US3885299A - Method of interlocking overlying sheets - Google Patents

Method of interlocking overlying sheets Download PDF

Info

Publication number
US3885299A
US3885299A US497884A US49788474A US3885299A US 3885299 A US3885299 A US 3885299A US 497884 A US497884 A US 497884A US 49788474 A US49788474 A US 49788474A US 3885299 A US3885299 A US 3885299A
Authority
US
United States
Prior art keywords
die
punch
sheets
forming
pierce
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US497884A
Inventor
Otto P Hafner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US384494A external-priority patent/US3862485A/en
Application filed by Individual filed Critical Individual
Priority to US497884A priority Critical patent/US3885299A/en
Priority to US05/560,786 priority patent/US3934327A/en
Application granted granted Critical
Publication of US3885299A publication Critical patent/US3885299A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/03Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of sheet metal otherwise than by folding
    • B21D39/035Joining superposed plates by slitting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49833Punching, piercing or reaming part by surface of second part
    • Y10T29/49835Punching, piercing or reaming part by surface of second part with shaping
    • Y10T29/49837Punching, piercing or reaming part by surface of second part with shaping of first part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49936Surface interlocking

Definitions

  • Appl' 497884 and cooperates with, a fixed pierce-and-forming Related U.S. Application Data punch supported in the base.
  • the pierce and-forming die is supported by means which includes fine adjustment means so that the posil l METHOD OF INTERLOCKING OVERLYING 52] U.S. 29/521; 29/4322; 113/116 FF Int. B23p 11/00 non of the die may be adjusted for different thicknesses of sheets to be fastened, and also for wear on the die and/or punch.
  • the flattening punch is sup- 9 D 0 6 53, 29 28 1 1/ 2m 22 3., 41 lull! 2 1 F we. 6 MN 3 m5 m0 0 mm 2 d l e .1 F l 8 5 .l
  • ABSTRACT To fasten together two or more overlying sheets of metal or other material having plasticity or deform- P/RTENTEJ 3,885,299
  • This invention relates to a machine for fastening together overlying sheets of deformable metal or other material having the property of yielding or flowing under load and of sustaining appreciable permanent deformation without rupture. In some instances there may be an intervening layer or film of another material between the sheets to be fastened.
  • An object of the present invention is to provide, for a double-acting press of the type disclosed in my US. Pat. No. 3,726,000, granted Apr. l0, I973, adjustable support means for the cutting-and-forming die and also the flattening punch so that adjustment may be made for different thickness of sheets to be fastened, as well as to adjust for wear of the die and/or punch.
  • a more specific object is to provide adjustment means so that the upper sheet or sheets of the displaced section (displaced by the die and fixed punch) is not engaged by the downwardly-moving flattening punch until the lowermost sheet of the displaced section is uncovered by the upwardly-moving die so as to allow the lower sheet of the displaced section to be spread while the upper sheet or sheets are still confined by the die.
  • FIG. 1 is an elevational view, largely in section, of the head portion of a fastening machine incorporating the present invention.
  • FIG. 2 is a fragmentary view, largely in section, looking along the lines 2-2 of FIG. 1.
  • FIG. 3 is an enlarged fragmentary view, in section, of the lower portion of the structure shown in FIG. 1.
  • FIG. 4 is a view looking down along the line 44 of FIG. 3.
  • FIG. 5 is an enlarged illustration showing that the lower sheet of the displaced section is uncovered by the die at the instant the downwardly-moving flattening punch engages the upper sheet, thereby to spread the lower sheet of the displaced section.
  • FIG. 6 is a view, in section, looking downwardly along the line 6-6 of FIG. 3.
  • a crank shaft 10 which is driven rotationally by means not shown, has at its forward end a pair of spaced-apart shear blocks 12 and 13 which are supported by a crank housing 20.
  • crank shaft 10 Supported on crank shaft 10, within the housing 20, are three eccentric discs 21, 22 and 23.
  • the two outside discs 21 and 23 are keyed to the crank shaft.
  • the holes of the two outside eccentric discs 21 and 23 are identically positioned and hence these two outside ec centrics move in timed coincidence with each other.
