US3887018A - Fluid driven hammers - Google Patents

Fluid driven hammers Download PDF

Info

Publication number
US3887018A
US3887018A US436483A US43648374A US3887018A US 3887018 A US3887018 A US 3887018A US 436483 A US436483 A US 436483A US 43648374 A US43648374 A US 43648374A US 3887018 A US3887018 A US 3887018A
Authority
US
United States
Prior art keywords
fluid
hammer
actuated means
fluid actuated
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US436483A
Inventor
Murray L Jayne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US436483A priority Critical patent/US3887018A/en
Application granted granted Critical
Publication of US3887018A publication Critical patent/US3887018A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/06Means for driving the impulse member

Definitions

  • the present invention requires the hollow frame and the reciprocating hammer member, but the close fits are unnecessary, the hammer being urged in the direction of the tool by a resilient element or spring, but being retracted by a fluid motor, in the illustrative embodiment an elongated flexible inflatable element, known in the trade as an air spring; and means is provided for suddenly virtually instantly exhausting the air spring so that the resilient element is free to propel the hammer head into contact with the tool with little or negligible resistance from the air spring.
  • the hammer is never disconnected from the fluid motor, so no latch or other mechanism is required to provide for such release.
  • the invention is in part directed to constructions adapted to quickly exhaust the pressure fluid and in part to constructions for isolating from the actuating mechanism the severe vibrations originating in the hammer head to thereby shield the mechanism from damage which otherwise might be caused by such vibration. Accordingly it is an object of the invention to provide a fluid actuated hammer which will be simple, inexpensive, durable and when necessary, easily repaired.
  • FIG. is an axial sectional view of a hammer structure embodying the invention:
  • FIG. 2 is an enlarged detail of construction indicated in FIG. 1:
  • FIG. 3 is a similar view with the parts in a different position
  • FIG. 4 is a diagrammatic axial cross sectional view of a trip valve typical ofthose used in the invention.
  • FIG. 5 is a similar view with the parts in a different position.
  • the device comprises an impact or hammer head element 2, slidable in a tubular frame 4 in position to strike against a shank or anvil 6 slidable in relation to tube 4, in the present embodiment in a smaller tube 8 fixed in tube 4 as a guide for shank 6, and to which any suitable tool may be secured in well-known manner.
  • a pin 10 is carried in shank 6 and slides in slots I2 in tube 4 to retain shank 6 in tube 8 while allowing limited movement.
  • Hammer element or head 2 is urged in the direction of shank 6 by a resilient element, in this em bodiment a heavy spring 14 compressed between it and an abutment 16 fixed in tubular frame 4 so that hammer 2 can be forced into powerful impacting contact with shank 6 after being pulled away by fluid pressure as will appear.
  • Fluid under pressure comes in through a pipe or hose l8, controlled by a well-known type of throttle valve 20, and, when permitted by the latter, passes on to a pressure-sensitive trip valve 22 which will be further described and thence through a passageway 24 in abutment 16 into a first expansible rubber or rubberlike bag or air spring 26 having an upper plate 27, and which expands upwardly, as seen in FIG. 2, and carries a pad 28 into sealing relation with the under side of a plate 30 fixed as a closure to the upper end of tube 4.
  • a rod 32 extends, preferably axially, through bag 26, slidably through abutment l6, and through spring 14, and is permanently connected to hammer 2 preferably in a special manner as will be described, fluid leakage about rod 32 being inconsequential or prevented in any wellknown manner.
  • Air spring 38 As spring I4 is compressed its resistance to further compression increases and the fluid pressure necessary to continue the compression increases and, when the fluid pressure reaches a predetermined value, valve 22 trips, as will be described, and exhausts itself and air spring 26. Air spring 38, however, is still inflated at the previous high pressure, and which pressure, through holes 48, pressing downwardly on pad 28 pushes it quickly away from plate 30, as seen in FIG. 3, the fluid in air spring 38 suddenly exhausting through holes 48, past pad 28 and escaping through exhaust ports 50 in the sides of tube 4. The aggregate cross sectional area of holes 48 is sufficient that air spring 38 is exhausted virtually instantly so that there is no serious resistance to spring 14 as it propels hammer 2 into impact with shank 6.
