US3890110A - Composite coated steel structure for corrosion resistance - Google Patents

Composite coated steel structure for corrosion resistance Download PDF

Info

Publication number
US3890110A
US3890110A US366284A US36628473A US3890110A US 3890110 A US3890110 A US 3890110A US 366284 A US366284 A US 366284A US 36628473 A US36628473 A US 36628473A US 3890110 A US3890110 A US 3890110A
Authority
US
United States
Prior art keywords
tantalum
carbon
coating
steel
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US366284A
Inventor
Frederick A Glaski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fansteel Inc
Original Assignee
Fansteel Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fansteel Inc filed Critical Fansteel Inc
Priority to US366284A priority Critical patent/US3890110A/en
Application granted granted Critical
Publication of US3890110A publication Critical patent/US3890110A/en
Assigned to FANSTEEL INC., A CORP. OF DELAWARE reassignment FANSTEEL INC., A CORP. OF DELAWARE MERGER (SEE DOCUMENT FOR DETAILS). AND CHANGE OF NAME EFFECTIVE MAY 13, 1985 (DELAWARE) Assignors: FANSTEEL DELAWARE INCORPORATED, A CORP. OF DE, FANSTEEL INC., A CORP. OF NY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/936Chemical deposition, e.g. electroless plating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/941Solid state alloying, e.g. diffusion, to disappearance of an original layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12819Group VB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]

Definitions

  • ABSTRACT A composite coated steel structure having a carbon steel or stainless steel base and cladding of tantalum or columbium to provide corrosion resistant surfaces for many uses.
  • the composite includes a containment substrate coating interposed between the base and the cladding to prevent diffusion of the cladding material into the base.
  • the containment coating has greater stability with respect to the base than the cladding material to prevent adverse reaction under high heat conditions.
  • This invention relates to a Composite Coated Steel Structure for Corrosion Resistance.
  • the present invention contemplates a coating on steel which will protect the surface against the deterio ration when tantalum is deposited by chemical vapor deposition, It is, therefore, an object of the invention to provide a process for cladding steel with tantalum or possibly columbium which is consistently successful and uniform.
  • a DRAWING accompanies the disclosure and a single view thereof may be described as a diagrammatic illustration of an apparatus for accomplishing the present invention.
  • an overcoat on a particular sub-strate is defined as the deposition of a measurable thickness of material on a surface. All electroplated coatings are overcoats; and. similarly. hydrogenreduced refractory metal halides in a chemical vapor deposition process results in an overcoat. In these de positions. all the components of the coating are provided by the plating bath or the plating gas and none are provided by the substrate.
  • a containment surface on a substrate which might be defined as a displacement diffusion coating in which at least one of the constituents of the coating is provided by the substrate.
  • the coating does not build up on the surface to any appreciable extent but rather grows into the surface.
  • titanium when used. this may be referred to as a "titanizing process.”
  • the carbon is available primarily from metal carbides in the sub-strate which are less stable than TiC. Nearly all the metal carbides normally occurring in carbon steel and low alloy carbon steel are less stable than TaC and thus displacement diffusion coating is required.
