 0.3 opening of valve 64. 1
  • valves4'6 and 58 are opened, allowing gas to be pumped from source 48 and a flushing liquid to be pumped from source 60, both the gas and flushing liquid being at 'a pressure in excess of operating pressure. Again, the liquid entering the chamber 14 will advance as a coherent wave, replacing the gas flow at each of the orifices 28 with a liquid flow at or above operating pressure.
  • valve 64 is opened and simultaneously valve 58 is closed. This allows coating material at or above operating pressure. to flow through line 62 and liquid port 42 into the chamber l4, displacing any .flushing liquid therein with coating ,material. Thereafter, any air or other gas which may remain in the system may be bledout through line and valve 56.
  • valve 64 When it is desired to terminate operation of the drop generator, valve 64 is ,closed and valve 58 opened, causing the flow of coating material to be replaced by a flow of flushing liquid. Thereafter, valve. 58 is closed and valve 52 is simultaneously opened, causing both the flow of flushing liquid to terminate and the evacuation of the system to a waste sump operating at a pressure substantially below. atmospheric pressure. This sudden reduction in pressure in the system is sufficient to terminate the jets without producing erratic drops below the orifices or allowing coating material to collect in pendulous masses about the orifices.
  • the present invention provides method and apparatus for operating a drop generator without the problems normally associated with start up and shut down procedures.
  • a method of commencing operation of a drop generator which includes orifice defining means and a manifold communicating with said orifice defining means for providing a supply of liquid coating material thereto comprising:
  • step of pressurizing said manifold with gas comprises:
  • step of introducing coating material into said manifold comprises:
  • step of adding flushing liquid comprises:
  • step of evacuating said manifold comprises:
  • step of pressurizing said manifold with a gas comprises:
  • a method of operating a drop generator which includes an orifice plate having means defining a plurality of small diameter orifices therethrough, a manifold communicating with said orifices for providing a supply of coating material thereto, and a gas port and a liquid port communicating with said manifold comprising:

Landscapes

  • Ink Jet (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Facsimile Heads (AREA)
  • Fax Reproducing Arrangements (AREA)
  • Nozzles (AREA)

Abstract

Method of operating a drop generator while avoiding spattering during start up and termination of operations. The method includes pressurizing the drop generator manifold with air or other gas and with a flushing liquid formulated to leave substantially no residue upon evaporation, before pumping coating material to the manifold. In stopping the drop generator the flow of coating material to the manifold is replaced with a flow of flushing liquid and the flow of flushing liquid is then terminated and, simultaneously, an evacuation line leading to a low pressure source is opened.