  • Valve 22 is a commercial product, but will be described in order to set forth a complete operative mechanism.
  • FIGS. 4 and 5 it comprises an elongated generally cylindrical body portion 52 having an axial bore 54 in which is slidable a fluid-tight shuttle valve generally designated as 56 comprising spaced piston portions 58 and 60 connected by a stem portion 62, the hole being urged toward the right in FIG. 4 by a spring 64.
  • a fluid-tight shuttle valve generally designated as 56 comprising spaced piston portions 58 and 60 connected by a stem portion 62, the hole being urged toward the right in FIG. 4 by a spring 64.
  • pressure fluid enters through an inlet 66, passing between pistons 58 and 60 to an outlet portion 68 and thence to above mentioned passageway 24, seen in FIGS. 1, 2 and 3.
  • An exhaust port 70 leading out of bore 54, in this position of the parts is blocked by piston 58.
  • the pressure building up in outlet 68 is also transmitted through a passageway 72 to a relief valve 74 maintained in a closed or seated position by a spring 76, the force of which may be adjusted by a screw 78. At some point determined by the adjustment of screw 78 the pressure will build up to a point sufficient to unseat valve 74 whereupon fluid will flow through a passageway 80 leading to the end of bore 54 to the right of piston 60 so as to overcome spring 64 and shift shuttle valve 56 to the left, as seen in FIG. 5. Piston 60 then blocks inlet 66 while piston 58 opens bore 54 to exhaust passageway 70 so that passageway 68, and therefore passageway 24 is suddenly relieved of pressure.
  • passageway 80 In order for the cycle to repeat, the fluid trapped in bore 54 to the right of piston 60 is exhausted through hereinbefore mentioned passageway 80 and a non-return, or check valve 82 back to passageway 68, valve 82 being seated by a very light spring 83.
  • passageway 68, and therefore passageway 80 is connected to exhaust passageway 70, whereupon spring 64 will quickly return shuttle valve 62 to starting position so that the action will repeat itself.
  • the space to the left of piston 58 is vented through a port 82 to avoid blocking the movement of shuttle valve 62.
  • valve 84 is provided which may be turned by appropriate external means to partially block passageway 72. In this way the return of shuttle valve 62 may be delayed as much as desired, and which will determine the frequency of the hammer blows.
  • the force of the blows may be adjusting screw 78 which, as stated, will control the pressure at which valve 74 will be unseated, and accordingly the pressure in passageways 68 and 24, and therefore the degree of compression of spring 14 at the time air spring 38 is suddenly exhausted, and the movement of hammer 2 toward impact with shank 6 is started.
  • Fluid passing to trip valve 22 may be controlled in various ways, but in the illustrative embodiment hereinbefore described throttle valve 20 is supported on housing 4 as seen in FIG. 1 and supplied with pressure fluid through above mentioned pipe or hose 18.
  • Valve 20 has a stem 86 which when pressed permits flow of fluid from pipe 18 into inlet pipe 66 of valve 22.
  • a connection in the form of a rod 88 is slidable in a sheath 90 fixed on housing 4 and extends into proximity to a portion of pin projecting from housing 4 such that shifting of pin 10 upwardly, when a tool carried by shank 6 is pressed against its work, will shift rod 88 in sheath 90 and press an offset portion 92 of rod 88 against stem 86 and open throttle valve to start the hammering action.
  • Relief valve 34 comprises a tubular body 104 best seen in FIGS. 2 and 3, fixed in and projecting above plate 27 to extend through opening 36, as stated, and having a bore 106 therethrough providing a reduced portion forming a seat 108 against which a ball valve 110 is pressed by a light spring 112 reacting against a pin or other anchorage 114.