  • While titanium has been mentioned above. it is possible to use a containment coating of a metal selected from Groups IVb and Vlb. iron, and cobalt. of this group, for example, titanium carbide and ZrC are both more stable than tantalum carbide. After this containment coating is applied. it is possible to overcoat with pure tantalum in a CVD process without further carbon diffusion from the sub-strate.
  • a metal selected from Groups IVb and Vlb. iron, and cobalt. of this group for example, titanium carbide and ZrC are both more stable than tantalum carbide. After this containment coating is applied. it is possible to overcoat with pure tantalum in a CVD process without further carbon diffusion from the sub-strate.
  • the pure metal overcoat is applied to the stainless stecl, the nickel diffusion is blocked and the CVD coating or clad of tantalum can be readily applied using conventional procedures.
  • carbon steel can also be plated or plasma sprayed with pure metals as above described to block carbon diffusion.
  • steel castings for example, they are sometimes ground out and plasma coated with iron to remove the surface porosity and then titanized to stabilize any carbon that may have diffused into the plasma coat. Then the tantalum clad may proceed with a resulting good quality and uniform Coat.
  • tantalum cladding It has also been noted in tantalum cladding that deposition has occurred preferentially on certain areas of exposed parts rather than uniformly or in the areas where it is most generally desired. Tantalum cladding has been much improved by a control of the mixing of the tantalum CI and the hydrogen reactant gases.
  • coating or coat as used in the specifcation and claims has reference to the application, by CVD. plating, or plasma spray. to a sub-strate surface of a metal in an extremely thin layer under conditions as above described in which the metal unites with the surface carbon of the sub-strate to form a carbide having greater stability than tantalum carbide.
  • the surface is thus prepared for the application of tantalum by chemical vapor deposition to the extent that there will be no perceptible formation of tantalum carbide at the bonding face.
  • the above description of coating relates to metals from Group IVb and the coating may also include metals from Group Vlb, iron and cobalt applied as a pure metal to reduce the carbon diffusion during the tantalum coating.
  • EXAMPLE I Cladding of 6 inches l.D. X 24 inches long pipe spool made of type A-l06 Carbon Steel 1. Sand blast surface to remove scale and roughen surface for subsequent plasma sprayed coating.
  • EXAMPLE 2 Cladding oftype 31658 pump housing with l inch ports and flanges and 4 inches diameter cavity 1. Degrease and deseale in HCl base commercial descaler solution.
  • EXAMPLE 3 Cladding of type I2 I 5 carbon steel thermowell, three-fourths inch diameter X 4 inches long well with 2 /2 inches diameter (flat-toflat) X 2 inches long hexagonal base. Total length 6 inches 1. Degrease and descale in HCl base commercial descalcr solution.
  • a composite structure having a corrosion resistant surface which comprises:
  • a displacement diffusion containment coating on said substrate to isolate carbon and metal carbides from the surface of the substrate composed of titanium carbide formed from an in situ combination of titanium with the carbon and metal carbides of the substrate.
  • said displacement diffusion coating being stable in the presence of tantalum or columbium at temperatures ranging from 900 to l,100C.. and
  • a corrosion resistant material selected from the group consisting of tantalum and columbium molecularly bonded to said containment coating by chemical vapor deposition.

