US3891025A - Apparatus for withdrawing a casting and feeding a dummy bar in a continuous casting machine for steel - Google Patents

Apparatus for withdrawing a casting and feeding a dummy bar in a continuous casting machine for steel Download PDF

Info

Publication number
US3891025A
US3891025A US446902A US44690274A US3891025A US 3891025 A US3891025 A US 3891025A US 446902 A US446902 A US 446902A US 44690274 A US44690274 A US 44690274A US 3891025 A US3891025 A US 3891025A
Authority
US
United States
Prior art keywords
casting
rolls
roll
withdrawing
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US446902A
Inventor
Georg Bollig
Horst Grothe
Bernhard Knell
Armin Thalmann
Josef Zeller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
Schloemann Siemag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US00267531A external-priority patent/US3812900A/en
Application filed by Schloemann Siemag AG filed Critical Schloemann Siemag AG
Priority to US446902A priority Critical patent/US3891025A/en
Application granted granted Critical
Publication of US3891025A publication Critical patent/US3891025A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1226Accessories for subsequent treating or working cast stock in situ for straightening strands

Definitions

  • Kleeman 5 7 ABSTRACT An apparatus for operating a multiple-roll machine, especially a multiple-roll withdrawing machine or a multiple-roll combination withdrawing and straightening machine in a continuous steel casting plant.
  • cooperating pairs of rolls at least one of which constitutes a driven roll, and means for adjusting the gap between the cooperating pairs of rolls.
  • Stop means limit the adjustment of the gap between the cooperating pairs of rolls to the prescribed thickness of the casting.
  • Means serve for moving at least one roll of the pairs of rolls towards the casting beyond the stop means defining the prescribed thickness of the casting.
  • the moving means generating a thrust which is smaller than that generated by the adjusting means, and said thrust substantially corresponding to the requisite contact pressure for generating the necessary withdrawal force for the casting.
  • the present invention relates to a new and improved apparatus for withdrawing a casting during and after the liquid core has frozen and feeding a dummy bar in a multiple-roll withdrawing machine or a multiple roll withdrawing and straightening machine in a continuous casting plant for steel equipped with an at least partly arched apron, which contemplates applying to the casting and thc dummy bar as they pass between the pairs of driving and/or straightening rolls, by means of each pair of rolls, the requisite contact pressure for generating the necessary traction or withdrawal force.
  • the withdrawing machine in a continuous casting plant withdraws the casting by frictionally engaging same, and a withdrawing and straightening machine also straightens the arched or curved casting. In many continuous casting installations the withdrawing machine is also used to feed the dummy bar back to the mold.
  • the driving rolls In order to enable the driving rolls to apply the withdrawal, i.e., traction or braking force to the casting and the dummy bar. these rolls must contact the casting and the dummy bar with the requisite amount of pressure. These contact pressures depend upon the required withdrawal or braking effort, the coefficient of friction between the casting or dummy bar and each of the driving rolls as well as upon the number of driving rolls present.
  • the contact pressure of the driving rolls depends upon the ferrostatic pressure and must be suffcient to prevent the casting from bulging.
  • the contact pressure needed for straightening the casting considerably depends upon the temperature of the casting. With such castings the contact pressure required for straightening is less than the pressure needed to prevent bulg-
  • the straightening and driving rolls of so-called multiple roll withdrawing and straightening machines are distributed along a major portion of the path of the casting. At least some of the straightening and driving rolls may make contact with the casting where such still has a liquid core.
  • the temperature of the casting will also vary as well as the position of the apex of the liquid core.
  • the apex of the liquid core freezes the ferrostatic pressure on the frozen shell will disappear, but the casting still is very plastic and easily deformable.
  • a temperature range of a slab between 900C and l050C in the withdrawing and straightening machine corresponds to a range of its deformation resistance between about 3 and 7 kg/mm?
  • the contact pressures which prevent bulging of castings still having a liquid core are then quite sufficient to cause a significant reduction in thickness by about 2 to ID mm. in the zone where the liquid core of a slab has just frozen.
  • Another withdrawing and straightening machine known in the art for a continuous steel casting plant has separate sections each comprising three upper and three bottom rolls.
  • the three upper rolls are mounted in a yoke which is tiltable roughly about the axis of the center roll and adjustably movable in a direction normal to the guided surface of the casting.
  • the middle roll of the bottom set is mounted in fixed bearings in the supporting framework, whereas the two outer bottom rolls are yieldingly mounted on thrust cylinders.
  • In order to control the ferrostatic pressure of the liquid core and to prevent bulging this machine also requires the application of contact pressures by both the upper rolls and by the yieldingly mounted lower rolls. In such withdrawing and straightening machines an undesirable reduction of the required thickness of the steel casting immediately after the solidification of the liquid core can therefore also occur.
  • Another object of the invention is the provision of a withdrawing and/or straightening machine having new and improved means for controlling the desired thickness of a casting and to provide adjustments necessary for preventing any undesirable reduction in the casting thickness.
  • the proposed method achieves these objects by applying only the contact pressure required for traction, i.e., withdrawing or feeding when the thickness of the casting falls below the prescribed thickness and raising the contact pressure to a higher value calculated to reduce the casting to its prescribed thickness when this is exceeded.
  • the apparatus for performing this method contemplates that at least one roll of each pair of rolls is mov able by additional thrustors or forceapplying devices towards the casting beyond a stop defining the prescribed thickness, but that the thrust or contact force generated by said thrustors is smaller than that generated by the cylinder-and-piston units.
  • the proposed method enables the portion of a casting in which the liquid core is still present or in which the liquid core has just frozen to be merely withdrawn or to be withdrawn and straightened in multiple-roll withdrawing or in multiple-roll withdrawing and straightening machines practically without changing its predetermined thickness and irrespective of any changes that may occur in the casting parameters. Tolerances can be maintained within 1% of the prescribed thickness in such a casting. ln heats used for the production of plate the method according to the invention also permits avoiding internal flaws caused by undesirable roll squeezing. Furthermore, dummy bars or standard dummy bars having cross-sections that are smaller than the thicknesses of the castings by any amount can be readily fed to the mold and withdrawn.
  • Another proposal according to the invention therefore provides for a comparison to be made between the actual positions of the outer rolls and the reference positions the rolls should occupy if the thickness of the casting were as prescribed.
  • the proposed apparatus for performing this method comprising rolls mounted on yokes is manifested by the association with the yoke near the bearings of the outer rolls of position reporting or transmitting devices for signalling the position of the rolls in relation to their positions corresponding to the prescribed thickness of the casting, and by the association with each roll of independently controllable supporting means which oppose the contact pressure exerted by the rolls.
  • the driving rolls may apply the same contact pres sure to a casting which is thinner than the prescribed thickness as to a dummy bar which is also thinner than the prescribed casting thickness.
  • different contact pressures may be applied to a casting which is thinner than the prescribed thickness and to a dummy bar which is thinner than the prescribed thickness of a casting by taking advantage of the differential coefficients of friction between the driving rolls and the casting respectively of the dummy bar.
  • An advantageous embodiment of the proposed appa ratus consists in mounting the thrustors on the piston rods of the piston-and-cylinder units.