  • the device will operate in any position, and a suitable handle or handles may be provided for manipulating the hammer, or, when made in larger sizes it may be mounted on a boom or the like forming part of a tractor, crane or similar device.
  • valve 20 admits fluid to valve 22.
  • the fluid passes into air spring 38 which expands and pulls rod 32 upwardly and lifts hammer 2 away from shank 6, compressing spring 14.
  • the valve trips and exhausts air spring 26 which in turn suddenly exhausts air spring 38, allowing spring 14 to expand and drive hammer 2 into forceful contact with shank 6.
  • the drop in pressure in valve 22 causes it to trip and again admit fluid to air spring 38, and the action repeats.
  • the force of the blows may be regulated by adjusting the pressure of spring 76 through screw 78, and their frequency by adjusting valve 84.
  • An impact tool comprising a frame including an elongated housing open at one end, a hammer element longitudinally movable within said housing, resilient means connected to said frame and to said hammer element in relation to urge said hammer element in one direction, fluid actuated means on said frame, means permanently connected with said fluid actuated means, extending to and connected in fixed relation with said hammer element in position to move said hammer ele ment, when said fluid actuated means is activated, in the other direction, and valve means connected to said fluid actuated means and constituted to suddenly release pressure fluid from said fluid actuated means to exhaust said fluid actuated means to free said fluid actuated means and said hammer element to be propelled in the first mentioned direction by said resilient means.
  • said section that is flexible comprising a rod connected with said expansible member and a section of flexible wire cable permanently connected with said rod and extending to and permanently connected with said hammer head element.
  • valve means is responsive to increase in pressure in said fluid actuated means to suddenly release pressure upon attainment of a predetermined pressure in said fluid actuated means.
  • An impact tool as defined in claim 1 in which a resilient rubber-like element is interposed between said resilient means and said hammer element for damping extraneous vibrations which would otherwise be transmitted to said resilient means.
  • An impact tool comprising a reciprocable hammer head element. a resilient element positioned to continuously urge said hammer head element in one direction, fluid pressure actuated means, valve means controlling the flow of pressure fluid into and out of said fluid pressure actuated means, means permanently connected with said fluid actuated means and extending to and connected in fixed relation with said hammer head element, said fluid actuated means comprising first and second inflatable members, said second inflatable member being connected with said means connected with said hammer head element, and having a fluid outlet, said first inflatable member being connected to receive pressure fluid from said valve means, to be inflated thereby and being positioned to seal, when inflated, said fluid outlet of said second inflatable member, said first inflatable member having means for inflating, when itself inflated, said second inflatable member, and said first inflatable member being adapted, when said valve means releases pressure fluid, to free said fluid outlet to suddenly release pressure fluid from said second inflatable member.
  • An impact tool comprising a frame including an elongated housing open at one end, a hammer head element longitudinally movable within said housing, resilient means connected to said frame and to said hammer head element in relation to urge said hammer head element in one direction, fluid actuated means on said frame, means permanently connected with said fluid actuated means extending to and connected in fixed relation with said hammer head element in position to move said hammer head element, when said fluid actuated means is activated, in the other direction, throttle valve means positioned to control the access of fluid to said fluid actuated means, a shank movably disposed in said elongated housing in position to be struck by said hammer head element when the latter is propelled by said resilient means, and connections on said housing activated by movement of said shank toward said hammer head element to actuate said throttle valve means to control the flow of pressure fluid to actuate said impact tool.