Description

United States Patent [191 Stoneburner June 24, 1975 METHOD OF OPERATING A DROP GENERATOR THAT INCLUDES THE STEP 0F PRE-PRESSURIZING THE LIQUID MANIFOLD [75] Inventor: Leonard G. Stoneburner,
Chillicothe, Ohio [73] Assignee: The Mead Corporation, Dayton,
' Ohio [22] Filed: Aug. 4, 1972 [21] Appl. No.: 277,998
[52] US. Cl. 222/1; 222/420; 346/75 [51] Int. Cl. B87b 7/00 [58] Field of Search 222/420, 394, 108, 318,
[56] References Cited UNITED STATES PATENTS 2,650,003 8/1953 Coleman 141/119 X 3,560,641 2/1971 Taylor 3,727,804 4/1973 Smith. 222/334 X 3,764,041 10/1973 Noll 222/148 OTHER PUBLlCATlONS IBM Technical Disclosure Bulletin Vol. 8, No. 1, June, 1965.
Primary Examiner-Evon C. Blunk Assistant Examiner-James M Slattery Attorney, Agent, or Firm-Biebel, French & Bugg [5 7] ABSTRACT Method of operating a drop generator while avoiding spattering during start up and termination of operations. The method includes pressurizing the drop generator manifold with air or other gas and with a flushing liquid formulated to leave substantially no residue upon evaporation, before pumping coating material to the manifold. In stopping the drop generator the flow of coating material to the manifold is replaced with a flow of flushing liquid and the flow of flushing liquid is then terminated and, simultaneously, an evacuation line leading to a low pressure source is opened.
10 Claims, 4 Drawing Figures 1 METHOD OF OPERATING A DROP GENERATOR THAT INCLUDES THE STEP OF PRE-PRESSURIZING THE LIQUIDMANIFOLD BACKGROUND OF THE INVENTION U.S. Pat. Nos. 3,560,641, 3,586,907 and 3,661,304 are directed to noncontacting coating systems wherein a liquid coating material, such as ink, is pumped under pressure to a manifold communicating with a series of small diameter orifices. As the coating material is ejected through the orifices under pressure, it forms fine filaments of coating material which break down into series of discrete drops. At the point where the drops break from the filaments they pass through charging rings which, depending upon the pattern of coating material desired on a receiving member conveyed beneath the drop generator, either charge or do not charge each individual drop of coating material.
An electrostatic deflecting field is set up downstream of the charge rings and all drops which receive a charge while passing through the charge rings are deflected from their trajectory by the deflecting field. A catcher is also associated with the system to catch those drops which it is desired to prevent from reaching the receiving member. In this way it will be seen, a patterned coating, such as printing, is applied to the receiving member.
Inthe operation of a drop generator of this type, it will be apparent that it takes some discrete pressure, hereinafter termed the operating pressure, to produce a filament of sufficient velocity to overcome forces, such as surface tension forces, tending to retard flow of the coating material through the orifices.
If the flow of coating material to the drop generator is commenced by merely opening a supply line to the manifold, it will be apparent that the pressure build up in the drop generator from zero to the operating pressure will occur over some finite time period.
During this period, when the pressure acting on the coating material has not yet reached operating pressure, a free jet will not be produced, but instead, a pendulous mass of coating material willcollect at each orifice which weeps liquid coating material therefrom. As the pressure acting on the coating material increases a jet will eventually be produced inside the mass of liquid and finally break from the mass in an uncontrolled manner, only stabilizing after the excess liquid at the orifice has been drawn away by entrainment in the jet.
Obviously this will result, not only in a more lengthy start up procedure, but also in spattering of the coating and the collection of coating material on the components of the generator. Since the coating material is electrically conductive this can result in shorting of the various electrical components, such as the charge rings and deflecting field electrodes. Additionally, the evaporation of the coating material will leave a residue on the components of the drop generator which will eventually affect its operation.
It will also be apparent that if drop generation is terminated by merely terminating the supply of coating material, the pressure in the manifold will decrease over a finite time period, again causing masses of coating material to collect at the orifice.
SUMMARY or THE INVENTION In method and apparatus in accordance with the present invention the coating material does not contact the filament forming orifices until the pressure necessary to form a free filament of coating material has been reached in the manifold. This is accomplished by first pressurizing the manifold with a gas, such as air, to a pressure at least equal to or preferably substantially above the operating pressurerequired for production of a free standing filament of coating material.
Thereafter, the coating material is pumped to the manifold at or above operating pressure and, since the manifold has already been pressurized before introducing the coating material, the coating material arrives at each of the orifices at or above operating pressure and immediately forms a free standing filament issuing from the orifice and forming a series of discrete drops.
By this method the collection of pendulous masses of coating material at the orifice and the contamination of the generator components is substantially avoided.
There may, however, be a fine spray associated with the transition from gas to liquid coating material at eachof the orifices as the coating is ejected therefrom. If this momentary spray or misting is found objectionable, it may also be substantially eliminated by interposing an additional step before the pumping of the coating material to the manifold.