  • the center eccentric 22 is supported free on shaft 10, and by means to be described, is maintained in out-ofphase relation with the two outside eccentrics.
  • This phase relationship is adjustable by a phase selector drive plate 34.
  • the center eccentric may, for example, have a delay angle of the order of 37.
  • the angular position of the center eccentric disc 22 is determined and controlled by the phase selector drive plate 34 which is fixed to crank shaft 10, as by set screw 35 and key in keyway.
  • Plate 34 is provided with a series of holes 36 for receiving selectively a pin 37 which extends through a hole in eccentric disc 22 and is spring-loaded by a spring 39 which thrusts against a flange 38 on the pin. It will be seen that by withdrawing pin 39 from the plate 34, moving the disc 22 angularly, and then reinserting the drive pin 39 in a different hole 36, the angular position, and hence the phase relationship, of the center eccentric disc 22 may be adjustable relative to the two outside discs 21 and 23. Spring 39 is retained by retainer 139.
  • the three eccentric discs 21, 22 and 23 carry, respectively, cranks 31, 32 and 33, suitably supported on bushings 131, 132, 133.
  • the outside eccentric discs 21 and 23 are illustrated in such position that the outside cranks 31 and 33 are at the bottom of their downward strokes.
  • the center eccentric disc 22 is in the position shown in FIG. 2.
  • the center crank 32 has started its downward descent, but will not reach its downward limit for another 37.
  • the two outside cranks 31 and 33 each carries at its lower end a stub-shaft, 41 and 43, respective, suitably journalled in bushings 141 and 143.
  • the inward ends of the stub shafts 41 and 43 project into opposing holes in the walls of a hollow rectangular ram or slide 50 which is slidable up and down within, and is guided by, the hollow rectangular lower guide portion 24 of the housing 20.
  • Guide portion 24 is secured to the upper portion of the housing, as by bolts and dowels 25.
  • a hollow neck portion 53 the upper neck of which adapts to the rectangular opening between rams 50 and the lower portion of which is round having a central bore into which a cylindrical screw and die holder is inserted.
  • the upper end portion of neck portion 53 has a recess 54 into which is inserted a nut 55 which is nonrotatable in the neck 53.
  • the non-rotatable nut 55 is provided with fine threads 58 which receive the fine threaded upper end portion 61 of the die holder 60.
  • the lower end 62 of die holder 60 has an enlarged diameter and is externally threaded at 63 with threads which are much larger than the fine threads of the upper end portion 61.
  • An internally-threaded clamping ring 65 is screwed onto the external threads 63 and tightened against the end surface 57 of the neck 53.
  • the enlarged-diameter lower end portion of the die holder 60 has a recess which receives the upper end portion of a hollow cylindrical cutting-and-forming due 70.
  • the lower end portion 71 of the cutting-andforming due is of reduced diameter forming, at the junction with the upper end portion, a shoulder 72.
  • a lock cap 67 is fitted over the reduced-diameter portion 71 of die 70 and abuts against the shoulder 72 of the due 70. Cap 67 is secured, as by bolts 66, to the end surface of the die holder 60.
  • the cylindrical cutting-and-forming die 70 has cutting edges and recessed portions which function as the forming portions.
  • the die 70 may correspond to that disclosed and illustrated in FIG. 9 of my aforesaid US. Pat. No. 3,726,000.
  • a pierce-and-forming punch 80 Positioned below the cutting-and-forming die 70 in the base 90 of the press is a pierce-and-forming punch 80.
  • the pierce-and-forming punch 80 has cutting edges for piercing, and recessed portions for forming.
  • the punch 80 may correspond to the punch described in my US. Pat. No. 3,726,000, and may be axially adjustable as there shown.
  • a stripper or spring member 81 Surrounding the pierce-and-forming punch 80 is a stripper or spring member 81 which may preferably be formed of urethane material.
  • a flattening punch 92 Positioned within the aligned bores of the die holder 60 and die 70 is the enlongated shank of a flattening punch 92.
  • flattening punch 92 is supported by a punch holder 292 fastened to a center ram or slide 392 which is carried by pin 42 and adjustable member 44.
  • Adjustable member 44 is supported adjustably by a bolt 45 which in turn is supported by a plate 46 secured, as by screws 47 (FIG. 2) to the underside of center crank 32.
  • Plate 46 has a depending por tion 146 having therein a pair of slots 48 which receive screws 49. In this way, the member 44 is supported against rotation.