Abstract

The invention comprises a reciprocable hammer head element continuously urged by a resilient element in one direction and permamently connected with a fluid pressure expansible member in relation to be propelled in the other direction by expansion of said expansible member, and means for directing pressure fluid to said expansible member and adapted to suddenly exhaust pressure fluid from the same to free said hammer head element to be propelled by said resilient element to deliver a blow to a workpiece supported in the path of movement of the hammer head element.

Description

United States Patent [1 1 1111 3,887,018
Jayne June 3, 1975 FLUID DRIVEN IIAMMERS [76] Inventor: Murray L. Jayne, 8609 Lakeshore Pnmary Examiner-James Leppmk Dr., Kenosha, Wis. 53l40 22 Filed: Jan. 25, 1974 [571 ABSTRACT [2|] APPL No: 436,483 The invention comprises a reciprocable hammer head element continuously urged by a resilient element in one direction and permamently connected with a fluid LS. Cl. pressure expansible member in relation to be pro- II". C]. pelled in the other direction expansion of aid ex- 0 Search l9, pansible member and means for directing pressure fluid to said expansible member and adapted to sud- References Ci'ed denly exhaust pressure fluid from the same to free said UNITED STATES PATENTS hammer head element to be propelled by said resilient 2,559,478 7/1951 Stone 173/119 element deliver a blow a workpiece Supported in 2,602,507 7/1952 Adams 173/120 the P Of movement of the hammer hfiad element- 3,33l,603 7/1967 Webb l73/ll9 3,599,731 8/1971 Lawlis et al 173 119 8 Clam, 5 Drawmg Flgures FLUID DRIVEN HAMMERS Fluid driven hammers are known in which a recipro eating slug or hammer member moves in a hollow frame in response to fluid pressure, usually air, in which the hammer head either is itself or is connected with a piston, the piston working in a cylinder usually forming part of the frame, the hammer member being impelled into contact with a tool slidable in the frame. Such de vices are costly in that careful machining is required to produce the necessary close fits.
The present invention requires the hollow frame and the reciprocating hammer member, but the close fits are unnecessary, the hammer being urged in the direction of the tool by a resilient element or spring, but being retracted by a fluid motor, in the illustrative embodiment an elongated flexible inflatable element, known in the trade as an air spring; and means is provided for suddenly virtually instantly exhausting the air spring so that the resilient element is free to propel the hammer head into contact with the tool with little or negligible resistance from the air spring. The hammer is never disconnected from the fluid motor, so no latch or other mechanism is required to provide for such release.
The invention is in part directed to constructions adapted to quickly exhaust the pressure fluid and in part to constructions for isolating from the actuating mechanism the severe vibrations originating in the hammer head to thereby shield the mechanism from damage which otherwise might be caused by such vibration. Accordingly it is an object of the invention to provide a fluid actuated hammer which will be simple, inexpensive, durable and when necessary, easily repaired.
Further objects and advantages will appear from the following specification and accompanying drawings, in which FIG. is an axial sectional view of a hammer structure embodying the invention:
FIG. 2 is an enlarged detail of construction indicated in FIG. 1:
FIG. 3 is a similar view with the parts in a different position;
FIG. 4 is a diagrammatic axial cross sectional view of a trip valve typical ofthose used in the invention; and
FIG. 5 is a similar view with the parts in a different position.
The device comprises an impact or hammer head element 2, slidable in a tubular frame 4 in position to strike against a shank or anvil 6 slidable in relation to tube 4, in the present embodiment in a smaller tube 8 fixed in tube 4 as a guide for shank 6, and to which any suitable tool may be secured in well-known manner. A pin 10 is carried in shank 6 and slides in slots I2 in tube 4 to retain shank 6 in tube 8 while allowing limited movement. Hammer element or head 2 is urged in the direction of shank 6 by a resilient element, in this em bodiment a heavy spring 14 compressed between it and an abutment 16 fixed in tubular frame 4 so that hammer 2 can be forced into powerful impacting contact with shank 6 after being pulled away by fluid pressure as will appear.
Fluid under pressure comes in through a pipe or hose l8, controlled by a well-known type of throttle valve 20, and, when permitted by the latter, passes on to a pressure-sensitive trip valve 22 which will be further described and thence through a passageway 24 in abutment 16 into a first expansible rubber or rubberlike bag or air spring 26 having an upper plate 27, and which expands upwardly, as seen in FIG. 2, and carries a pad 28 into sealing relation with the under side of a plate 30 fixed as a closure to the upper end of tube 4. A rod 32 extends, preferably axially, through bag 26, slidably through abutment l6, and through spring 14, and is permanently connected to hammer 2 preferably in a special manner as will be described, fluid leakage about rod 32 being inconsequential or prevented in any wellknown manner.