  • the thrustors may be inexpensively and simply con stituted by stacks of Belloile or cup springs However. in order to permit the pressure generating force to be quickly and precisely adjusted when the width of the casting changes, it is preferred to embody the thrustors in hydraulic piston-and-cylinder units.
  • another feature of the invention consists in providing exchangeable abutment or intermediate members between the stops on the piston rods and the associated cylinders for suitably varying the gap width between the rolls which determines the pre scribed thickness of the casting.
  • the bottom driving and straightening rolls may be firmly supported by the structure of the machine and only the upper rolls arranged to be movable perpendicular to the casting surface.
  • these buffer members may be differential thrustors so designed that they generate considerable thrust in the range from the abutment defining the prescribed thickness away from the casting and a weak thrust in the range from the abutment towards the casting.
  • the proposed method according to yet another feature of the invention. can be performed with apparatus in which position reporting or transmitting devices for monitoring the actual thickness of the casting are provided and these are connected to a comparator. servo means being provided to control the pressure fluid for the piston-and-eylinder units in functional dependence upon the difference signal between the actual and reference thickness values appearing at the output of the comparator. Yet another advantage of such apparatus is that it permits the plant to be re-adjusted to a fresh casting program within the shortest possible stopping time between two pours.
  • FIG. 1 is a side elevation of a partially shown multiple-roll withdrawing and straightening machine
  • FIG. 2 is a sectional view, taken substantially along the line IIII of FIG. 3, of a different embodiment of partially shown multiple-roll withdrawing and straightening machine;
  • FIG. 3 is a sectional view taken substantially along the line llllll of FIG. 2;
  • FIG. 4 is a schematic side elevation of yet another embodiment of partially illustrated multiple-roll withdrawing and straightening machine.
  • FIG. 5 is a schematic representation of a further embodiment of apparatus designed according to the invention.
  • FIG. 1 illustrates an arcuately bent casting 1, one part of which still contains a liquid core 9, this casting 1 being withdrawn by and straightened in a multiple-roll withdrawing and straightening machine 2.
  • Adjustable driving or driven rolls 3, 3' which according to their position along the part of the casting also serve to straighten the same, bear upon the upper surface of the casting 1, whereas the underside of the casting is supported by reaction rolls 4 which are mounted in fixed bearings on the foundations of the machine.
  • Opposed driving rolls 3, 3' and reaction rolls 4 form pairs of withdrawing or withdrawing and straightening rolls. Normally only one roll of each pair will be driven. If for reasons of product quality the traction, i.e., withdrawal force or drive should be applied symmetrically, then both rolls of each pair may be driven.
  • the driving rolls 3 can be displaced by suitable means, here shown for instance in the form of fluid-operated piston-andcylinder units 5, towards the cooperating reaction rolls 4 until stops 6 impact against abutment or intermediate members 7. These abutment members 7 are exchangeable to permit an adjustable variation of the gap between cooperating rolls 3 and 4 which determine the reference or prescribed thickness of the casting.
  • the rolls 3 also can be adjustably moved by additional hydraulic thrustors or force generating devices I0, 10' mounted on the piston rods 50 of the piston-and-cylinder units 5, towards the casting l or towards a dummy bar 11, preferably a standard dummy bar suitable for castings having a range of different thicknesses.
  • additional hydraulic thrustors or force generating devices I0, 10' mounted on the piston rods 50 of the piston-and-cylinder units 5, towards the casting l or towards a dummy bar 11, preferably a standard dummy bar suitable for castings having a range of different thicknesses.
  • the casting I should exceed its prescribed thickness during its pass between the rolls 3, 4 ofa pair, then the excess thickness will be reduced to the prescribed value by the thrust generated by the piston-andcylinder units 5.
  • the contact pressure will be only that generated by the thrustors 10. This pressure is less than that generated by the thrust of the piston-and-cylinder units 5 and only sufficient for the traction or withdrawal force a withdrawing roll in a multiple-roll withdrawing machine is required to produce.
  • the roll 3' is in contact with a standard dummy bar I] which is much thinner than the casting I.
  • the thrustor 10 should develop a greater hydraulic pressure than the thrustor 10 because the coefficient of friction between the roll 3' and the dummy bar II is smaller than that between the rolls 3 and the casting I. Shortly before or after the leading end of the casting 1 has advanced to the roll 3, the hydraulic pressure which is controlled by a suitable counter is diminished, to allow for the higher coefficient of friction between the casting I and the roll 3.
  • FIGS. 2 and 3 there are provided three upper rolls 21, two bottom driven rolls 23 and one bottom idling roll 22.
  • the supporting idling roll 22 between the two drive rolls 23 is mounted in fixed bearings on the foundation.
  • the upper rolls 21 are mounted in a yoke 25 which can tilt about a pivot 24.
  • the piston-and-cylinder units 5 and the thrustor or force-applying device 10, which likewise has the form of a piston-and-cylinder unit, function in the same way as already described with reference to FIG. 1.
  • the thrust transmitted by the yoke 25 is chosen according to the desired contact pressure of the individual rolls and the number of rolls mounted in the yoke 25.
  • the driving rolls 23 are mounted on tiltable bearing blocks or chocks 26 resting on buffer units 27. These buffer units 27 are constituted by differential hydraulic rams. Hydraulic pressure in a cylinder chamber 30 forces a piston 31 against a reference thickness abutment 32 in a position which conforms with the prescribed thickness. The same hydraulic pressure as in chamber 30 is also effective in a second cylinder chamber 33 for advancing a second piston 34 with a smaller amount of thrust.
  • the piston 34 will apply a weak pressure to the casting 1 beyond the pass line 35, whereas from the pass line 35 away from the casting the greater pressure generated by the thrust of piston 31 will be effective.
  • a buffer unit 27 in the form of a differential ram a spring-loaded thrustor might also be used. According to the nature of the plant the driven rolls and the reaction rolls may be optionally supported by thrustors 10 or by buffer units 27.
  • FIG. 4 illustrates a section of a multi-roll withdrawing and straightening machine in wh ch two consecutive rolls 41 located in the direction of travel of the casting are mounted in a yoke 43.
  • the yoke 43 can be tilted by the casting I about a pivot 42.
  • the yoke 43 is set to the casting I by piston-and-cylinder units 5 and thrustors 10. In order to preserve clarity in illustration in the drawing these have been conveniently omitted in FIG. 4.
  • a pressure generating force 45 that is divided between both rolls 41 is applied to the yoke 43.
  • the rolls 4] bear upon the casting I which has the prescribed thickness 46.
  • the rolls 4] can be tilted by irregularities of the casting surface into the positions shown in chain lines indicated by reference characters 41' and 41".
  • the roll at 41' will then be in a position corresponding to a thickness less than the prescribed thickness 46, whereas roll 41" will be in a position corresponding to a thickness exceeding the prescribed thickness 46. If the deformation resistance of the casting 1 is the same at both points of contact with the rolls 4! and 4] the thrust 45 acting on the yoke would allow the rolls in this position of the yoke to squeeze the casting I out of shape.
  • the invention makes the following further provisions.
  • the yoke 43 is associated at each end in the region of the outer rolls with pistonand-cylinder units 48 fitted with an inductive detector or transmitter 49.
  • the two inductive detectors 49 continuously monitor the position of the rolls 41.
  • any suitable instrument for measuring the position of the rolls 41 could be provided in place of inductive detectors 49.
  • piston-and-cylinder units 48 which oppose the pressure generating thrust 45 form supporting means that can be activated and inactivated as required.
  • the inductive detectors or transmitters 49 and the piston-and-cylinder units are associated with a control in the form for instance of a conventional comparator, not particularly illustrated in FIG. 4 but in FIG. 5 by unit 56 and which will be more fully considered hereinafter.