Thus, a flushing liquid characterized by a substantial absence of residue upon evaporation, may be pumped to the manifold before the coating material is pumped thereto. Thus, if any misting or spraying occurs during the transition from gas to liquid at the orifices the liquid will quickly evaporate, with negligible residue resulting. After free standing filaments of flushing liquid are established at each of the orifices the supply of flushing liquid to the manifold is terminated and simultaneously replaced with a flow of coating material at or above operating pressure. Also, at this point any gas which remains entrained in the manifold may be bled therefrom.
In terminating operation of the'drop generator the supply of coating material is terminated and simultaneously replaced with a supply of the flushing liquid. Thereafter, the supply of flushing liquid is terminated and simultaneously a line is opened from the manifold to a waste sump operating at a pressure substantially below atmospheric. This sudden reduction of pressure in the manifold is sufficient to terminate the jets of flushing liquid without producing masses of liquid at the orifices or the formation of erratic drops.
Air may conveniently be used as the pressurizing gas and the flushing liquid may be any liquid which evaporates without appreciable deposit of residue. In this regard, a mixture of approximately 50 percent distilled, deionized water and 50 percent denatured alcohol appears satisfactory.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a somewhat schematic showing of a drop generator in accordance with the present invention;
FIG. 2 is a cross sectional view taken on line 2-2 of FIG. 1;
FIG. 3 is an enlarged cross sectional view showing the formation of coating material accumulations that result when pressure is allowed to build up gradually at the orifices; and 7 FIG. 4 is an enlarged cross sectional view similar to FIG. 3 but showing the formation of filaments and drops of coating material in accordance with the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS As seen in FIGS. 1 and 2 of the drawings, a drop generator in accordance with the present invention may include manifold 12 having a chamber 14 formed therein. Mounted beneath the manifold 12 is an orifice plate 16, a spacer plate 18, a charge ring plate 20, a pair of deflecting'electrodes 22 attached to the charge ring plate, as at 23, and a catcher 24 spaced from the electrodes by mounting means 26.
Coating material supplied to the chamber 14 will be ejected through the orifices 28 to, form fine filaments which break up into discrete dropsof coating material. Itis desirable that if a charge is to be applied to a particular drop it is applied at approximately the point at which the drops'break from the filaments. Thus, the spacer plate l8, having a series of openings 30 formed therethrough, spaces the charge ring plate at the proper distance from the orifice plate 16 such that the charge rings 32 charge each of the drops of coating material just as they break fromtheir respective filaments of coating material.
I Thereafter, the electrodes 22 deflect all charged drops toward the blade 34 of the .catcher 24 while uncharged drops are allowed to impinge on a receiving member 36 conveyed in any convenient manner past the drop generator, as indicated by the arrow in FIG. 2 of the drawings. The above description is merely for purposes of background and'for a more detailed description reference may be had to the two above noted U.S. Pat. Nos. 3,560,641 and 3,586,907.
With regard to the present invention, it will be seen the coating material will tend to form pendulous masses, as indicated at 38 in FIG. 3 of the drawings,
which weep coating material downwardly, contaminating other components of the generator, such as the charge rings 32. To avoid this, chamber 14 is prepressurized with the system shown somewhat schematically in FIG. 1 of the drawings.
Thus, a gas port 40 is provided leadingto one end of the chamber 14 while a liquid port 52 communicates with the opposite end of the chamber. A gas, such as air, is pumped through line 44 and valve 46 by means indicated at 4 8. A second line 50 also communicates with the gas port 40 and is provided with a valve 52 and a source of negative pressure as indicated at 54. A bleed line 55 also branches from port 40, controlled by valve 56.
Liquid port 42 may be fed by line 57, which includes a'valve 58 and is connected with means, as indicated at 60, for pumping a flushing liquid through the line 57. Also connected to port 42 isa line 62, controlled by valve 64, and through which coating material may be.
pumped by pump 66.
With the above system the sequence of operation is as follows. Alllines leading to the chamber 14 are closed. Next, valve 46 is opened, allowing air or other pressurizing gas to be pumped through line 44 by means of pump 48 at a pressure in excess of operating pressure. The pressure and flow rate of, gas issuch that the pressure in the chamber 14 quickly rises to a pressure above normal operating pressure, despite the escape of gas through the orifices 28.
Coating material may then be introduced into the system by opening valve 64 and pumping. the coating at or above operating pressure through liquid port 42. The coating material will advance through the chamber 14 in a coherent wave, from right to left as seen in FIG. 1 of the drawings. Since it is at or above operating pressure as it reaches each of the orifices, free standing jets are formed, as seen at 70 in FIG. 4 of the drawings,
which break down into series of discrete drops 72. Preferably, valve 46 is closed about 0.3 opening of valve 64. 1
As the flow at each of the orifices transfer'sfrom gas to liquid, a slight misting may be'experienced'. If this is found to be objectionable, a'flushing liqu'id may be introduced into the manifold before the introduction of coating material. Thus, the above procedure may be modified as follows. i i 7 With all valves initially closed, valves4'6 and 58 are opened, allowing gas to be pumped from source 48 and a flushing liquid to be pumped from source 60, both the gas and flushing liquid being at 'a pressure in excess of operating pressure. Again, the liquid entering the chamber 14 will advance as a coherent wave, replacing the gas flow at each of the orifices 28 with a liquid flow at or above operating pressure.