With pad 28 seated against plate 30, pressure in bag 26 will increase and overcome a back-pressure valve generally designated as 34 which, in the present position of the parts projects through an opening 36 in plate 30, into the interior of a larger air spring 28. Air spring 38 expands against a washer 40, FIG. 1, in contact with a rubber or rubber-like washer 42 which, through a washer 44 and nut 46 raises rod 32. Such movement of rod 32 raises hammer 2 against the downward pressure of spring 14.
As spring I4 is compressed its resistance to further compression increases and the fluid pressure necessary to continue the compression increases and, when the fluid pressure reaches a predetermined value, valve 22 trips, as will be described, and exhausts itself and air spring 26. Air spring 38, however, is still inflated at the previous high pressure, and which pressure, through holes 48, pressing downwardly on pad 28 pushes it quickly away from plate 30, as seen in FIG. 3, the fluid in air spring 38 suddenly exhausting through holes 48, past pad 28 and escaping through exhaust ports 50 in the sides of tube 4. The aggregate cross sectional area of holes 48 is sufficient that air spring 38 is exhausted virtually instantly so that there is no serious resistance to spring 14 as it propels hammer 2 into impact with shank 6.
The sudden loss of pressure in air spring 26 and valve 22 causes the latter to trip back to its starting position, whereupon the cycle repeats itself.
Valve 22 is a commercial product, but will be described in order to set forth a complete operative mechanism.
As best seen in FIGS. 4 and 5 it comprises an elongated generally cylindrical body portion 52 having an axial bore 54 in which is slidable a fluid-tight shuttle valve generally designated as 56 comprising spaced piston portions 58 and 60 connected by a stem portion 62, the hole being urged toward the right in FIG. 4 by a spring 64. In the position of the parts in FIG. 4 pressure fluid enters through an inlet 66, passing between pistons 58 and 60 to an outlet portion 68 and thence to above mentioned passageway 24, seen in FIGS. 1, 2 and 3. An exhaust port 70 leading out of bore 54, in this position of the parts is blocked by piston 58. The pressure building up in outlet 68 is also transmitted through a passageway 72 to a relief valve 74 maintained in a closed or seated position by a spring 76, the force of which may be adjusted by a screw 78. At some point determined by the adjustment of screw 78 the pressure will build up to a point sufficient to unseat valve 74 whereupon fluid will flow through a passageway 80 leading to the end of bore 54 to the right of piston 60 so as to overcome spring 64 and shift shuttle valve 56 to the left, as seen in FIG. 5. Piston 60 then blocks inlet 66 while piston 58 opens bore 54 to exhaust passageway 70 so that passageway 68, and therefore passageway 24 is suddenly relieved of pressure. In order for the cycle to repeat, the fluid trapped in bore 54 to the right of piston 60 is exhausted through hereinbefore mentioned passageway 80 and a non-return, or check valve 82 back to passageway 68, valve 82 being seated by a very light spring 83. At this instant, passageway 68, and therefore passageway 80, is connected to exhaust passageway 70, whereupon spring 64 will quickly return shuttle valve 62 to starting position so that the action will repeat itself. The space to the left of piston 58 is vented through a port 82 to avoid blocking the movement of shuttle valve 62.
it is desirable that the last described tripping of valve 22 be delayed a fraction of a second so that hammer 2 will have time to deliver its blow to shank 6 before air spring 38 begins to inflate again, and for this purpose a valve 84 is provided which may be turned by appropriate external means to partially block passageway 72. In this way the return of shuttle valve 62 may be delayed as much as desired, and which will determine the frequency of the hammer blows.
The force of the blows may be adjusting screw 78 which, as stated, will control the pressure at which valve 74 will be unseated, and accordingly the pressure in passageways 68 and 24, and therefore the degree of compression of spring 14 at the time air spring 38 is suddenly exhausted, and the movement of hammer 2 toward impact with shank 6 is started.
Fluid passing to trip valve 22 may be controlled in various ways, but in the illustrative embodiment hereinbefore described throttle valve 20 is supported on housing 4 as seen in FIG. 1 and supplied with pressure fluid through above mentioned pipe or hose 18. Valve 20 has a stem 86 which when pressed permits flow of fluid from pipe 18 into inlet pipe 66 of valve 22. A connection in the form of a rod 88 is slidable in a sheath 90 fixed on housing 4 and extends into proximity to a portion of pin projecting from housing 4 such that shifting of pin 10 upwardly, when a tool carried by shank 6 is pressed against its work, will shift rod 88 in sheath 90 and press an offset portion 92 of rod 88 against stem 86 and open throttle valve to start the hammering action.
It has been observed that the severe vibration developed in hammer 2 by the repeated blows on shank 6 will cause rapid deterioration or fatigue" of rod 32 if the latter is fixed to hammer 2, and therefore rod 32 terminates in a well known type of coupling 94 which connects it with a length of flexible cable 96. Cable 96 extends part way through hammer 2, axially, and terminates in a swage 98 which prevents the pull of rod 32 from pulling cable 96 out of hammer 2. To protect spring 14 from severe vibration arising from the hammer blows it is seated on a washer 100 which in turn is seated on a rubber or rubber-like washer 102 which exerts a damping effect on extraneous vibrations, which would otherwise be set up in the spring by the hammer blows.