  • the purpose of the comparator is to compare the signals received from the inductive detectors 49 with one another and each with a signal representing the prescribed casting thickness. When any one of the hereinafter described signal combinations is received the comparator activates the appropriate pistonand-cylinder unit 48.
  • One of these signal combinations arises when one roll 41" is in a position outside that corresponding to the prescribed thickness of the cast ing and the other roll 41' in a position corresponding to the prescribed thickness.
  • This signal combination causes the pressure in the piston-and-cylinder unit 48 associated with the roll 41' to rise so that the contact pressure applied by this roll 41' to the casting I becomes less, so that the casting will not be rolled-out of shape.
  • the other signal combination will arise when for instance the roll 41" is in a position outside that corresponding to the prescribed thickness 46 by an amount 50 whereas the other roll 41' is in a position inside that corresponding to the prescribed thickness 46 by a like or an even larger amount 50.
  • This second signal combination leads to a reduction in the pressure of roll 41', so that this roll will not unduly squeeze the casting when its thickness falls below the prescribed thickness, whereas roll 41 rolls down the casting l to a little over the prescribed thickness. The remaining excess will then be rolled-down during the pass between the next pair of rolls.
  • the contact pressure applied by one roll 41, 41' is reduced to the pressure required for withdrawal, irrespective of the pressure exerted by the other roll 41".
  • the change in contact pressure is effected by thrustors or forceapplying devices working in association with stop faces.
  • the provision of stop faces can be dispensed with and a control system may be used for controlling the contact pressure of the rolls.
  • the pressure applied to the casting 1 by the pair of driven rolls 51, 52 may be automatically controlled by reference to a continuous measurement of the actual thickness of the casting l.
  • the gap width between the rolls 51, 52 and the contact pressure is adjustable by piston-and-cylinder units 53.
  • the roll 51 is provided on one or both sides with a position reporting or transmitting device 54. Position reporting devices at each end of the rolls permit the rolls 51, 52 to be kept in precise parallelism.
  • the roll 5] bearing on the casting 1 causes the position reporting device to generate a signal corresponding to the actual thickness of the casting 1.
  • This signal is the input quantity for a comparator unit 56 which is also provided with a reference signal 57 representing the desired thickness.
  • the output signal and other casting parameters 59, such as the width of the casting 1, as well as the characteristic of the applied contact pressure according to the invention are applied as controlling signals to a servo unit 58 of conventional design.
  • a pressure fluid supply 61 is also connected to the servo unit 58.
  • the servo unit 58 controls the hydraulic fluid of the piston-and-cylinder units 53 as a function of the difference signal from the comparators 56.
  • One of the two rolls 5], 52 is driven by drive means not shown in the drawing.
  • the bottom roll 52 may be mounted on buffers like the roll 23 in FIG. 2 or it may run in fixed bearings.
  • a reference signal 57 For feeding the dummy bar to the mold a reference signal 57 must be provided which represents the thickness of the dummy bar and the contact pressure must be adapted to the dummy bar.
  • the position reporting devices 54 are associated with the roll 51.
  • the actual thickness of the casting is thus measured directly at the pair of withdrawing rolls.
  • a pressure of about 68 Mp is applied by each driving and/or straightening roll when the prescribed thickness of the casting is exceeded, whereas when the thickness drops below the prescribed thickness a pressure of about l9 Mp is necessary for withdrawing the casting.
  • the contact pressure for feeding the dummy bar amounts to about 33 Mp.
  • An apparatus for operating a multiple-roll machine especially a multiple-roll withdrawing machine or a multiple-roll combination withdrawing and straightening machine in a continuous steel casting plant, comprising cooperating pairs of rolls, at least one of said rolls constituting a driven roll, means for adjusting the gap between the cooperating pairs of rolls, stop means for limiting adjustment of the gap between the cooperating pairs of rolls to the prescribed thickness of the casting, means for moving at least one roll of the pairs of rolls towards the casting beyond the stop means defining the prescribed thickness of the casting, said moving means generating a thrust which is smaller than that generated by the adjusting means and said thrust substantially corresponding to the requisite contact pressure for generating the necessary withdrawal force for the casting, and wherein said moving means comprise thrustor means.
  • thrustor means comprise hydraulic piston-and-cylinder units.
  • each piston-and-cylinder means comprises a piston with a piston rod, said thrustor means being connected with said piston rod of the associated piston-and-cylinder means.
  • stop means are arranged on the piston rod of the associated piston-and-cylinder means, and exchangeable abutment members arranged between said stop means and the cylinder of the associated piston-and-cylinder means for adjustably varying the gap between the rolls that define the prescribed thickness of the casting.
  • An apparatus for operating a multiple-roll machine especially a multiple-roll withdrawing machine or a multiple-roll combination withdrawing and straightening machine in a continuous steel casting plant, comprising cooperating pairs of rolls, at least one of said rolls constituting a driven roll, means for adjusting the gap between the cooperating pairs of rolls, stop means for limiting adjustment of the gap between the cooperating pairs of rolls to the prescribed thickness of the casting, means for moving at least one roll of the pairs of rolls towards the casting beyond the stop means defining the prescribed thickness of the casting, said moving means generating a thrust which is smaller than that generated by the adjusting means and said thrust substantially corresponding to the requisite contact pressure for generating the necessary withdrawal force for the casting, and wherein said multiple-roll machine incorporates a supporting structure and buffer means attached to said supporting structure, at least some of said pairs of rolls defining bottom rolls yieldably mounted on said buffer means, said buffer means comprising differential thrustor means for generating a relatively greater thrust to at least some of said bottom rolls when such bottom roll yields away from the path of the casting from
  • An apparatus for operating a multiple-roll machine especially a multiple-roll withdrawing machine or a multiple-roll combination withdrawing and straightening machine in a continuous steel casting plant, comprising cooperating pairs of rolls, at least one of said rolls constituting a driven roll, means for adjusting the gap between the cooperating pairs of rolls, stop means for limiting adjustment of the gap between the cooperating pairs of rolls to the prescribed thickness of the casting, means for moving at least one roll of the pairs of rolls towards the casting beyond the stop means defining the prescribed thickness of the casting, said moving means generating a thrust which is smaller than that generated by the adjusting means and said thrust substantially corresponding to the requisite contact pressure for generating the necessary withdrawal force for the casting, a yoke tiltable by the casting about a pivot serving to support two consecutive ones of said rolls in the direction of travel of the casting and to which yoke contact pressure is transmitted to both said consecutive rolls at the same time, position reporting devices operatively connected with said consecutive rolls for reporting the position of said consecutive rolls in relation to a position corresponding to the prescribed
  • An apparatus for operating a multiple-roll machine in particular a multiple-roll withdrawing machine or a multiple-roll combination withdrawing and straightening machine, in a continuous steel casting plant, comprising opposing rolls defining therebetween a gap for the throughpassage of the casting, means for adjusting the gap between said opposing rolls, position reporting means for monitoring the actual thickness of the casting, comparator means for receiving signals from said position reporting means and for comparing such signals with a reference signal, and a servo-control unit for controlling operation of said adjusting means as a function of the operation of said comparator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