While the transfer from gas to flushing liquid may also result in a fine mist or spray at each of the orifices 28, this will not affect or contaminate the components seconds after the j of the generator since the flushing liquid is formulated such that it leaves virtually no residue upon evapora-v tion.
After the free standing jets of flushing liquid are formed at each of the orifices 28 and the valve 46 has been closed, valve 64 is opened and simultaneously valve 58 is closed. This allows coating material at or above operating pressure. to flow through line 62 and liquid port 42 into the chamber l4, displacing any .flushing liquid therein with coating ,material. Thereafter, any air or other gas which may remain in the system may be bledout through line and valve 56.
When it is desired to terminate operation of the drop generator, valve 64 is ,closed and valve 58 opened, causing the flow of coating material to be replaced by a flow of flushing liquid. Thereafter, valve. 58 is closed and valve 52 is simultaneously opened, causing both the flow of flushing liquid to terminate and the evacuation of the system to a waste sump operating at a pressure substantially below. atmospheric pressure. This sudden reduction in pressure in the system is sufficient to terminate the jets without producing erratic drops below the orifices or allowing coating material to collect in pendulous masses about the orifices.
Under normal operating conditions, providing pressurizing gas at approximately l8 psi, flushing liquid at approximately 20 psi and coating'at approximately 1 1 psi has been found satisfactory for the usual range of viscosities found in coating materials such as ink and with an orifice plate having 60!) orifices of 1.5 mil diameter. Additionally, evacuating the drop generator upon termination of operations to a waste sump' at approximately inches of mercury below atmospheric pressure has been found satisfactory.
From the above it will be apparent that the present invention provides method and apparatus for operating a drop generator without the problems normally associated with start up and shut down procedures.
While the methods and forms of apparatus herein described constitute preferred embodiments of the invention, it is to be understood that the invention is not limited to these precise methods and forms of apparatus, and that changes may be made therein without departing from the scope of the invention.
What is claimed is:
l. A method of commencing operation of a drop generator which includes orifice defining means and a manifold communicating with said orifice defining means for providing a supply of liquid coating material thereto comprising:
a. pressurizing said manifold with a gas to a pressure above the coating pressure necessary to cause said coating material to be ejected from said orifice defining means as a free standing filament which forms a series of discrete drops, and
b. thereafter introducing said coating material into said manifold at a pressure no less than said coating pressure.
2. The method of claim 1 wherein said step of pressurizing said manifold with gas comprises:
a. pressurizing said manifold with gas at approximately 18 psi.
3. The method of claim 1 wherein said step of introducing coating material into said manifold comprises:
a. introducing said coating material into said manifold at approximately 11 psi.
4. The method of claim 1 further comprising:
a. adding a flushing liquid to said manifold after said step of pressurizing said manifold with gas and before introducing said coating material into said manifold.
5. The method of claim 4 wherein said step of adding flushing liquid comprises:
a. adding said flushing liquid at approximately 20 psi.
6. The method of claim 4 further comprising:
a. discontinuing said adding of said flushing liquid to said manifold while continuing said step of introducing said coating material into said manifold,
b. discontinuing introducing said coating material into said manifold and commencing adding flushing liquid to said manifold, and
c. evacuating said manifold.
7. The method of claim 6 wherein said step of evacuating said manifold comprises:
a. evacuating said manifold at a negative pressure of approximately 15 inches of mercury below atmospheric pressure.
8. The method of claim 1 wherein said step of pressurizing said manifold with a gas comprises:
a. pumping gas under pressure into said manifold.
9. The method of claim 8 further comprising:
a. discontinuing said pumping of said gas into said manifold after said coating material is introduced into said manifold at said coating pressure.
10. A method of operating a drop generator which includes an orifice plate having means defining a plurality of small diameter orifices therethrough, a manifold communicating with said orifices for providing a supply of coating material thereto, and a gas port and a liquid port communicating with said manifold comprising:
a. pumping air into said manifold through said gas port at approximately 18 psi,
b. pumping a mixture of distilled, deionized water and denatured alcohol through said liquid port and into said manifold at approximately 20 psi,
c. discontinuing said pumping of air into said manifold,
d. discontinuing said pumping of said mixture after said manifold is full of said mixture and commencing pumping of coating material through said liquid port into said manifold at approximately 11 psi,
e. bleeding any remaining air in said manifold out through said gas port,
f; continuing pumping of said coating material into said manifold to cause fine filaments of said coatin g material to be ejected through said orifices and form a series of discrete drops,
g. discontinuing pumping of said coating material and commencing pumping of said mixture through said liquid port into said manifold, and
h. substantially simultaneously discontinuing pumping of said mixture and evacuating said manifold through said gas port at a negative pressure of approximately 15 inches of mercury below atmospheric pressure.