Relief valve 34 comprises a tubular body 104 best seen in FIGS. 2 and 3, fixed in and projecting above plate 27 to extend through opening 36, as stated, and having a bore 106 therethrough providing a reduced portion forming a seat 108 against which a ball valve 110 is pressed by a light spring 112 reacting against a pin or other anchorage 114.
The device will operate in any position, and a suitable handle or handles may be provided for manipulating the hammer, or, when made in larger sizes it may be mounted on a boom or the like forming part of a tractor, crane or similar device.
OPERATION.
The operation of the device is thought to be clear from the above sufficient to say, pressing a tool against the work shifts shank 6 and pin 10, pressing rod 88 into contact with stem 86 so that valve 20 admits fluid to valve 22. The fluid passes into air spring 38 which expands and pulls rod 32 upwardly and lifts hammer 2 away from shank 6, compressing spring 14. Upon the development of a predetermined pressure in valve 22 the valve trips and exhausts air spring 26 which in turn suddenly exhausts air spring 38, allowing spring 14 to expand and drive hammer 2 into forceful contact with shank 6. The drop in pressure in valve 22 causes it to trip and again admit fluid to air spring 38, and the action repeats. The force of the blows may be regulated by adjusting the pressure of spring 76 through screw 78, and their frequency by adjusting valve 84.
What is claimed as new and desired to be secured by Letters Patent of the United States is:
1. An impact tool comprising a frame including an elongated housing open at one end, a hammer element longitudinally movable within said housing, resilient means connected to said frame and to said hammer element in relation to urge said hammer element in one direction, fluid actuated means on said frame, means permanently connected with said fluid actuated means, extending to and connected in fixed relation with said hammer element in position to move said hammer ele ment, when said fluid actuated means is activated, in the other direction, and valve means connected to said fluid actuated means and constituted to suddenly release pressure fluid from said fluid actuated means to exhaust said fluid actuated means to free said fluid actuated means and said hammer element to be propelled in the first mentioned direction by said resilient means.
2. An impact tool as defined in claim 1 in which said fluid actuated means comprises a flexible inflatable member.
3. An impact tool as defined in claim 1 in which said means connected with said fluid actuated means and with said hammer element is characterized by a section that is flexible.
4. An impact tool as defined in claim 3, said section that is flexible comprising a rod connected with said expansible member and a section of flexible wire cable permanently connected with said rod and extending to and permanently connected with said hammer head element.
5. An impact tool as defined in claim 1 in which said valve means is responsive to increase in pressure in said fluid actuated means to suddenly release pressure upon attainment of a predetermined pressure in said fluid actuated means.
6. An impact tool as defined in claim 1 in which a resilient rubber-like element is interposed between said resilient means and said hammer element for damping extraneous vibrations which would otherwise be transmitted to said resilient means.
7. An impact tool comprising a reciprocable hammer head element. a resilient element positioned to continuously urge said hammer head element in one direction, fluid pressure actuated means, valve means controlling the flow of pressure fluid into and out of said fluid pressure actuated means, means permanently connected with said fluid actuated means and extending to and connected in fixed relation with said hammer head element, said fluid actuated means comprising first and second inflatable members, said second inflatable member being connected with said means connected with said hammer head element, and having a fluid outlet, said first inflatable member being connected to receive pressure fluid from said valve means, to be inflated thereby and being positioned to seal, when inflated, said fluid outlet of said second inflatable member, said first inflatable member having means for inflating, when itself inflated, said second inflatable member, and said first inflatable member being adapted, when said valve means releases pressure fluid, to free said fluid outlet to suddenly release pressure fluid from said second inflatable member.
8. An impact tool comprising a frame including an elongated housing open at one end, a hammer head element longitudinally movable within said housing, resilient means connected to said frame and to said hammer head element in relation to urge said hammer head element in one direction, fluid actuated means on said frame, means permanently connected with said fluid actuated means extending to and connected in fixed relation with said hammer head element in position to move said hammer head element, when said fluid actuated means is activated, in the other direction, throttle valve means positioned to control the access of fluid to said fluid actuated means, a shank movably disposed in said elongated housing in position to be struck by said hammer head element when the latter is propelled by said resilient means, and connections on said housing activated by movement of said shank toward said hammer head element to actuate said throttle valve means to control the flow of pressure fluid to actuate said impact tool.