An apparatus for operating a multiple-roll machine, especially a multiple-roll withdrawing machine or a multiple-roll combination withdrawing and straightening machine in a continuous steel casting plant. There are provided cooperating pairs of rolls, at least one of which constitutes a driven roll, and means for adjusting the gap between the cooperating pairs of rolls. Stop means limit the adjustment of the gap between the cooperating pairs of rolls to the prescribed thickness of the casting. Means serve for moving at least one roll of the pairs of rolls towards the casting beyond the stop means defining the prescribed thickness of the casting. The moving means generating a thrust which is smaller than that generated by the adjusting means, and said thrust substantially corresponding to the requisite contact pressure for generating the necessary withdrawal force for the casting.

Description

United States Patent [191 Bollig et a1.
[ APPARATUS FOR WITI-IDRAWING A CASTING AND FEEDING A DUMMY BAR IN A CONTINUOUS CASTING MACHINE FOR STEEL [75] Inventors: Georg Bollig, Buderich; Horst Grothe, Kaarst, both of Germany; Bernhard Knell, Thawil, Switzerland; Armin Thalmann, Uster, Switzerland; Josef Zeller, Wessen, Switzerland [73] Assignees: Schloemann-Siemag Aktiengesellschaft, Dusseldorf, Germany; Concast AG, Zurich, Switzerland [22] Filed: Feb. 28, I974 [21] Appl. No.: 446,902
Related US. Application Data [62] Division of Ser. No. 267531, June 29, 1972, Pat. No.
[52] US. Cl 164/154; 164/282 [51] Int. Cl 822d 11/12 [58] Field of Search 164/4, 154, 282
[56] References Cited UNITED STATES PATENTS 3,263,284 8/1966 Orr et a1, 164/154 3,638,713 2/1972 Knell ct a1. 1. 164/282 X June 24, 1975 3,707,184 12/1972 Burkhardt et al 164/282 3,735,804 5/1973 Wagner, .lr. 164/282 FOREIGN PATENTS OR APPLICATIONS 2,023,002 11/1970 Germany 1. 164/282 1.166.044 10/1969 United Kingdom 164/282 287,250 7/1971 U.S.S.R 164/282 Primary Examiner-R. Spencer Annear Attorney, Agent, or Firm-Wemer W. Kleeman 5 7 ABSTRACT An apparatus for operating a multiple-roll machine, especially a multiple-roll withdrawing machine or a multiple-roll combination withdrawing and straightening machine in a continuous steel casting plant. There are provided cooperating pairs of rolls, at least one of which constitutes a driven roll, and means for adjusting the gap between the cooperating pairs of rolls. Stop means limit the adjustment of the gap between the cooperating pairs of rolls to the prescribed thickness of the casting. Means serve for moving at least one roll of the pairs of rolls towards the casting beyond the stop means defining the prescribed thickness of the casting. The moving means generating a thrust which is smaller than that generated by the adjusting means, and said thrust substantially corresponding to the requisite contact pressure for generating the necessary withdrawal force for the casting.
10 Claims, 5 Drawing Figures SHEET PATENTEDJUN24 ms a li ""IIIII' 3,891,025 PATENTED JUN 24 I975 SHE 2 1 APPARATUS FOR WITHDRAWING A CASTING AND FEEDING A DUMMY BAR IN A CONTINUOUS CASTING MACHINE FOR STEEL CROSS-REFERENCE TO RELATED CASE This application is a divisional of our copending, commonly assigned US. application Ser. No. 267,531, filed June 29, 1972, and now US. Pat. No. 3,812,900 and entitled: Method of Operating a Multi-Roll Casting Machine During and After Freezing of the Liquid Core of the Strand.
BACKGROUND OF THE INVENTION The present invention relates to a new and improved apparatus for withdrawing a casting during and after the liquid core has frozen and feeding a dummy bar in a multiple-roll withdrawing machine or a multiple roll withdrawing and straightening machine in a continuous casting plant for steel equipped with an at least partly arched apron, which contemplates applying to the casting and thc dummy bar as they pass between the pairs of driving and/or straightening rolls, by means of each pair of rolls, the requisite contact pressure for generating the necessary traction or withdrawal force.
The withdrawing machine in a continuous casting plant withdraws the casting by frictionally engaging same, and a withdrawing and straightening machine also straightens the arched or curved casting. In many continuous casting installations the withdrawing machine is also used to feed the dummy bar back to the mold. In order to enable the driving rolls to apply the withdrawal, i.e., traction or braking force to the casting and the dummy bar. these rolls must contact the casting and the dummy bar with the requisite amount of pressure. These contact pressures depend upon the required withdrawal or braking effort, the coefficient of friction between the casting or dummy bar and each of the driving rolls as well as upon the number of driving rolls present. In the case of castings still having a liquid core when they enter the withdrawing and straightening machine the contact pressure of the driving rolls depends upon the ferrostatic pressure and must be suffcient to prevent the casting from bulging. The contact pressure needed for straightening the casting considerably depends upon the temperature of the casting. With such castings the contact pressure required for straightening is less than the pressure needed to prevent bulg- In a continuous casting plant for steel the straightening and driving rolls of so-called multiple roll withdrawing and straightening machines are distributed along a major portion of the path of the casting. At least some of the straightening and driving rolls may make contact with the casting where such still has a liquid core. According to existing casting parameters, such as pouring speed, pouring temperature and so forth, the temperature of the casting will also vary as well as the position of the apex of the liquid core. In the region where the apex of the liquid core freezes the ferrostatic pressure on the frozen shell will disappear, but the casting still is very plastic and easily deformable. For instance, a temperature range ofa slab between 900C and l050C in the withdrawing and straightening machine corresponds to a range of its deformation resistance between about 3 and 7 kg/mm? The contact pressures which prevent bulging of castings still having a liquid core are then quite sufficient to cause a significant reduction in thickness by about 2 to ID mm. in the zone where the liquid core of a slab has just frozen. When using automatic casting cutters or croppers which cut-off preadjusted lengths such reductions in thickness result in billets of unequal weights which have undesirable effects during subsequent processing. Moreover, squeezing of the casting between the rolls during its solidification may also give rise to defects in the casting structure.
It is a well known practice to use a multiple-roll withdrawing and straightening machine to withdraw and straighten a casting having a liquid core as well as to feed a standard dummy bar having a substantially thinner cross-section than the casting. The straightening rolls are forced hydraulically against fixed stops by piston-and-cylinder units to prevent the casting having a liquid core from being undesirably rolled-down as it passes between these straightening rolls. Contrary to the straightening rolls the contact pressure of the hydraulically loaded driving rolls is adjusted by remotely controlled valve means according to the resistance of the growing frozen shell and the change in ferrostatic pressure. In such a multiple-roll withdrawing and straightening machine the contact pressure of the driving rolls is so controlled that it is only 15% higher than the pressure that would be needed to prevent bulging. It is thus possible to avoid bulges from appearing on a casting having a liquid core. In the region where the liquid core finally freezes, i.e., where the ferrostatic pressure vanishes, the driving rolls of this machine are responsible for the abovedescribed undesirable uncontrolled reductions of the casting below the prescribed thickness as well as unwanted internal flaws in the form of cracks in the horizontal casting axis.
Another withdrawing and straightening machine known in the art for a continuous steel casting plant has separate sections each comprising three upper and three bottom rolls. The three upper rolls are mounted in a yoke which is tiltable roughly about the axis of the center roll and adjustably movable in a direction normal to the guided surface of the casting. The middle roll of the bottom set is mounted in fixed bearings in the supporting framework, whereas the two outer bottom rolls are yieldingly mounted on thrust cylinders. In order to control the ferrostatic pressure of the liquid core and to prevent bulging this machine also requires the application of contact pressures by both the upper rolls and by the yieldingly mounted lower rolls. In such withdrawing and straightening machines an undesirable reduction of the required thickness of the steel casting immediately after the solidification of the liquid core can therefore also occur.
SUMMARY OF THE INVENTION Therefore it is an object of the present invention to provide an improved apparatus which will permit a casting to be prevented from bulging and also from experiencing an undesirable reduction in thickness below a prescribed thickness and from developing internal flaws as it passes through a multiple-roll withdrawing and/or straightening machine, irrespective whether the part of the casting passing through the machine still contains a liquid core or whether this has just frozen, i.e., solidified. The machine is also intended to feed a dummy bar to the mold and to again withdraw same.
Another object of the invention is the provision of a withdrawing and/or straightening machine having new and improved means for controlling the desired thickness of a casting and to provide adjustments necessary for preventing any undesirable reduction in the casting thickness.
The proposed method achieves these objects by applying only the contact pressure required for traction, i.e., withdrawing or feeding when the thickness of the casting falls below the prescribed thickness and raising the contact pressure to a higher value calculated to reduce the casting to its prescribed thickness when this is exceeded.
The apparatus for performing this method contemplates that at least one roll of each pair of rolls is mov able by additional thrustors or forceapplying devices towards the casting beyond a stop defining the prescribed thickness, but that the thrust or contact force generated by said thrustors is smaller than that generated by the cylinder-and-piston units.
The proposed method enables the portion of a casting in which the liquid core is still present or in which the liquid core has just frozen to be merely withdrawn or to be withdrawn and straightened in multiple-roll withdrawing or in multiple-roll withdrawing and straightening machines practically without changing its predetermined thickness and irrespective of any changes that may occur in the casting parameters. Tolerances can be maintained within 1% of the prescribed thickness in such a casting. ln heats used for the production of plate the method according to the invention also permits avoiding internal flaws caused by undesirable roll squeezing. Furthermore, dummy bars or standard dummy bars having cross-sections that are smaller than the thicknesses of the castings by any amount can be readily fed to the mold and withdrawn.