Claims (10)

1. A method of commencing operation of a drop generator which includes orifice defining means and a manifold communicating with said orifice defining means for providing a supply of liquid coating material thereto comprising: a. pressurizing said manifold with a gas to a pressure above the coating pressure necessary to cause said coating material to be ejected from said orifice defining means as a free standing filament which forms a series of discrete drops, and b. thereafter introducing said coating material into said manifold at a pressure no less than said coating pressure.
2. The method of claim 1 wherein said step of pressurizing Said manifold with gas comprises: a. pressurizing said manifold with gas at approximately 18 psi.
3. The method of claim 1 wherein said step of introducing coating material into said manifold comprises: a. introducing said coating material into said manifold at approximately 11 psi.
4. The method of claim 1 further comprising: a. adding a flushing liquid to said manifold after said step of pressurizing said manifold with gas and before introducing said coating material into said manifold.
5. The method of claim 4 wherein said step of adding flushing liquid comprises: a. adding said flushing liquid at approximately 20 psi.
6. The method of claim 4 further comprising: a. discontinuing said adding of said flushing liquid to said manifold while continuing said step of introducing said coating material into said manifold, b. discontinuing introducing said coating material into said manifold and commencing adding flushing liquid to said manifold, and c. evacuating said manifold.
7. The method of claim 6 wherein said step of evacuating said manifold comprises: a. evacuating said manifold at a negative pressure of approximately 15 inches of mercury below atmospheric pressure.
8. The method of claim 1 wherein said step of pressurizing said manifold with a gas comprises: a. pumping gas under pressure into said manifold.
9. The method of claim 8 further comprising: a. discontinuing said pumping of said gas into said manifold after said coating material is introduced into said manifold at said coating pressure.
10. A method of operating a drop generator which includes an orifice plate having means defining a plurality of small diameter orifices therethrough, a manifold communicating with said orifices for providing a supply of coating material thereto, and a gas port and a liquid port communicating with said manifold comprising: a. pumping air into said manifold through said gas port at approximately 18 psi, b. pumping a mixture of distilled, deionized water and denatured alcohol through said liquid port and into said manifold at approximately 20 psi, c. discontinuing said pumping of air into said manifold, d. discontinuing said pumping of said mixture after said manifold is full of said mixture and commencing pumping of coating material through said liquid port into said manifold at approximately 11 psi, e. bleeding any remaining air in said manifold out through said gas port, f. continuing pumping of said coating material into said manifold to cause fine filaments of said coating material to be ejected through said orifices and form a series of discrete drops, g. discontinuing pumping of said coating material and commencing pumping of said mixture through said liquid port into said manifold, and h. substantially simultaneously discontinuing pumping of said mixture and evacuating said manifold through said gas port at a negative pressure of approximately 15 inches of mercury below atmospheric pressure.
US277998A 1972-08-04 1972-08-04 Method of operating a drop generator that includes the step of pre-pressurizing the liquid manifold Expired - Lifetime US3891121A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US277998A US3891121A (en) 1972-08-04 1972-08-04 Method of operating a drop generator that includes the step of pre-pressurizing the liquid manifold
CA176,769A CA974292A (en) 1972-08-04 1973-07-18 Non splattering drop generator and method of operation
DE2338102A DE2338102C3 (en) 1972-08-04 1973-07-27 Procedure for commissioning a drop generator
JP48085055A JPS5230327B2 (en) 1972-08-04 1973-07-30
GB3699173A GB1436215A (en) 1972-08-04 1973-08-03 Drop generator and method of operation
JP1156674A JPS5410451B2 (en) 1972-08-04 1974-01-29
HK812/79A HK81279A (en) 1972-08-04 1979-11-29 Drop generator and method of operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US277998A US3891121A (en) 1972-08-04 1972-08-04 Method of operating a drop generator that includes the step of pre-pressurizing the liquid manifold