Claims (8)

1. An impact tool comprising a frame including an elongated housing open at one end, a hammer element longitudinally movable within said housing, resilient means connected to said frame and to said hammer element in relation to urge said hammer element in one direction, fluid actuated means on said frame, means permanently connected with said fluid actuated means, extending to and connected in fixed relation with said hammer element in position to move said hammer element, when said fluid actuated means is activated, in the other direction, and valve means connected to said fluid actuated means and constituted to suddenly release pressure fluid from said fluid actuated means to exhaust said fluid actuated means to free said fluid actuated means and said hammer element to be propelled in the first mentioned direction by said resilient means.
1. An impact tool comprising a frame including an elongated housing open at one end, a hammer element longitudinally movable within said housing, resilient means connected to said frame and to said hammer element in relation to urge said hammer element in one direction, fluid actuated means on said frame, means permanently connected with said fluid actuated means, extending to and connected in fixed relation with said hammer element in position to move said hammer element, when said fluid actuated means is activated, in the other direction, and valve means connected to said fluid actuated means and constituted to suddenly release pressure fluid from said fluid actuated means to exhaust said fluid actuated means to free said fluid actuated means and said hammer element to be propelled in the first mentioned direction by said resilient means.
2. An impact tool as defined in claim 1 in which said fluid actuated means comprises a flexible inflatable member.
3. An impact tool as defined in claim 1 in which said means connected with said fluid actuated means and with said hammer element is characterized by a section that is flexible.
4. An impact tool as defined in claim 3, said section that is flexible comprising a rod connected with said expansible member and a section of flexible wire cable permanently connected with said rod and extending to and permanently connected with said hammer head element.
5. An impact tool as defined in claim 1 in which said valve means is responsive to increase in pressure in said fluid actuated means to suddenly release pressure upon attainment of a predetermined pressure in said fluid actuated means.
6. An impact tool as defined in claim 1 in which a resilient rubber-like element is interposed between said resilient means and said hammer element for damping extraneous vibrations which would otherwise be transmitted to said resilient means.
7. An impact tool comprising a reciprocable hammer head element, a resilient element positioned to continuously urge said hammer head element in one direction, fluid pressure actuated means, valve means controlling the flow of pressure fluid into and out of said fluid pressure actuated means, means permanently connected with said fluid actuated means and extending to and connected in fixed relation with said hammer head element, said fluid actuated means comprising first and second inflatable members, said second inflatable member being connected with said means connected with said hammer head element, and having a fluid outlet, said first inflatable member being connected to receive pressure fluid from said valve means, to be inflated thereby and being positioned to seal, when inflated, said fluid outlet of said second inflatable member, said first inflatable member having means for inflating, when itself inflated, said second inflatable member, and said first inflatable member being adapted, when said valve means releases pressure fluid, to free said fluid outlet to suddenly release pressure fluid from said second inflatable member.
US436483A 1974-01-25 1974-01-25 Fluid driven hammers Expired - Lifetime US3887018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US436483A US3887018A (en) 1974-01-25 1974-01-25 Fluid driven hammers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US436483A US3887018A (en) 1974-01-25 1974-01-25 Fluid driven hammers

Publications (1)

Publication Number Publication Date
US3887018A true US3887018A (en) 1975-06-03

Family

ID=23732585

Family Applications (1)

Application Number Title Priority Date Filing Date
US436483A Expired - Lifetime US3887018A (en) 1974-01-25 1974-01-25 Fluid driven hammers

Country Status (1)