If at least two rolls that are consecutive in the direction of travel of the casting are mounted in a common yoke which divides a common thrust or contact force between them, then their respective contact pressures on the casting will be the same, irrespective of the tilt of the yoke. For example, because of a disturbance preceding or inside the withdrawing machine it is possible for a casting to bulge between the two rolls so that a surface of limited extent exceeds the prescribed dimensions. Moreover, when stoppages occur during a pour excessive local cooling may cause the casting at certain points to fall short of the prescribed thickness because of shrinkage. In a two-roll yoke one roll may assume a position which is within that corresponding to the pre scribed thickness of the casting, whereas the other may be located in a position outside this latter position. The roll located within the prescribed thickness of the casting would then roll down the casting to an even smaller thickness. If the dimensional tolerances in the thickness of the casting are to be minimized another proposal according to the invention therefore provides for a comparison to be made between the actual positions of the outer rolls and the reference positions the rolls should occupy if the thickness of the casting were as prescribed. Upon generation of a deviation signal from the outer roll which is outside the prescribed thickness, and in the absence of a deviation signal from the other outer roll. or upon the appearance ofa deviation signal from one of the outer rolls which is outside the prescribed thickness by a given amount and of a second deviation signal from the other outer roll located within the prescribed thickness by the same or an even greater amount, it is proposed to reduce the contact pressure of the other roll. irrespective of the contact pressure of the one roll.
The proposed apparatus for performing this method comprising rolls mounted on yokes is manifested by the association with the yoke near the bearings of the outer rolls of position reporting or transmitting devices for signalling the position of the rolls in relation to their positions corresponding to the prescribed thickness of the casting, and by the association with each roll of independently controllable supporting means which oppose the contact pressure exerted by the rolls.
The driving rolls may apply the same contact pres sure to a casting which is thinner than the prescribed thickness as to a dummy bar which is also thinner than the prescribed casting thickness. Moreover, for the purpose of further reducing the contact pressure needed for merely withdrawing the casting different contact pressures may be applied to a casting which is thinner than the prescribed thickness and to a dummy bar which is thinner than the prescribed thickness of a casting by taking advantage of the differential coefficients of friction between the driving rolls and the casting respectively of the dummy bar.
An advantageous embodiment of the proposed appa ratus consists in mounting the thrustors on the piston rods of the piston-and-cylinder units.
The thrustors may be inexpensively and simply con stituted by stacks of Belloile or cup springs However. in order to permit the pressure generating force to be quickly and precisely adjusted when the width of the casting changes, it is preferred to embody the thrustors in hydraulic piston-and-cylinder units.
To enable adjustments for changes in cross-section affecting the thickness of the casting to be quickly and accurately made, another feature of the invention consists in providing exchangeable abutment or intermediate members between the stops on the piston rods and the associated cylinders for suitably varying the gap width between the rolls which determines the pre scribed thickness of the casting.
The bottom driving and straightening rolls may be firmly supported by the structure of the machine and only the upper rolls arranged to be movable perpendicular to the casting surface. In the case of cold castings which cannot be precisely straightened it is proposed to insure the presence of the necessary thrust by the provision of buffer members. According to another aspect of the invention these buffer members may be differential thrustors so designed that they generate considerable thrust in the range from the abutment defining the prescribed thickness away from the casting and a weak thrust in the range from the abutment towards the casting.
lfit is desired in the course of casting to regulate the prescribed contact pressure of the driving rolls, to vary the prescribed thickness of the casting or other casting parameters during the pour, the proposed method, according to yet another feature of the invention. can be performed with apparatus in which position reporting or transmitting devices for monitoring the actual thickness of the casting are provided and these are connected to a comparator. servo means being provided to control the pressure fluid for the piston-and-eylinder units in functional dependence upon the difference signal between the actual and reference thickness values appearing at the output of the comparator Yet another advantage of such apparatus is that it permits the plant to be re-adjusted to a fresh casting program within the shortest possible stopping time between two pours.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be better understood and objects other than those set forth above, will become apparent when consideration is given to the following detailed description thereof. Such description makes reference to the annexed drawings wherein:
FIG. 1 is a side elevation of a partially shown multiple-roll withdrawing and straightening machine;
FIG. 2 is a sectional view, taken substantially along the line IIII of FIG. 3, of a different embodiment of partially shown multiple-roll withdrawing and straightening machine;
FIG. 3 is a sectional view taken substantially along the line llllll of FIG. 2;
FIG. 4 is a schematic side elevation of yet another embodiment of partially illustrated multiple-roll withdrawing and straightening machine; and
FIG. 5 is a schematic representation ofa further embodiment of apparatus designed according to the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Describing now the drawings, FIG. 1 illustrates an arcuately bent casting 1, one part of which still contains a liquid core 9, this casting 1 being withdrawn by and straightened in a multiple-roll withdrawing and straightening machine 2. Adjustable driving or driven rolls 3, 3', which according to their position along the part of the casting also serve to straighten the same, bear upon the upper surface of the casting 1, whereas the underside of the casting is supported by reaction rolls 4 which are mounted in fixed bearings on the foundations of the machine.
Opposed driving rolls 3, 3' and reaction rolls 4 form pairs of withdrawing or withdrawing and straightening rolls. Normally only one roll of each pair will be driven. If for reasons of product quality the traction, i.e., withdrawal force or drive should be applied symmetrically, then both rolls of each pair may be driven. The driving rolls 3 can be displaced by suitable means, here shown for instance in the form of fluid-operated piston-andcylinder units 5, towards the cooperating reaction rolls 4 until stops 6 impact against abutment or intermediate members 7. These abutment members 7 are exchangeable to permit an adjustable variation of the gap between cooperating rolls 3 and 4 which determine the reference or prescribed thickness of the casting. Furthermore, the rolls 3 also can be adjustably moved by additional hydraulic thrustors or force generating devices I0, 10' mounted on the piston rods 50 of the piston-and-cylinder units 5, towards the casting l or towards a dummy bar 11, preferably a standard dummy bar suitable for castings having a range of different thicknesses. When a casting 1 having the desired dimensions passes between the rolls 3 and 4 the stops 6 will bear on the face of the associated abutment 7 and the pistons 12 of the thrustors 10 will be in contact with their bottom cylinder covers 13. The piston-andcylinder units 5 generate a thrust which is sufficient to prevent the casting from bulging beyond its prescribed thickness. If the casting I should exceed its prescribed thickness during its pass between the rolls 3, 4 ofa pair, then the excess thickness will be reduced to the prescribed value by the thrust generated by the piston-andcylinder units 5. On the other hand, if the thickness of the casting 1 falls short of the prescribed thickness, then the contact pressure will be only that generated by the thrustors 10. This pressure is less than that generated by the thrust of the piston-and-cylinder units 5 and only sufficient for the traction or withdrawal force a withdrawing roll in a multiple-roll withdrawing machine is required to produce. The roll 3' is in contact with a standard dummy bar I] which is much thinner than the casting I. It is desirable that the thrustor 10 should develop a greater hydraulic pressure than the thrustor 10 because the coefficient of friction between the roll 3' and the dummy bar II is smaller than that between the rolls 3 and the casting I. Shortly before or after the leading end of the casting 1 has advanced to the roll 3, the hydraulic pressure which is controlled by a suitable counter is diminished, to allow for the higher coefficient of friction between the casting I and the roll 3.
In the individual section of a multipleroll withdrawing and straightening machine illustrated in FIGS. 2 and 3 there are provided three upper rolls 21, two bottom driven rolls 23 and one bottom idling roll 22. The supporting idling roll 22 between the two drive rolls 23 is mounted in fixed bearings on the foundation. The upper rolls 21 are mounted in a yoke 25 which can tilt about a pivot 24. The piston-and-cylinder units 5 and the thrustor or force-applying device 10, which likewise has the form of a piston-and-cylinder unit, function in the same way as already described with reference to FIG. 1. The thrust transmitted by the yoke 25 is chosen according to the desired contact pressure of the individual rolls and the number of rolls mounted in the yoke 25. The driving rolls 23 are mounted on tiltable bearing blocks or chocks 26 resting on buffer units 27. These buffer units 27 are constituted by differential hydraulic rams. Hydraulic pressure in a cylinder chamber 30 forces a piston 31 against a reference thickness abutment 32 in a position which conforms with the prescribed thickness. The same hydraulic pressure as in chamber 30 is also effective in a second cylinder chamber 33 for advancing a second piston 34 with a smaller amount of thrust. If the casting deviates from its prescribed thickness or its contour does not coincide with the theoretical pass line 35, i.e, the theoretical plane of the path of the casting, then the piston 34 will apply a weak pressure to the casting 1 beyond the pass line 35, whereas from the pass line 35 away from the casting the greater pressure generated by the thrust of piston 31 will be effective. Instead of a buffer unit 27 in the form ofa differential ram a spring-loaded thrustor might also be used. According to the nature of the plant the driven rolls and the reaction rolls may be optionally supported by thrustors 10 or by buffer units 27.
FIG. 4 illustrates a section of a multi-roll withdrawing and straightening machine in wh ch two consecutive rolls 41 located in the direction of travel of the casting are mounted in a yoke 43. The yoke 43 can be tilted by the casting I about a pivot 42. As in the case of the yoke 25 in the arrangement of FIGS. 2 and 3 the yoke 43 is set to the casting I by piston-and-cylinder units 5 and thrustors 10. In order to preserve clarity in illustration in the drawing these have been conveniently omitted in FIG. 4. A pressure generating force 45 that is divided between both rolls 41 is applied to the yoke 43. The rolls 4] bear upon the casting I which has the prescribed thickness 46. Without moving the position of the pivot 42 the rolls 4] can be tilted by irregularities of the casting surface into the positions shown in chain lines indicated by reference characters 41' and 41". The roll at 41' will then be in a position corresponding to a thickness less than the prescribed thickness 46, whereas roll 41" will be in a position corresponding to a thickness exceeding the prescribed thickness 46. If the deformation resistance of the casting 1 is the same at both points of contact with the rolls 4! and 4] the thrust 45 acting on the yoke would allow the rolls in this position of the yoke to squeeze the casting I out of shape.