Abstract

A composite coated steel structure having a carbon steel or stainless steel base and cladding of tantalum or columbium to provide corrosion resistant surfaces for many uses. The composite includes a containment substrate coating interposed between the base and the cladding to prevent diffusion of the cladding material into the base. The containment coating has greater stability with respect to the base than the cladding material to prevent adverse reaction under high heat conditions.

Description

United States Patent Glaski 1 June 17,1975
[ COMPOSITE COATED STEEL STRUCTURE FOR CORROSION RESISTANCE [75] Inventor: Frederick A. Glaski, Torrance,
21 Appl. No.: 366,284
Related US. Application Data [60] Division of Ser. No. 284,639, Aug. 29, 1972, Pat. No. 3,784,403, which is a continuation-impart of Ser. No. 177,929, Sept. 7, 1971, Pat. No. 3,767,456.
3,219,474 11/1965 Priceman et a1. 117/71 M 3,628,924 12/1971 Nishio et al 29/196 3,767,456 10/1973 Glaski 117/71 M 3,784,403 l/1974 Glaski H 117/71 M OTHER PUBLICATIONS Sachs, (3., et al.; Practical Metallurgy; Cleveland (ASM) 1951 p. 294, [TN 665 S 240].
Barrett, C., et a1.; Structure of Metals; New York, 1966 p. 536, [TN690 B3].
Primary Examiner-Walter R. Satterfield Attorney, Agent, or Firm-Barnes, Kisselle, Raisch & Choate [57] ABSTRACT A composite coated steel structure having a carbon steel or stainless steel base and cladding of tantalum or columbium to provide corrosion resistant surfaces for many uses. The composite includes a containment substrate coating interposed between the base and the cladding to prevent diffusion of the cladding material into the base. The containment coating has greater stability with respect to the base than the cladding material to prevent adverse reaction under high heat conditions.
1 Claim, 1 Drawing Figure COMPOSITE COATED STEEL STRUCTURE FOR CORROSION RESISTANCE This application is a division of my copending appli' cation entitled Process for Cladding Steel. Scr. No. 284,639. filed Aug. 29. I972. novi' LES. Pat. No. 3,784,403. issued .Ian. 8. I974 which in turn was a continuation'in-part of my copending application now entitled Chemical Vapor Deposition of Steel with Tantalum and Colunibium." Scr. No. 177.929. filed Sept. 7, l)7l.and now US. Pat. No. 3.767.456. dated Oct. 23. 1973.
This invention relates to a Composite Coated Steel Structure for Corrosion Resistance.
There are certain applications of steel in which the product would be much enhanced by a cladding of tantalum on the surface to increase resistance to corrw sion. The problem is to find an acceptable and reproducible bond between the tantalum and the steel and. secondly. to achieve uniformity over all the surfaces of a complex shape or a hatch of complewshaped hardware.
An attempt to deposit tantalum directly on steel containing carbon results in a poor bonding inasmuch as the tantalum combines with the carbon of the steel at an excessive rate leaving Kirkendall type porosity in the steel. It is possible to provide an excellent bond between tantalum and pure metals such as molybdenum. chromium and iron; but as the carbon content of the steel increases, the bond becomes less satisfactory. In steels such as the stainless variety the carbon content may be reduced to the point of not causing objectionable combining with tantalum but the high nickel con tent creates the problem here. In a CVD process. the nickel will diffuse rapidly into tantalum leaving again the objectionable porosity.
The present invention contemplates a coating on steel which will protect the surface against the deterio ration when tantalum is deposited by chemical vapor deposition, It is, therefore, an object of the invention to provide a process for cladding steel with tantalum or possibly columbium which is consistently successful and uniform.
It is a further object to provide a product of a tantalum clad steel resulting from the process and to provide a process which insures uniform results on complicated shapes.
Other objects and features of the invention relating to details of the process and the product will be apparent in the following description and claims in which the principles of the invention are set forth in connection with the best mode presently contemplated for the practice of the invention.
A DRAWING accompanies the disclosure and a single view thereof may be described as a diagrammatic illustration of an apparatus for accomplishing the present invention.
In connection with the problem of tantalum cladding of carbon containing steel, we propose to establish a containment surface on the steel which will prevent carbon diffusion from the steel substrate to the tantalum being deposited thereon.
By way of definition, an overcoat on a particular sub-strate is defined as the deposition of a measurable thickness of material on a surface. All electroplated coatings are overcoats; and. similarly. hydrogenreduced refractory metal halides in a chemical vapor deposition process results in an overcoat. In these de positions. all the components of the coating are provided by the plating bath or the plating gas and none are provided by the substrate.
We propose a containment surface on a substrate which might be defined as a displacement diffusion coating in which at least one of the constituents of the coating is provided by the substrate. In this process. the coating does not build up on the surface to any appreciable extent but rather grows into the surface. For example. when titanium is used. this may be referred to as a "titanizing process." The -izing" or -ized" suffix placed on the end of the name of the element deposited from the gas denotes such a reaction.