Publications (1)

Publication Number Publication Date
US3891121A true US3891121A (en) 1975-06-24

Family

ID=23063259

Family Applications (1)

Application Number Title Priority Date Filing Date
US277998A Expired - Lifetime US3891121A (en) 1972-08-04 1972-08-04 Method of operating a drop generator that includes the step of pre-pressurizing the liquid manifold

Country Status (6)

Country Link
US (1) US3891121A (en)
JP (2) JPS5230327B2 (en)
CA (1) CA974292A (en)
DE (1) DE2338102C3 (en)
GB (1) GB1436215A (en)
HK (1) HK81279A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031561A (en) * 1976-05-03 1977-06-21 The Mead Corporation Startup apparatus and method for jet drop recording with relatively movable charge plate and orifice plate
US4042937A (en) * 1976-06-01 1977-08-16 International Business Machines Corporation Ink supply for pressurized ink jet
US4080608A (en) * 1976-07-12 1978-03-21 The Mead Corporation Fluidics system for a jet drop printer
US4207578A (en) * 1979-01-08 1980-06-10 The Mead Corporation Catch trough for a jet drop recorder
US4234885A (en) * 1979-09-10 1980-11-18 A. B. Dick Company Remote ink valve
US4240082A (en) * 1979-02-28 1980-12-16 The Mead Corporation Momentumless shutdown of a jet drop recorder
US4256610A (en) * 1979-05-25 1981-03-17 The Mead Corporation Cleaning composition for use in an ink jet recorder
US4286272A (en) * 1979-08-13 1981-08-25 The Mead Corporation Ink jet printer and start up method therefor
EP0044751A2 (en) * 1980-07-23 1982-01-27 The Mead Corporation An ink jet fluid system and device, and a method of preventing fluid flow from an ink jet print head after shut-down
US4314264A (en) * 1980-08-15 1982-02-02 The Mead Corporation Ink supply system for an ink jet printer
US4318114A (en) * 1980-09-15 1982-03-02 The Mead Corporation Ink jet printer having continuous recirculation during shut down
US4390883A (en) * 1981-09-08 1983-06-28 The Mead Corporation Fluid jet print head and method of terminating operation thereof
US4399446A (en) * 1982-01-18 1983-08-16 The Mead Corporation Ink supply system for an ink jet printer
US4404566A (en) * 1982-03-08 1983-09-13 The Mead Corporation Fluid system for fluid jet printing device
US4422080A (en) * 1981-12-17 1983-12-20 International Business Machines Ink jet printing method and apparatus
US4523202A (en) * 1981-02-04 1985-06-11 Burlington Industries, Inc. Random droplet liquid jet apparatus and process
US4644369A (en) * 1981-02-04 1987-02-17 Burlington Industries, Inc. Random artificially perturbed liquid jet applicator apparatus and method
US4698642A (en) * 1982-09-28 1987-10-06 Burlington Industries, Inc. Non-artifically perturbed (NAP) liquid jet printing
US4831385A (en) * 1987-10-14 1989-05-16 Burlington Industries, Inc. Vacuum tray fluid-jet start-up system
US5195654A (en) * 1990-05-17 1993-03-23 Neste Oy Method for feeding a mud-like catalyst into a polymerization reactor
WO1993017867A1 (en) * 1992-03-12 1993-09-16 Willett International Limited Method for flushing an ink flow system
US5532720A (en) * 1993-09-15 1996-07-02 Quad/Tech, Inc. Solvent recovery system for ink jet printer
US5691753A (en) * 1994-03-15 1997-11-25 Xerox Corporation Valving connector and ink handling system for thermal ink-jet printbar
EP1013440A2 (en) * 1998-12-14 2000-06-28 SCITEX DIGITAL PRINTING, Inc. Fluid flush system for ink jet printing system
EP1013438A1 (en) * 1998-12-14 2000-06-28 SCITEX DIGITAL PRINTING, Inc. Flush system for ink change
EP1013460A3 (en) * 1998-12-14 2000-10-25 SCITEX DIGITAL PRINTING, Inc. Improved vacuum system for continuous ink jet printers
EP1364800A1 (en) 2002-05-24 2003-11-26 Agfa-Gevaert Improved recording element for ink jet printing.
EP1375173A1 (en) 2002-06-27 2004-01-02 Agfa-Gevaert Ink jet image improved for light-fastness
US20040012648A1 (en) * 2002-07-16 2004-01-22 Canon Kabushiki Kaisha Ink-jet printing apparatus and recovery treatment method thereof
EP1393922A1 (en) 2002-08-27 2004-03-03 Agfa-Gevaert Improved ink jet recording material
EP1398166A1 (en) 2002-09-11 2004-03-17 Agfa-Gevaert Ink jet recording material and light-stabilising agent
EP1410921A1 (en) 2002-10-15 2004-04-21 Agfa-Gevaert Ink jet recording material and light-stabilising compound
EP1419893A1 (en) 2002-11-18 2004-05-19 Agfa-Gevaert Improved ink jet recording material
EP1437230A1 (en) 2003-01-10 2004-07-14 Agfa-Gevaert Ink-jet recording material
US20040142123A1 (en) * 2003-01-10 2004-07-22 Aert Huub Van Ink-jet recording material
US20040191432A1 (en) * 2003-03-18 2004-09-30 Johan Loccufier Ink jet recording material improved for light-and gas-fastness
US20040244643A1 (en) * 2003-06-05 2004-12-09 Voeght Frank De UV-absorbing ink composition for ink-jet printing
US20050083368A1 (en) * 2002-10-04 2005-04-21 West Kenneth J. Automatic startup for a solvent ink printing system
US20050190245A1 (en) * 2004-02-20 2005-09-01 Agfa-Gevaert Ink-jet printing system
EP1586459A1 (en) 2004-02-20 2005-10-19 Agfa-Gevaert Improved ink-jet printing system
US20050248608A1 (en) * 2004-05-05 2005-11-10 Devivo Daniel J Method of shutting down a continuous ink jet printer for maintaining positive pressure at the printhead
US20050247235A1 (en) * 2004-05-06 2005-11-10 Agfa-Gevaert N.V. Multi-density ink-jet ink set for ink-jet printing
US20060170745A1 (en) * 2004-12-21 2006-08-03 Agfa-Gevaert Ink-jet ink set for producing images with large colour gamut and high stability
US20070188542A1 (en) * 2006-02-03 2007-08-16 Kanfoush Dan E Apparatus and method for cleaning an inkjet printhead
EP2722181A1 (en) * 2012-10-22 2014-04-23 FUJIFILM Corporation Nozzle plate maintenance for fluid ejection devices
US8888208B2 (en) 2012-04-27 2014-11-18 R.R. Donnelley & Sons Company System and method for removing air from an inkjet cartridge and an ink supply line
EP3124279A1 (en) 2015-07-28 2017-02-01 Grandeco Wallfashion Group - Belgium Method to produce wallpaper with minimum side effects
US10124597B2 (en) 2016-05-09 2018-11-13 R.R. Donnelley & Sons Company System and method for supplying ink to an inkjet printhead
US10137691B2 (en) 2016-03-04 2018-11-27 R.R. Donnelley & Sons Company Printhead maintenance station and method of operating same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832487B2 (en) * 1977-03-09 1983-07-13 清蔵 宮田 Manufacturing method of polymer electret device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650003A (en) * 1948-03-08 1953-08-25 Coleman Clarence Buyer Drip arresting apparatus
US3560641A (en) * 1968-10-18 1971-02-02 Mead Corp Image construction system using multiple arrays of drop generators
US3727804A (en) * 1970-11-30 1973-04-17 Gen Motors Corp Viscous fluid dispenser with valved chamber receiving circulating viscous fluid
US3764041A (en) * 1970-10-26 1973-10-09 Searle & Co Microdispensing process and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650003A (en) * 1948-03-08 1953-08-25 Coleman Clarence Buyer Drip arresting apparatus
US3560641A (en) * 1968-10-18 1971-02-02 Mead Corp Image construction system using multiple arrays of drop generators
US3764041A (en) * 1970-10-26 1973-10-09 Searle & Co Microdispensing process and apparatus
US3727804A (en) * 1970-11-30 1973-04-17 Gen Motors Corp Viscous fluid dispenser with valved chamber receiving circulating viscous fluid