In order to prevent the roll in position 41' corresponding to a thickness less than the prescribed thickness 46 from squeezing the casting and from widening the dimensional tolerances of the finished casting with regard to its thickness, the invention makes the following further provisions. The yoke 43 is associated at each end in the region of the outer rolls with pistonand-cylinder units 48 fitted with an inductive detector or transmitter 49. The two inductive detectors 49 continuously monitor the position of the rolls 41. Naturally any suitable instrument for measuring the position of the rolls 41 could be provided in place of inductive detectors 49. In order to permit the yoke 43 to be supported at the desired side or end in the cases that will be hereinafter described, piston-and-cylinder units 48 which oppose the pressure generating thrust 45 form supporting means that can be activated and inactivated as required. The inductive detectors or transmitters 49 and the piston-and-cylinder units are associated with a control in the form for instance of a conventional comparator, not particularly illustrated in FIG. 4 but in FIG. 5 by unit 56 and which will be more fully considered hereinafter. The purpose of the comparator is to compare the signals received from the inductive detectors 49 with one another and each with a signal representing the prescribed casting thickness. When any one of the hereinafter described signal combinations is received the comparator activates the appropriate pistonand-cylinder unit 48. One of these signal combinations arises when one roll 41" is in a position outside that corresponding to the prescribed thickness of the cast ing and the other roll 41' in a position corresponding to the prescribed thickness. This signal combination causes the pressure in the piston-and-cylinder unit 48 associated with the roll 41' to rise so that the contact pressure applied by this roll 41' to the casting I becomes less, so that the casting will not be rolled-out of shape. The other signal combination will arise when for instance the roll 41" is in a position outside that corresponding to the prescribed thickness 46 by an amount 50 whereas the other roll 41' is in a position inside that corresponding to the prescribed thickness 46 by a like or an even larger amount 50. This second signal combination leads to a reduction in the pressure of roll 41', so that this roll will not unduly squeeze the casting when its thickness falls below the prescribed thickness, whereas roll 41 rolls down the casting l to a little over the prescribed thickness. The remaining excess will then be rolled-down during the pass between the next pair of rolls. With these two signal combinations the contact pressure applied by one roll 41, 41' is reduced to the pressure required for withdrawal, irrespective of the pressure exerted by the other roll 41".
With the described embodiments the change in contact pressure is effected by thrustors or forceapplying devices working in association with stop faces. However, as shown in the arrangement of FIG. 5, the provision of stop faces can be dispensed with and a control system may be used for controlling the contact pressure of the rolls. The pressure applied to the casting 1 by the pair of driven rolls 51, 52 may be automatically controlled by reference to a continuous measurement of the actual thickness of the casting l. The gap width between the rolls 51, 52 and the contact pressure is adjustable by piston-and-cylinder units 53. The roll 51 is provided on one or both sides with a position reporting or transmitting device 54. Position reporting devices at each end of the rolls permit the rolls 51, 52 to be kept in precise parallelism. The roll 5] bearing on the casting 1 causes the position reporting device to generate a signal corresponding to the actual thickness of the casting 1. This signal is the input quantity for a comparator unit 56 which is also provided with a reference signal 57 representing the desired thickness. The output signal and other casting parameters 59, such as the width of the casting 1, as well as the characteristic of the applied contact pressure according to the invention are applied as controlling signals to a servo unit 58 of conventional design. A pressure fluid supply 61 is also connected to the servo unit 58. The servo unit 58 controls the hydraulic fluid of the piston-and-cylinder units 53 as a function of the difference signal from the comparators 56. One of the two rolls 5], 52 is driven by drive means not shown in the drawing. The bottom roll 52 may be mounted on buffers like the roll 23 in FIG. 2 or it may run in fixed bearings. For feeding the dummy bar to the mold a reference signal 57 must be provided which represents the thickness of the dummy bar and the contact pressure must be adapted to the dummy bar.
In the described example the position reporting devices 54 are associated with the roll 51. The actual thickness of the casting is thus measured directly at the pair of withdrawing rolls. However, it would also be possible to measure the actual thickness of the casting by position reporting devices located at a point which in the direction of travel of the casting preceded the pair of withdrawing rolls.
For the different above-described embodiments an example of the contact pressures required for each withdrawing and straightening roll will be hereunder given. In a multiple-roll withdrawing machine comprising six sections each fitted with three bottom rolls and three upper rolls, eleven of the bottom rolls are driven rolls. The radius of the arc of the mold and the apron is 10 meters, the roll spacing in the withdrawing machine is 540 mm. and the cross-section of the casting is 2000 X 250 mm. The surface temperature of the casting is usuallly between 700C and 1100C. Preceding the withdrawing and straightening machine the casting is guided between 36 pairs of rollers. In such a continuous casting machine a pressure of about 68 Mp is applied by each driving and/or straightening roll when the prescribed thickness of the casting is exceeded, whereas when the thickness drops below the prescribed thickness a pressure of about l9 Mp is necessary for withdrawing the casting. The contact pressure for feeding the dummy bar amounts to about 33 Mp.
Under certain conditions it may be desirable to reduce the prescribed thickness of a casting progressively between consecutive pairs of rolls or in consecutive sections of a multi-roll withdrawing and straightening machine by a prescribed amount.
While there is shown and described present preferred embodiments of the invention, it is to be distinctly un' derstood that the invention is not limited thereto, but may be otherwise variously embodied and practiced within the scope of the following claims. Accordingly,
What is claimed is:
1. An apparatus for operating a multiple-roll machine, especially a multiple-roll withdrawing machine or a multiple-roll combination withdrawing and straightening machine in a continuous steel casting plant, comprising cooperating pairs of rolls, at least one of said rolls constituting a driven roll, means for adjusting the gap between the cooperating pairs of rolls, stop means for limiting adjustment of the gap between the cooperating pairs of rolls to the prescribed thickness of the casting, means for moving at least one roll of the pairs of rolls towards the casting beyond the stop means defining the prescribed thickness of the casting, said moving means generating a thrust which is smaller than that generated by the adjusting means and said thrust substantially corresponding to the requisite contact pressure for generating the necessary withdrawal force for the casting, and wherein said moving means comprise thrustor means.
2. The apparatus as defined in claim 1, wherein said thrustor means comprise hydraulic piston-and-cylinder units.
3. The apparatus as defined in claim 1, wherein said adjusting means comprise piston-and-cylinder means.
4. The apparatus as defined in claim 3, wherein each piston-and-cylinder means comprises a piston with a piston rod, said thrustor means being connected with said piston rod of the associated piston-and-cylinder means.
5. The apparatus as defined in claim 4, wherein said stop means are arranged on the piston rod of the associated piston-and-cylinder means, and exchangeable abutment members arranged between said stop means and the cylinder of the associated piston-and-cylinder means for adjustably varying the gap between the rolls that define the prescribed thickness of the casting.
6. An apparatus for operating a multiple-roll machine, especially a multiple-roll withdrawing machine or a multiple-roll combination withdrawing and straightening machine in a continuous steel casting plant, comprising cooperating pairs of rolls, at least one of said rolls constituting a driven roll, means for adjusting the gap between the cooperating pairs of rolls, stop means for limiting adjustment of the gap between the cooperating pairs of rolls to the prescribed thickness of the casting, means for moving at least one roll of the pairs of rolls towards the casting beyond the stop means defining the prescribed thickness of the casting, said moving means generating a thrust which is smaller than that generated by the adjusting means and said thrust substantially corresponding to the requisite contact pressure for generating the necessary withdrawal force for the casting, and wherein said multiple-roll machine incorporates a supporting structure and buffer means attached to said supporting structure, at least some of said pairs of rolls defining bottom rolls yieldably mounted on said buffer means, said buffer means comprising differential thrustor means for generating a relatively greater thrust to at least some of said bottom rolls when such bottom roll yields away from the path of the casting from a limit position substantially defining the prescribed thickness of the casting and a weaker thrust when such bottom roll yields inwardly towards the path of the casting from the limit position.
7. An apparatus for operating a multiple-roll machine, especially a multiple-roll withdrawing machine or a multiple-roll combination withdrawing and straightening machine in a continuous steel casting plant, comprising cooperating pairs of rolls, at least one of said rolls constituting a driven roll, means for adjusting the gap between the cooperating pairs of rolls, stop means for limiting adjustment of the gap between the cooperating pairs of rolls to the prescribed thickness of the casting, means for moving at least one roll of the pairs of rolls towards the casting beyond the stop means defining the prescribed thickness of the casting, said moving means generating a thrust which is smaller than that generated by the adjusting means and said thrust substantially corresponding to the requisite contact pressure for generating the necessary withdrawal force for the casting, a yoke tiltable by the casting about a pivot serving to support two consecutive ones of said rolls in the direction of travel of the casting and to which yoke contact pressure is transmitted to both said consecutive rolls at the same time, position reporting devices operatively connected with said consecutive rolls for reporting the position of said consecutive rolls in relation to a position corresponding to the prescribed thickness of the casting, and independently controllable supporting units in the form of hydraulic piston and cylinder units opposing the contact pressure and operatively connected with said consecutive rolls.
8. An apparatus for operating a multiple-roll machine, in particular a multiple-roll withdrawing machine or a multiple-roll combination withdrawing and straightening machine, in a continuous steel casting plant, comprising opposing rolls defining therebetween a gap for the throughpassage of the casting, means for adjusting the gap between said opposing rolls, position reporting means for monitoring the actual thickness of the casting, comparator means for receiving signals from said position reporting means and for comparing such signals with a reference signal, and a servo-control unit for controlling operation of said adjusting means as a function of the operation of said comparator.
9. The apparatus as defined in claim 8, wherein said comparator means delivers a differential signal when the actual thickness of the casting fails to correspond essentially to a prescribed casting thickness, said servocontrol unit controlling operation of said adjusting means as a function of said differential signal.
10. The apparatus as defined in claim 8, wherein said adjusting means comprise piston-and-cylinder means.
* It l