In connection with titanizing. there is a reaction of the titanium with the carbon in an atmosphere of TiCl in the temperature range of 90(]l l()0(. which forms a thin diffusion barrier of titanium carbide. The TiCl reacts with the surface carbon on the carbon steel substrate to form TiC and once all surface carbon is reacted, the titanium deposition ceases. Thus. there is a definite limitation on the thickness of the displacement diffusion coating. Since titanium carbide is thermodynamically more stable than TaC. the pure tantalum may be deposited without further carbon diffusion from the sub-strate In the preparation of the displacement diffusion coating. there may be a reaction with free carbon on the surface with the TIC], but, in general, the carbon is available primarily from metal carbides in the sub-strate which are less stable than TiC. Nearly all the metal carbides normally occurring in carbon steel and low alloy carbon steel are less stable than TaC and thus displacement diffusion coating is required.
While titanium has been mentioned above. it is possible to use a containment coating of a metal selected from Groups IVb and Vlb. iron, and cobalt. of this group, for example, titanium carbide and ZrC are both more stable than tantalum carbide. After this containment coating is applied. it is possible to overcoat with pure tantalum in a CVD process without further carbon diffusion from the sub-strate.
In connection with stainless steels which are high in chromium and nickel. the problem with carbon diffu sion is reduced since the carbide with chromium. namely, Cr,-C is very stable. On the other hand. the nickel content of the stainless stell will diffuse uncontrollably into a tantalum clad coat. Thus, for these steels, an overcoat of the pure metal to which tantalum may be bonded in a CVD process must be used. In some instances, a plating process may be used and in other instances a plasma spray can provide a coating to which tantalum may successfully bond. In each case, care must be used to obtain a good bond between the sub-strate and the overcoat. With electroplating. careful pre-plating procedures must be observed in the cleaning of the part and well controlled plating steps must be utilized. In the plasma spraying, a coating of pure iron. chromium. cobalt, molybdenum or tungsten may be applied; in fact. any of the metals from Group IVb and Group Vlb as well as iron or cobalt can be practically applied in this way.
Once the pure metal overcoat is applied to the stainless stecl, the nickel diffusion is blocked and the CVD coating or clad of tantalum can be readily applied using conventional procedures.
It will be appreciated that carbon steel can also be plated or plasma sprayed with pure metals as above described to block carbon diffusion. With steel castings. for example, they are sometimes ground out and plasma coated with iron to remove the surface porosity and then titanized to stabilize any carbon that may have diffused into the plasma coat. Then the tantalum clad may proceed with a resulting good quality and uniform Coat.
With respect to the use of plasma spray of iron or stainless steel. the carbon diffusion is not as critical a problem since the iron intcrlayer remains pure iron and the bonding of the CVD tantalum readily occurs with out titanizing.
It has also been noted in tantalum cladding that deposition has occurred preferentially on certain areas of exposed parts rather than uniformly or in the areas where it is most generally desired. Tantalum cladding has been much improved by a control of the mixing of the tantalum CI and the hydrogen reactant gases.
In the chemical vapor deposition process which otherwise proceeds in accordance with accepted procedures in a reduction reaction, better results have been obtained when the TaCL- is introduced to the chamber in the normal manner as indicated in the drawing. However. the hydrogen is introduced through a separate feed line or a plurality of feed lines which terminate immediately upstream of the object to be coated. In other words, the gases are intentionally separated until they impinge on the object to be coated. This provides excellent control in putting the tantalum deposit where it is desired. Utilizing this technique. uniform tantalum claddings have been obtained on batches of cast valve bodies. for example, during a 45-minute deposition pe' riod in a system that formerly could not generate tantalum coverage over all areas of the valve bodies during a 5hour period of deposition. Thus, there is a great savings in materials and expense in performing the process as well as a much more desirable and uniform result. In some instances, a control of this combined flow which is brought together immediately upstream of the area to be plated can be improved by using multiple exhaust ports which are balanced to direct the flow to certain areas of the parts to be exposed.
While the above description has referred to tantalum cladding, it will be appreciated that columbium (niobium) is chemically similar and may be applied as a cladding coat in the same way as has been described in connection with tantalum. The same problems which require a containment coat for tantalum exist in relation to columbium. There is a considerable savings in the use of columbium since it is a less expensive metal but, on the other hand, tantalum has a broader applicability as a corrosion resistant material.