Country Link
US (1) US3887018A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040226752A1 (en) * 2001-07-02 2004-11-18 Sandvik Tamrock Oy Impact device
GB2413777A (en) * 2004-05-07 2005-11-09 Bosch Gmbh Robert Impact mechanism for power tool
US20130031763A1 (en) * 2011-08-02 2013-02-07 Roger Kliskey Impact separator tool
US20130140053A1 (en) * 2013-01-29 2013-06-06 Danuser Llc Post driver with limited movement floating post anvil
US20140208575A1 (en) * 2013-01-28 2014-07-31 Caterpillar Inc. Tie rod support for hydraulic hammer
US9038744B2 (en) * 2008-06-06 2015-05-26 Coil Tubing Technology, Inc. Jet hammer
US20160001432A1 (en) * 2014-07-03 2016-01-07 Sandvik Mining And Construction Oy Breaking device
US20160243690A1 (en) * 2015-02-19 2016-08-25 Caterpillar Inc. Variable damping system for a power cell of a hydraulic hammer
US20170087703A1 (en) * 2015-09-28 2017-03-30 Caterpillar Inc. Hammer assembly
US20170165823A1 (en) * 2015-12-15 2017-06-15 Caterpillar Inc. Damping system for a hydraulic hammer
US9776314B1 (en) * 2017-06-20 2017-10-03 Jason Swinford Dual impact fluid driven hammering tool
US20220274239A1 (en) * 2021-02-08 2022-09-01 Jason Swinford Fluid-driven pulsing hammering tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2559478A (en) * 1948-11-22 1951-07-03 Stonefield Inc Hydraulic impact tool
US2602507A (en) * 1946-03-01 1952-07-08 Adams Ida Nichols Tool press and operating means therefor
US3331603A (en) * 1963-02-11 1967-07-18 Lakewood Mfg Company Spring driven bowling ball propelling mechanism
US3599731A (en) * 1969-12-01 1971-08-17 Del Guy Inc Drilling apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2602507A (en) * 1946-03-01 1952-07-08 Adams Ida Nichols Tool press and operating means therefor
US2559478A (en) * 1948-11-22 1951-07-03 Stonefield Inc Hydraulic impact tool
US3331603A (en) * 1963-02-11 1967-07-18 Lakewood Mfg Company Spring driven bowling ball propelling mechanism
US3599731A (en) * 1969-12-01 1971-08-17 Del Guy Inc Drilling apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7013996B2 (en) 2001-07-02 2006-03-21 Sandvik Tamrock Oy Impact device
US20040226752A1 (en) * 2001-07-02 2004-11-18 Sandvik Tamrock Oy Impact device
GB2413777A (en) * 2004-05-07 2005-11-09 Bosch Gmbh Robert Impact mechanism for power tool
US20050247462A1 (en) * 2004-05-07 2005-11-10 Gerhard Meixner Hand machine tool with a hammer mechanism
US9038744B2 (en) * 2008-06-06 2015-05-26 Coil Tubing Technology, Inc. Jet hammer
US20130031763A1 (en) * 2011-08-02 2013-02-07 Roger Kliskey Impact separator tool
US20140208575A1 (en) * 2013-01-28 2014-07-31 Caterpillar Inc. Tie rod support for hydraulic hammer
US9416514B2 (en) * 2013-01-29 2016-08-16 Danuser Llc Post driver with limited movement floating post anvil
US20130140053A1 (en) * 2013-01-29 2013-06-06 Danuser Llc Post driver with limited movement floating post anvil
US20160001432A1 (en) * 2014-07-03 2016-01-07 Sandvik Mining And Construction Oy Breaking device
US9981370B2 (en) * 2014-07-03 2018-05-29 Sandvik Mining And Construction Oy Breaking device
US20160243690A1 (en) * 2015-02-19 2016-08-25 Caterpillar Inc. Variable damping system for a power cell of a hydraulic hammer
US20170087703A1 (en) * 2015-09-28 2017-03-30 Caterpillar Inc. Hammer assembly
US10363651B2 (en) * 2015-09-28 2019-07-30 Caterpillar Inc. Hammer assembly
US20170165823A1 (en) * 2015-12-15 2017-06-15 Caterpillar Inc. Damping system for a hydraulic hammer
US9776314B1 (en) * 2017-06-20 2017-10-03 Jason Swinford Dual impact fluid driven hammering tool
US20220274239A1 (en) * 2021-02-08 2022-09-01 Jason Swinford Fluid-driven pulsing hammering tool
US11745324B2 (en) * 2021-02-08 2023-09-05 Jason Swinford Fluid-driven pulsing hammering tool

Similar Documents

Publication Publication Date Title
US3887018A (en) Fluid driven hammers
US3411592A (en) Percussion apparatus
US5226487A (en) Pneumopercussive machine
US3887019A (en) Hydraulic percussive implement
US5031706A (en) Pneumopercussive soil penetrating machine
US4537265A (en) Self propelled reversible boring ram
US4563938A (en) Pressure fluid operated percussive tool
US4071094A (en) Portable pneumatic percussive tool
US3425498A (en) Fluid actuated vibrator devices
JPH04217472A (en) Impact device
JP5492570B2 (en) Method for impact device, impact device and rock drill
KR930703521A (en) Air hammer
JPH0379155B2 (en)
US8061434B2 (en) Percussion device
US6202536B1 (en) Pneumatic reciprocatory actuator and method of operating it
US2897782A (en) Impact tools operated by compressible pressure fluid
JP4488694B2 (en) Hydraulic striking device
US3939921A (en) Method and device for damping the movement of a hammer piston
US3408897A (en) Fluid power hammer having accumulator means to drive the hammer through its working stroke independent of the system pump
US3762160A (en) High velocity thrust actuator
JPH08509431A (en) Hydraulic impact hammer
US3392792A (en) Impact tool
JPH0521718B2 (en)
US4833974A (en) Ram boring machine
US6568615B2 (en) Hydraulic breaker