Claims (10)

1. An apparatus for operating a multiple-roll machine, especially a multiple-roll withdrawing machine or a multiple-roll combination withdrawing and straightening machine in a continuous steel casting plant, comprising cooperating pairs of rolls, at least one of said rolls constituting a driven roll, means for adjusting the gap between the cooperating pairs of rolls, stop means for limiting adjustment of the gap between the cooperating pairs of rolls to the prescribed thickness of the casting, means for moving at least one roll of the pairs of rolls towards the casting beyond the stop means defining the prescribed thickness of the casting, said moving means generating a thrust which is smaller than that generated by the adjusting means and said thrust substantially corresponding to the requisite contact pressure for generating the necessary withdrawal force for the casting, and wherein said moving means comprise thrustor means.
2. The apparatus as defined in claim 1, wherein said thrustor means comprise hydraulic piston-and-cylinder units.
3. The apparatus as defined in claim 1, wherein said adjusting means comprise piston-and-cylinder means.
4. The apparatus as defined in claim 3, wherein each piston-and-cylinder means comprises a piston with a piston rod, said thrustor means being connected with said piston rod of the associated piston-and-cylinder means.
5. The apparatus as defined in claim 4, wherein said stop means are arranged on the piston rod of the associated piston-and-cylinder means, and exchangeable abutment members arranged between said stop means and the cylinder of the associated piston-and-cylinder means for adjustably vaRying the gap between the rolls that define the prescribed thickness of the casting.
6. An apparatus for operating a multiple-roll machine, especially a multiple-roll withdrawing machine or a multiple-roll combination withdrawing and straightening machine in a continuous steel casting plant, comprising cooperating pairs of rolls, at least one of said rolls constituting a driven roll, means for adjusting the gap between the cooperating pairs of rolls, stop means for limiting adjustment of the gap between the cooperating pairs of rolls to the prescribed thickness of the casting, means for moving at least one roll of the pairs of rolls towards the casting beyond the stop means defining the prescribed thickness of the casting, said moving means generating a thrust which is smaller than that generated by the adjusting means and said thrust substantially corresponding to the requisite contact pressure for generating the necessary withdrawal force for the casting, and wherein said multiple-roll machine incorporates a supporting structure and buffer means attached to said supporting structure, at least some of said pairs of rolls defining bottom rolls yieldably mounted on said buffer means, said buffer means comprising differential thrustor means for generating a relatively greater thrust to at least some of said bottom rolls when such bottom roll yields away from the path of the casting from a limit position substantially defining the prescribed thickness of the casting and a weaker thrust when such bottom roll yields inwardly towards the path of the casting from the limit position.
7. An apparatus for operating a multiple-roll machine, especially a multiple-roll withdrawing machine or a multiple-roll combination withdrawing and straightening machine in a continuous steel casting plant, comprising cooperating pairs of rolls, at least one of said rolls constituting a driven roll, means for adjusting the gap between the cooperating pairs of rolls, stop means for limiting adjustment of the gap between the cooperating pairs of rolls to the prescribed thickness of the casting, means for moving at least one roll of the pairs of rolls towards the casting beyond the stop means defining the prescribed thickness of the casting, said moving means generating a thrust which is smaller than that generated by the adjusting means and said thrust substantially corresponding to the requisite contact pressure for generating the necessary withdrawal force for the casting, a yoke tiltable by the casting about a pivot serving to support two consecutive ones of said rolls in the direction of travel of the casting and to which yoke contact pressure is transmitted to both said consecutive rolls at the same time, position reporting devices operatively connected with said consecutive rolls for reporting the position of said consecutive rolls in relation to a position corresponding to the prescribed thickness of the casting, and independently controllable supporting units in the form of hydraulic piston and cylinder units opposing the contact pressure and operatively connected with said consecutive rolls.
8. An apparatus for operating a multiple-roll machine, in particular a multiple-roll withdrawing machine or a multiple-roll combination withdrawing and straightening machine, in a continuous steel casting plant, comprising opposing rolls defining therebetween a gap for the throughpassage of the casting, means for adjusting the gap between said opposing rolls, position reporting means for monitoring the actual thickness of the casting, comparator means for receiving signals from said position reporting means and for comparing such signals with a reference signal, and a servo-control unit for controlling operation of said adjusting means as a function of the operation of said comparator.
9. The apparatus as defined in claim 8, wherein said comparator means delivers a differential signal when the actual thickness of the casting fails to correspond essentially to a prescribed casting thickness, said Servo-control unit controlling operation of said adjusting means as a function of said differential signal.
10. The apparatus as defined in claim 8, wherein said adjusting means comprise piston-and-cylinder means.
US446902A 1972-06-29 1974-02-28 Apparatus for withdrawing a casting and feeding a dummy bar in a continuous casting machine for steel Expired - Lifetime US3891025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US446902A US3891025A (en) 1972-06-29 1974-02-28 Apparatus for withdrawing a casting and feeding a dummy bar in a continuous casting machine for steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US00267531A US3812900A (en) 1971-07-03 1972-06-29 Method of operating a multi-roll casting machine during and after freezing of the liquid core of the strand
US446902A US3891025A (en) 1972-06-29 1974-02-28 Apparatus for withdrawing a casting and feeding a dummy bar in a continuous casting machine for steel

Publications (1)

Publication Number Publication Date
US3891025A true US3891025A (en) 1975-06-24

Family

ID=26952494

Family Applications (1)

Application Number Title Priority Date Filing Date
US446902A Expired - Lifetime US3891025A (en) 1972-06-29 1974-02-28 Apparatus for withdrawing a casting and feeding a dummy bar in a continuous casting machine for steel

Country Status (1)