The term "coating or coat as used in the specifcation and claims has reference to the application, by CVD. plating, or plasma spray. to a sub-strate surface of a metal in an extremely thin layer under conditions as above described in which the metal unites with the surface carbon of the sub-strate to form a carbide having greater stability than tantalum carbide. The surface is thus prepared for the application of tantalum by chemical vapor deposition to the extent that there will be no perceptible formation of tantalum carbide at the bonding face. The above description of coating relates to metals from Group IVb and the coating may also include metals from Group Vlb, iron and cobalt applied as a pure metal to reduce the carbon diffusion during the tantalum coating.
Following are three examples of a process used for steel cladding with sub-strates of differing carbon and stainless steels and various treatments prior to the titanizing and the application of the tantalum clad.
EXAMPLE I Cladding of 6 inches l.D. X 24 inches long pipe spool made of type A-l06 Carbon Steel 1. Sand blast surface to remove scale and roughen surface for subsequent plasma sprayed coating.
2. Plasma spray 0.002 inch thick coating of iron on ID. and flange seal faces.
3. Place in CVD (chemical vapor deposition) furnace. evacuate with vacuum pump and heat to titanizing temperature of 1,070C. in argon.
4. Bubble hydrogen at 2 liters/minute through liquid TiCl and mix with the resultant gas 7 liters/minute of pure hydrogen (STP) and flow the mixture through spool, over flange seal faces and 1D. surface for onehalf hour at l,070C. and -23 inches Hg. pressure.
5. After titanizing, adjust temperature to l.0l0 1.040C. range and begin tantalum deposition by flowing 3 liters/minute of chlorine through heated tantalum chips to form TaCl and mixing the resultant gas with 18 liters/minute of hydrogen, passing it through the spool at 34 torr pressure. All gas flows at STP.
6. After one-half hour. adjust gas flows to 7.5 liters/- minute of chlorine and 45 liters/minute of hydrogen. both at STP.
7. Total tantalum deposition time 6 V2 hours.
8. Turn off chlorine and hydrogen and cool in argon.
9. Resultant deposit thickness from 0.009 to 0.015 inch over both flange seal faces and ID. of spool.
EXAMPLE 2 Cladding oftype 31658 pump housing with l inch ports and flanges and 4 inches diameter cavity 1. Degrease and deseale in HCl base commercial descaler solution.
2. Place in CVD furnace, evacuate with vacuum pump and heat to titanizing temperature at l,000C. in argon.
3. Bubble hydrogen at 2 liters/minute (STP) through liquid TiCl and mix the resultant gas with 7 liters/mi nute of pure hydrogen and flow the mixture through pump housing; over flange seal faces and inside surface for 1 hour at l,000C. and -23 inches Hg. pressure.
4. After titanizing, adjust temperature to l,Ol0 1.030C. range and begin tantalum deposition by flowing l.5 liters/minute of chlorine through heated tantalum chips to form TaCl and mixing with 9 liters/minute of hydrogen, passing the mixture through the pump housing at 30 torr pressure. All gas flows at STP.
5. Total tantalum deposition time 5 & hours.
6. Turn off chlorine and hydrogen and cool in argon.
7. Resultant deposit thickness from 0.012 inch to 0.020 inch over both flange faces and inside surface of pump housing.
EXAMPLE 3 Cladding of type I2 I 5 carbon steel thermowell, three-fourths inch diameter X 4 inches long well with 2 /2 inches diameter (flat-toflat) X 2 inches long hexagonal base. Total length 6 inches 1. Degrease and descale in HCl base commercial descalcr solution.
2. Place in CVD chamber. evacuate with vacuum pump to heat directly by induction to titanizing temper ature at l.l00 l,125C. after baking in H at l.050 l.075C. for minutes.
3. Bubble H at 800 cc/minute through liquid TiCL and mix the resultant gas with 3.5 liters/minute of pure hydrogen (STP) and flow the mixture over the outer surface of thermowell for minutes at l,l()0 l,lC. and l5 inches Hg. pressure.
4. After titanizing, adjust temperature to tantalum deposition range, l,0l0 1,030C. and flow (1 at l liter/minute through heated tantalum chips to form TaCl and mix the resultant gas with 6.25 liters/minute of hydrogen passing the mixture over the thermowell surface at torr pressure. All gas flows at STP.
5. Total tantalum deposition time 75 minutes.
6. Turn off chlorine and hydrogen and cool in argon.
7. Deposit thickness from 0.007 inch at underside of hexagon adjacent to threaded coupling, to 0.010 inch 1.020 inch on remaining well surface (0.020 inch at the tip).
It will be noted that the example using stainless steel shows a longer exposure time and a lower temperature than the examples on carbon steel. This is required to avoid eutectic melting by the titanium and nickel in the steel. This melting would occur at normal" carbon steel titanizing temperatures.
I claim:
I. A composite structure having a corrosion resistant surface which comprises:
a. a non-refractory steel substrate containing free carbon and metal carbides.
b. a displacement diffusion containment coating on said substrate to isolate carbon and metal carbides from the surface of the substrate composed of titanium carbide formed from an in situ combination of titanium with the carbon and metal carbides of the substrate. said displacement diffusion coating being stable in the presence of tantalum or columbium at temperatures ranging from 900 to l,100C.. and
c. a corrosion resistant material selected from the group consisting of tantalum and columbium molecularly bonded to said containment coating by chemical vapor deposition.