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031561A (en) * 1976-05-03 1977-06-21 The Mead Corporation Startup apparatus and method for jet drop recording with relatively movable charge plate and orifice plate
US4042937A (en) * 1976-06-01 1977-08-16 International Business Machines Corporation Ink supply for pressurized ink jet
US4080608A (en) * 1976-07-12 1978-03-21 The Mead Corporation Fluidics system for a jet drop printer
US4207578A (en) * 1979-01-08 1980-06-10 The Mead Corporation Catch trough for a jet drop recorder
US4240082A (en) * 1979-02-28 1980-12-16 The Mead Corporation Momentumless shutdown of a jet drop recorder
US4256610A (en) * 1979-05-25 1981-03-17 The Mead Corporation Cleaning composition for use in an ink jet recorder
US4286272A (en) * 1979-08-13 1981-08-25 The Mead Corporation Ink jet printer and start up method therefor
US4234885A (en) * 1979-09-10 1980-11-18 A. B. Dick Company Remote ink valve
EP0044751A2 (en) * 1980-07-23 1982-01-27 The Mead Corporation An ink jet fluid system and device, and a method of preventing fluid flow from an ink jet print head after shut-down
US4329696A (en) * 1980-07-23 1982-05-11 The Mead Corporation Ink jet fluid system
EP0044751A3 (en) * 1980-07-23 1982-12-08 The Mead Corporation An ink jet fluid system and device, and a method of preventing fluid flow from an ink jet print head after shut-down
US4314264A (en) * 1980-08-15 1982-02-02 The Mead Corporation Ink supply system for an ink jet printer
US4318114A (en) * 1980-09-15 1982-03-02 The Mead Corporation Ink jet printer having continuous recirculation during shut down
US4523202A (en) * 1981-02-04 1985-06-11 Burlington Industries, Inc. Random droplet liquid jet apparatus and process
US4644369A (en) * 1981-02-04 1987-02-17 Burlington Industries, Inc. Random artificially perturbed liquid jet applicator apparatus and method
US4390883A (en) * 1981-09-08 1983-06-28 The Mead Corporation Fluid jet print head and method of terminating operation thereof
US4422080A (en) * 1981-12-17 1983-12-20 International Business Machines Ink jet printing method and apparatus
US4399446A (en) * 1982-01-18 1983-08-16 The Mead Corporation Ink supply system for an ink jet printer
US4404566A (en) * 1982-03-08 1983-09-13 The Mead Corporation Fluid system for fluid jet printing device
US4698642A (en) * 1982-09-28 1987-10-06 Burlington Industries, Inc. Non-artifically perturbed (NAP) liquid jet printing
US4831385A (en) * 1987-10-14 1989-05-16 Burlington Industries, Inc. Vacuum tray fluid-jet start-up system
US5195654A (en) * 1990-05-17 1993-03-23 Neste Oy Method for feeding a mud-like catalyst into a polymerization reactor
WO1993017867A1 (en) * 1992-03-12 1993-09-16 Willett International Limited Method for flushing an ink flow system
US5532720A (en) * 1993-09-15 1996-07-02 Quad/Tech, Inc. Solvent recovery system for ink jet printer
US5691753A (en) * 1994-03-15 1997-11-25 Xerox Corporation Valving connector and ink handling system for thermal ink-jet printbar
EP1013440A2 (en) * 1998-12-14 2000-06-28 SCITEX DIGITAL PRINTING, Inc. Fluid flush system for ink jet printing system
EP1013438A1 (en) * 1998-12-14 2000-06-28 SCITEX DIGITAL PRINTING, Inc. Flush system for ink change
EP1013460A3 (en) * 1998-12-14 2000-10-25 SCITEX DIGITAL PRINTING, Inc. Improved vacuum system for continuous ink jet printers
EP1013440A3 (en) * 1998-12-14 2000-11-15 SCITEX DIGITAL PRINTING, Inc. Fluid flush system for ink jet printing system
EP1364800A1 (en) 2002-05-24 2003-11-26 Agfa-Gevaert Improved recording element for ink jet printing.
EP1375173A1 (en) 2002-06-27 2004-01-02 Agfa-Gevaert Ink jet image improved for light-fastness
US7021731B2 (en) * 2002-07-16 2006-04-04 Canon Kabushiki Kaisha Ink-jet printing apparatus and recovery treatment method thereof
US20040012648A1 (en) * 2002-07-16 2004-01-22 Canon Kabushiki Kaisha Ink-jet printing apparatus and recovery treatment method thereof
EP1393922A1 (en) 2002-08-27 2004-03-03 Agfa-Gevaert Improved ink jet recording material
EP1398166A1 (en) 2002-09-11 2004-03-17 Agfa-Gevaert Ink jet recording material and light-stabilising agent
US20050083368A1 (en) * 2002-10-04 2005-04-21 West Kenneth J. Automatic startup for a solvent ink printing system
US7055931B2 (en) 2002-10-04 2006-06-06 Eastman Kodak Company Automatic startup for a solvent ink printing system
EP1410921A1 (en) 2002-10-15 2004-04-21 Agfa-Gevaert Ink jet recording material and light-stabilising compound
EP1419893A1 (en) 2002-11-18 2004-05-19 Agfa-Gevaert Improved ink jet recording material
EP1419897A1 (en) 2002-11-18 2004-05-19 Agfa-Gevaert Ink jet recording material
EP1437230A1 (en) 2003-01-10 2004-07-14 Agfa-Gevaert Ink-jet recording material
US20040142123A1 (en) * 2003-01-10 2004-07-22 Aert Huub Van Ink-jet recording material
US20040191432A1 (en) * 2003-03-18 2004-09-30 Johan Loccufier Ink jet recording material improved for light-and gas-fastness
US20040244643A1 (en) * 2003-06-05 2004-12-09 Voeght Frank De UV-absorbing ink composition for ink-jet printing
US7141104B2 (en) 2003-06-05 2006-11-28 Agfa-Gevaert UV-absorbing ink composition for ink-jet printing
US7278728B2 (en) 2004-02-20 2007-10-09 Agfa Graphics Nv Ink-jet printing system
EP1586459A1 (en) 2004-02-20 2005-10-19 Agfa-Gevaert Improved ink-jet printing system
US20050190245A1 (en) * 2004-02-20 2005-09-01 Agfa-Gevaert Ink-jet printing system
US20050248608A1 (en) * 2004-05-05 2005-11-10 Devivo Daniel J Method of shutting down a continuous ink jet printer for maintaining positive pressure at the printhead
US7213902B2 (en) * 2004-05-05 2007-05-08 Eastman Kodak Company Method of shutting down a continuous ink jet printer for maintaining positive pressure at the printhead
US20050247235A1 (en) * 2004-05-06 2005-11-10 Agfa-Gevaert N.V. Multi-density ink-jet ink set for ink-jet printing
US20060170745A1 (en) * 2004-12-21 2006-08-03 Agfa-Gevaert Ink-jet ink set for producing images with large colour gamut and high stability
US20070188542A1 (en) * 2006-02-03 2007-08-16 Kanfoush Dan E Apparatus and method for cleaning an inkjet printhead
US7918530B2 (en) 2006-02-03 2011-04-05 Rr Donnelley Apparatus and method for cleaning an inkjet printhead
US8888208B2 (en) 2012-04-27 2014-11-18 R.R. Donnelley & Sons Company System and method for removing air from an inkjet cartridge and an ink supply line
EP2722181A1 (en) * 2012-10-22 2014-04-23 FUJIFILM Corporation Nozzle plate maintenance for fluid ejection devices
US8870341B2 (en) * 2012-10-22 2014-10-28 Fujifilm Corporation Nozzle plate maintenance for fluid ejection devices
CN103770465A (en) * 2012-10-22 2014-05-07 富士胶片株式会社 Nozzle plate maintenance for fluid ejection devices
CN103770465B (en) * 2012-10-22 2016-08-17 富士胶片株式会社 Ink jet-print head and method for ink jet printing
EP3124279A1 (en) 2015-07-28 2017-02-01 Grandeco Wallfashion Group - Belgium Method to produce wallpaper with minimum side effects
US10137691B2 (en) 2016-03-04 2018-11-27 R.R. Donnelley & Sons Company Printhead maintenance station and method of operating same
US10124597B2 (en) 2016-05-09 2018-11-13 R.R. Donnelley & Sons Company System and method for supplying ink to an inkjet printhead