Country Link
US (1) US3891025A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018261A (en) * 1975-05-13 1977-04-19 Vereinigte Osterreichlsche Eisen- und Stahlwerke-Alpine Montan Aktiengesellschaft Continuous casting plant strand guiding means
US4079777A (en) * 1976-01-27 1978-03-21 Vereinigte Osterreichische Eisen- Und Stahlwerke - Alpine Montan Aktiengesellschaft Apparatus for extracting a starter bar and for supporting and extracting a cast strand
US4131154A (en) * 1976-07-16 1978-12-26 Concast Ag Roller apron for a continuous casting installation for steel
US4197904A (en) * 1977-09-07 1980-04-15 Schloemann-Diemag AG Support guide arrangement for a continuous casting installation
US4353286A (en) * 1979-07-17 1982-10-12 Mds Mannesmann Demag Sack Gmbh Hydraulic control system with a pipeline antiburst safety device for a double acting drive cylinder
US5152334A (en) * 1990-05-02 1992-10-06 Mesta International Guide roll assembly and method of guiding cast strand
US5348074A (en) * 1991-11-26 1994-09-20 Sms Schloemann-Siemag Aktiengesellshaft Process and a device for continuous casting of slabs or ingots
EP0618024A1 (en) * 1993-02-26 1994-10-05 MANNESMANN Aktiengesellschaft Frame for strand guiding
EP0625388A1 (en) * 1993-05-17 1994-11-23 DANIELI & C. OFFICINE MECCANICHE S.p.A. Method for the controlled pre-rolling of thin slabs leaving a continuous casting plant, and relative device
US5488987A (en) * 1991-10-31 1996-02-06 Danieli & C. Officine Meccaniche Spa Method for the controlled pre-rolling of thin slabs leaving a continuous casting plant, and relative device
US5749224A (en) * 1995-09-15 1998-05-12 Patriot Sensors & Controls Corporation Extended range thruster system and method of determining thrust
WO1998050185A1 (en) * 1997-05-07 1998-11-12 Mannesmann Ag Method and device for producing slabs of steel
LU90402B1 (en) * 1999-05-31 2000-12-01 Wurth Paul Sa Alignment device for continuous casting plant for billets and blooms
EP1125658A1 (en) * 2000-02-15 2001-08-22 Danieli & C. Officine Meccaniche SpA Method to control the axial position of slabs emerging from continuous casting and relative device
WO2002011925A1 (en) * 2000-08-10 2002-02-14 Sms Demag Aktiengesellschaft Method for producing steel slabs
CN101487782B (en) * 2008-01-17 2011-07-27 北京东孚久恒仪器技术有限公司 Cereal particle hardness measurement method and its hardness measurement instrument
CN110039228A (en) * 2019-05-21 2019-07-23 天石(深圳)技研有限公司 A kind of welding equipment
CN110997180A (en) * 2017-08-09 2020-04-10 株式会社Posco Roll assembly, casting apparatus and roll separation method for the casting apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3263284A (en) * 1963-12-20 1966-08-02 United States Steel Corp Constant-pressure pinch rolls for continuous casting
US3638713A (en) * 1968-04-09 1972-02-01 Concast Ag Continuous casting method including strand support adjustment
US3707184A (en) * 1969-05-20 1972-12-26 Concast Ag Withdrawal and straightening apparatus for continuous casting
US3735804A (en) * 1971-02-25 1973-05-29 Steel Corp Adjustable conducting roll apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3263284A (en) * 1963-12-20 1966-08-02 United States Steel Corp Constant-pressure pinch rolls for continuous casting
US3638713A (en) * 1968-04-09 1972-02-01 Concast Ag Continuous casting method including strand support adjustment
US3707184A (en) * 1969-05-20 1972-12-26 Concast Ag Withdrawal and straightening apparatus for continuous casting
US3735804A (en) * 1971-02-25 1973-05-29 Steel Corp Adjustable conducting roll apparatus

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018261A (en) * 1975-05-13 1977-04-19 Vereinigte Osterreichlsche Eisen- und Stahlwerke-Alpine Montan Aktiengesellschaft Continuous casting plant strand guiding means
US4079777A (en) * 1976-01-27 1978-03-21 Vereinigte Osterreichische Eisen- Und Stahlwerke - Alpine Montan Aktiengesellschaft Apparatus for extracting a starter bar and for supporting and extracting a cast strand
US4131154A (en) * 1976-07-16 1978-12-26 Concast Ag Roller apron for a continuous casting installation for steel
US4197904A (en) * 1977-09-07 1980-04-15 Schloemann-Diemag AG Support guide arrangement for a continuous casting installation
US4353286A (en) * 1979-07-17 1982-10-12 Mds Mannesmann Demag Sack Gmbh Hydraulic control system with a pipeline antiburst safety device for a double acting drive cylinder
US5152334A (en) * 1990-05-02 1992-10-06 Mesta International Guide roll assembly and method of guiding cast strand
US5488987A (en) * 1991-10-31 1996-02-06 Danieli & C. Officine Meccaniche Spa Method for the controlled pre-rolling of thin slabs leaving a continuous casting plant, and relative device
US5348074A (en) * 1991-11-26 1994-09-20 Sms Schloemann-Siemag Aktiengesellshaft Process and a device for continuous casting of slabs or ingots
EP0618024A1 (en) * 1993-02-26 1994-10-05 MANNESMANN Aktiengesellschaft Frame for strand guiding
EP0625388A1 (en) * 1993-05-17 1994-11-23 DANIELI & C. OFFICINE MECCANICHE S.p.A. Method for the controlled pre-rolling of thin slabs leaving a continuous casting plant, and relative device
US5749224A (en) * 1995-09-15 1998-05-12 Patriot Sensors & Controls Corporation Extended range thruster system and method of determining thrust
DE19720768C1 (en) * 1997-05-07 1999-01-14 Mannesmann Ag Method and device for producing steel slabs
US6701999B2 (en) * 1997-05-07 2004-03-09 Mannesmann Ag Method and device for producing slabs of steel
WO1998050185A1 (en) * 1997-05-07 1998-11-12 Mannesmann Ag Method and device for producing slabs of steel
LU90402B1 (en) * 1999-05-31 2000-12-01 Wurth Paul Sa Alignment device for continuous casting plant for billets and blooms
EP1125658A1 (en) * 2000-02-15 2001-08-22 Danieli & C. Officine Meccaniche SpA Method to control the axial position of slabs emerging from continuous casting and relative device
US6935408B2 (en) 2000-08-10 2005-08-30 Sms Demag Ag Method for producing steel slabs
US20040006862A1 (en) * 2000-08-10 2004-01-15 Horst Von Wyl Method for producing steel slabs
WO2002011925A1 (en) * 2000-08-10 2002-02-14 Sms Demag Aktiengesellschaft Method for producing steel slabs
KR100817173B1 (en) 2000-08-10 2008-03-27 에스엠에스 데마그 악티엔게젤샤프트 Method for producing steel slabs
CN101487782B (en) * 2008-01-17 2011-07-27 北京东孚久恒仪器技术有限公司 Cereal particle hardness measurement method and its hardness measurement instrument
CN110997180A (en) * 2017-08-09 2020-04-10 株式会社Posco Roll assembly, casting apparatus and roll separation method for the casting apparatus
EP3666417A4 (en) * 2017-08-09 2020-06-17 Posco Roller assembly, casting apparatus and roller separating method therefor
US11141781B2 (en) 2017-08-09 2021-10-12 Posco Roller assembly, casting apparatus, and roller separating method for same
CN110997180B (en) * 2017-08-09 2021-11-16 株式会社Posco Roll assembly, casting apparatus and roll separation method for the casting apparatus
CN110039228A (en) * 2019-05-21 2019-07-23 天石(深圳)技研有限公司 A kind of welding equipment

Similar Documents

Publication Publication Date Title
US3812900A (en) Method of operating a multi-roll casting machine during and after freezing of the liquid core of the strand
US3891025A (en) Apparatus for withdrawing a casting and feeding a dummy bar in a continuous casting machine for steel
CA2083804C (en) A process and a device for continuous casting of slabs or ingots
US3926244A (en) Method of controlling the cooling rate of narrow side walls of plate molds as a function of the casting taper during continuous casting
US8006743B2 (en) Method and device for determining the position of the solidification point
US3263284A (en) Constant-pressure pinch rolls for continuous casting
US6568459B2 (en) Process and apparatus for casting a continuous metal strand
USRE41553E1 (en) Strip casting apparatus
US4580614A (en) Cooling apparatus for horizontal continuous casting of metals and alloys, particularly steels
US3913658A (en) Adjustable plate mold for continuous casting
US4953615A (en) Plant for the continuous casting of steel
KR100796638B1 (en) Continuous casting installation comprising a soft reduction section
US6491088B1 (en) Method and device for continuously casting thin metal strips
US4367783A (en) Method and apparatus for continuous casting of metal under controlled load conditions
AU2003266783B2 (en) Strip casting apparatus
US3752219A (en) Strand guide apparatus for continuous casting
US4341259A (en) Method for speed control of a continuous metal strip casting machine and rolling mill arrangement, and system controlled according to this method
EP1294507B1 (en) Strip casting
US6988530B2 (en) Strip casting
US3565160A (en) Arc type continuous casting plant
US3702154A (en) Continuous casting machine reciprocation and withdrawal control system
US4960164A (en) Method of continuously casting a thin strip
US5083604A (en) Method for improving internal center segregation and center porosity of continuously cast strand
KR100472531B1 (en) The control method of driven roll pressure in continuous casting equipments
US3554269A (en) Method of deforming and straightening a curved continuous casting strand