Claims (1)

1. A COMPOSITE STRUCTURE HAVING A CORROSION RESISTANT SURFACE WHICH COMPRISES: A. A NON-REFRACTORY STEEL SUBSTRATE CONTAINING FREE CARBON AND METAL CARBIDES, B. A DISPLACEMENT DIFFUSION CONTAINMENT COATING ON SAID SUBSTRATE TO ISOLATE CARBON AND METAL CARBIDES FROM THE SURFACE OF THE SUBSTRATE COMPOSED OF TITANIUM CARBIDE FORMED FROM AN INSITU COMBINATION OF TITANIUM WITH THE CARBON AND METAL CARBIDES OF THE SUBSTRATE, SAID DISPLACEMENT DIFFUSION COATING BEING STABLE IN THE PRESENCE OF TANTALUM OR COLUMBIUM AT TEMPERATURES RANGING FROM 900* TO 1,100*C., AND C. A CORROSION RESISTANT MATERIAL SELECTED FROM THE GROUP CONSISTING OF TANTALUM AND COLUMBIUM MOLECULARLY BONDED TO SAID CONTAINMENT COATING BY CHEMICAL VAPOR DEPOSITION.
US366284A 1972-08-29 1973-06-04 Composite coated steel structure for corrosion resistance Expired - Lifetime US3890110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US366284A US3890110A (en) 1972-08-29 1973-06-04 Composite coated steel structure for corrosion resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28463972A 1972-08-29 1972-08-29
US366284A US3890110A (en) 1972-08-29 1973-06-04 Composite coated steel structure for corrosion resistance

Publications (1)

Publication Number Publication Date
US3890110A true US3890110A (en) 1975-06-17

Family

ID=26962719

Family Applications (1)

Application Number Title Priority Date Filing Date
US366284A Expired - Lifetime US3890110A (en) 1972-08-29 1973-06-04 Composite coated steel structure for corrosion resistance

Country Status (1)

Country Link
US (1) US3890110A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018849A1 (en) * 1994-01-04 1995-07-13 Chevron Chemical Company Cracking processes
US5593571A (en) * 1993-01-04 1997-01-14 Chevron Chemical Company Treating oxidized steels in low-sulfur reforming processes
US5723707A (en) * 1993-01-04 1998-03-03 Chevron Chemical Company Dehydrogenation processes, equipment and catalyst loads therefor
US5849969A (en) * 1993-01-04 1998-12-15 Chevron Chemical Company Hydrodealkylation processes
US6258256B1 (en) * 1994-01-04 2001-07-10 Chevron Phillips Chemical Company Lp Cracking processes
US6274113B1 (en) 1994-01-04 2001-08-14 Chevron Phillips Chemical Company Lp Increasing production in hydrocarbon conversion processes
US6419986B1 (en) 1997-01-10 2002-07-16 Chevron Phillips Chemical Company Ip Method for removing reactive metal from a reactor system
US6548030B2 (en) 1991-03-08 2003-04-15 Chevron Phillips Chemical Company Lp Apparatus for hydrocarbon processing
US6702177B2 (en) 2000-12-22 2004-03-09 Le Carbone Lorraine Manufacturing process for a plated product comprising a support part in steel and an anticorrosion metallic coating
USRE38532E1 (en) 1993-01-04 2004-06-08 Chevron Phillips Chemical Company Lp Hydrodealkylation processes
US6800150B2 (en) 2002-04-29 2004-10-05 Le Carbone Lorraine Manufacturing process for an element of a chemical device comprising a support part in metal and an anticorrosion metallic coating

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2767464A (en) * 1952-10-24 1956-10-23 Ohio Commw Eng Co Composite metallic bodies and method of producing the same
US2998642A (en) * 1958-01-16 1961-09-05 Chicago Dev Corp Bonding of titanium to steel
US3164496A (en) * 1956-09-20 1965-01-05 Gen Electric Magnetic material and method of fabrication
US3170234A (en) * 1962-09-17 1965-02-23 Charles O Tarr Jointing of refractory metals by solidstate diffusion bonding
US3219474A (en) * 1962-05-11 1965-11-23 Priceman Seymour Protective coatings for columbium and its alloys
US3628924A (en) * 1969-03-07 1971-12-21 Mitsubishi Heavy Ind Ltd Ta or ta alloy clad steels
US3767456A (en) * 1971-09-07 1973-10-23 Fansteel Inc Chemical vapor deposition of steel with tantalum and columbium
US3784403A (en) * 1972-08-29 1974-01-08 Fansteel Inc Process for cladding steel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2767464A (en) * 1952-10-24 1956-10-23 Ohio Commw Eng Co Composite metallic bodies and method of producing the same
US3164496A (en) * 1956-09-20 1965-01-05 Gen Electric Magnetic material and method of fabrication
US2998642A (en) * 1958-01-16 1961-09-05 Chicago Dev Corp Bonding of titanium to steel
US3219474A (en) * 1962-05-11 1965-11-23 Priceman Seymour Protective coatings for columbium and its alloys
US3170234A (en) * 1962-09-17 1965-02-23 Charles O Tarr Jointing of refractory metals by solidstate diffusion bonding
US3628924A (en) * 1969-03-07 1971-12-21 Mitsubishi Heavy Ind Ltd Ta or ta alloy clad steels
US3767456A (en) * 1971-09-07 1973-10-23 Fansteel Inc Chemical vapor deposition of steel with tantalum and columbium
US3784403A (en) * 1972-08-29 1974-01-08 Fansteel Inc Process for cladding steel