Also Published As

Publication number Publication date
DE2338102C3 (en) 1980-01-03
GB1436215A (en) 1976-05-19
CA974292A (en) 1975-09-09
JPS4953735A (en) 1974-05-24
DE2338102B2 (en) 1979-05-03
JPS5410451B2 (en) 1979-05-07
JPS5035235A (en) 1975-04-03
HK81279A (en) 1979-12-07
JPS5230327B2 (en) 1977-08-08
DE2338102A1 (en) 1974-02-14

Similar Documents

Publication Publication Date Title
US3891121A (en) Method of operating a drop generator that includes the step of pre-pressurizing the liquid manifold
US3798656A (en) Ink return system for a multijet ink jet printer
US4146900A (en) Printing system
US4378564A (en) Ink jet printing apparatus and process
DK173707B1 (en) Spray apparatus and a method for electrostatic spraying of liquid
CA1157311A (en) Ink supply system for an ink jet printer
US4399446A (en) Ink supply system for an ink jet printer
US4318114A (en) Ink jet printer having continuous recirculation during shut down
US3876144A (en) Solvent cleaning of spray nozzles
US3750955A (en) Spray coating apparatus
US4404566A (en) Fluid system for fluid jet printing device
US4630774A (en) Foam generating nozzle
DE3572786D1 (en) Method for operating an ink jet device to obtain high resolution printing
US4031561A (en) Startup apparatus and method for jet drop recording with relatively movable charge plate and orifice plate
EP0107173B1 (en) Foam generating nozzle
DE2724548A1 (en) INK SUPPLY SYSTEM FOR INKJET PRINTERS
US4360817A (en) Low evaporation ink catcher for ink jet printing system
JPH0452217B2 (en)
US4412906A (en) Sputtering apparatus
US3618858A (en) Drop charging bar
JPS555874A (en) Ink collecting device in jet printer
EP0720534A1 (en) High frequency drop-on-demand ink jet system
SE443743B (en) INSTRUMENT PRINTERS AND WAY TO STOP A INSTRUMENT PRINTER
CN111791599B (en) Color digital printing machine
US3713873A (en) Electrostatic spray coating methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: EASTMAN KODAK COMPANY A NJ CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MEAD CORPORATION THE A CORP. OF OH;REEL/FRAME:004237/0482

Effective date: 19831206

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)