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548030B2 (en) 1991-03-08 2003-04-15 Chevron Phillips Chemical Company Lp Apparatus for hydrocarbon processing
US5723707A (en) * 1993-01-04 1998-03-03 Chevron Chemical Company Dehydrogenation processes, equipment and catalyst loads therefor
USRE38532E1 (en) 1993-01-04 2004-06-08 Chevron Phillips Chemical Company Lp Hydrodealkylation processes
US5849969A (en) * 1993-01-04 1998-12-15 Chevron Chemical Company Hydrodealkylation processes
US5866743A (en) * 1993-01-04 1999-02-02 Chevron Chemical Company Hydrodealkylation processes
US5593571A (en) * 1993-01-04 1997-01-14 Chevron Chemical Company Treating oxidized steels in low-sulfur reforming processes
WO1995018849A1 (en) * 1994-01-04 1995-07-13 Chevron Chemical Company Cracking processes
US6258256B1 (en) * 1994-01-04 2001-07-10 Chevron Phillips Chemical Company Lp Cracking processes
US6274113B1 (en) 1994-01-04 2001-08-14 Chevron Phillips Chemical Company Lp Increasing production in hydrocarbon conversion processes
US5575902A (en) * 1994-01-04 1996-11-19 Chevron Chemical Company Cracking processes
US6419986B1 (en) 1997-01-10 2002-07-16 Chevron Phillips Chemical Company Ip Method for removing reactive metal from a reactor system
US6551660B2 (en) 1997-01-10 2003-04-22 Chevron Phillips Chemical Company Lp Method for removing reactive metal from a reactor system
US6702177B2 (en) 2000-12-22 2004-03-09 Le Carbone Lorraine Manufacturing process for a plated product comprising a support part in steel and an anticorrosion metallic coating
US20040065392A1 (en) * 2000-12-22 2004-04-08 Le Carbone Lorraine Manufacturing process for a plated product comprising a support part in steel and an anticorrosion metallic coating
US6800150B2 (en) 2002-04-29 2004-10-05 Le Carbone Lorraine Manufacturing process for an element of a chemical device comprising a support part in metal and an anticorrosion metallic coating

Similar Documents

Publication Publication Date Title
US3767456A (en) Chemical vapor deposition of steel with tantalum and columbium
US3890110A (en) Composite coated steel structure for corrosion resistance
DE2253745C3 (en) Cutting inserts
USRE29420E (en) Sintered cemented carbide body coated with two layers
US3955038A (en) Hard metal body
EP0605196A1 (en) Thermal barrier coating process
US4138512A (en) Process for chemical vapor deposition of a homogeneous alloy of refractory metals
US3368914A (en) Process for adherently depositing a metal carbide on a metal substrate
US4402764A (en) Method for producing abrasion and erosion resistant articles
US6370934B1 (en) Extrusion tool, process for the production thereof and use thereof
JPH0784661B2 (en) Highly erosion resistant and highly abrasive wear resistant composite coating system and its manufacturing method
US4040870A (en) Deposition method
US2604395A (en) Method of producing metallic bodies
US3540920A (en) Process of simultaneously vapor depositing silicides of chromium and titanium
JPH0571663B2 (en)
US4153483A (en) Deposition method and products
ES272010A1 (en) Processes of producing tin-nickelphosphorus coatings
US3784403A (en) Process for cladding steel
US5024901A (en) Method for depositing highly erosive and abrasive wear resistant composite coating system on a substrate
US4971624A (en) Abrasion and erosion resistant articles
US4147820A (en) Deposition method and products
EP0188057A1 (en) Erosion resistant coatings
US3824134A (en) Metalliding process
US3208885A (en) Apparatus for nitriding of metals
DE3509242C2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: FANSTEEL INC., A CORP. OF DELAWARE

Free format text: MERGER;ASSIGNORS:FANSTEEL INC., A CORP. OF NY;FANSTEEL DELAWARE INCORPORATED, A CORP. OF DE;REEL/FRAME:005172/0598

Effective date: 19850502