  • Bolt 45 has an enlarged portion head 145 which is supported in a recess in plate 46.
  • Bolt 45 also has an integral enlarged round portion 245 with holes for pin which may be engaged, as by a pin wrench, to turn bolt 45 to raise or lower member 44, thereby to adjust the position of the head 192 of flattening punch 92 relative to the pierce-and-forming punch 80. To make this adjustment, it is, of course, necessary to loosen the screws 49.
  • clamping ring 65 is replaced and tightened.
  • the threads 63 of clamping ring 65 and of the lower enlarged portion 62 of the die holder 60 are large and heavy in comparison with the fine threads at the upper end of the die holder 60.
  • the thrust path may be traced from the cutting-and-forming die 70 through shoulder 68 of die holder 60, holder 60, the large heavy threads 63, the clamping ring 65, the abutting end surface 57 of neck portion 53, the rectangular slide ram 50, stub shafts 41 and 43 and their associated bushings 141 and 143, and cranks 31 and 33 and their associated bushings 131 and 133. It is to be noted that this upward thrust or load during the cutting and forming operation is not placed on the fine threads 58 which are employed for adjusting of the cutting and forming die 70.
  • adjusting of flattening punch 92, relative to the fixed pierce-and-forming punch 80 is made by loosening screws 49 (to allow them to move up or down in the slots 48) and then rotating the threaded bolt 45 in the member 44. This is done by inserting a pin in a hole of enlarged portion 245 and rotating the part.
  • the flattening punch 92 may have a shape such as is shown in FIG. 4.
  • the outer surface of the shank of the flattening punch 92 and the inner wall of the hollow cylindrical cutting-and-forming die 70 may each be provided with flats (flat surfaces). These flats are clearly seen in FIG. 4, which is a view taken along the line 4-4 of FIG. 3.
  • the flattening punch 92 is maintained in its proper oriented position by punch holder 292 which is secured to the center ram 392.
  • the fixed pierce-and-forming punch 80 in the base 90 of the machine is supported in a punch holder 180 which has a flat 181.
  • the flat on the punch 80 is oriented to correspond with the flat 181 on the punch holder 180.
  • FIG. illustrates two overlying sheets 28 and 29 at a time instant in the operating cycle of the fastening machine just after the sections 128 and 129 have been displaced by the downwardly-moving cylindrical cutting-and-forming die 70 in cooperation with the fixed pierce-and-forming punch 80.
  • the cylindrical cutting-and-forming die 70 is now rising and flattening punch 92 is moving downwardly.
  • the end face 192 of the downwardly-moving flattening punch 92 has just engaged the upper surface of the upper displaced section 128.
  • the upwardly-moving cylindrical die 70 has just cleared the lower displaced section 129.
  • the upper displaced section 128 is still encased. This represents a desirable timing relationship. It allows the flattening punch 92 to transmit its energy through the still-encased upper displaced section 128 to the lower displaced section 129 to spread the lower section 129 over the upper sheet 28.
  • FIGS. 1 and 2 One means for achieving the desirable timing relationship just described between the cylindrical cuttingand-forming die 70 and the flattening punch 92 is illustrated in FIGS. 1 and 2, and has already been briefly described hereinbefore.
  • the phase relationship between the flattening punch 92 and the cylindrical die 70 is adjustable by means of the phase selector drive plate 34.
  • the drive pin 37 is pulled out of the hole 36 in which it had been positioned, the freely-mounted disc 22 is rotated adjustably on the shaft 10, and the drive pin 37 is reinserted in a different hole 36 of the series of holes provided in the phase selector drive plate 34.
  • the phase adjustment allows the desirable timing relationship described above, and illustrated in FIG. 5, to be maintained for different thicknesses of sheets.
  • the relationship between the pierce-and-forming punch 80 in the base of the machine and the flattening punch 92 may be adjusted for different thicknesses of sheets, and/or for wear, either by adjusting the flattening punch 92 as described in the present application or by adjusting the base punch 80 as described in my earlier-filed application.
  • adjustment of the phase relationship between the flattening punch 92 and the cylindri- 6 cal die 70, as by means such as have been described exterior surface of the displaced first sheet material herein, is desirable in order to achieve the advantais just beyond the plane of the exterior surface of genus timing relationship illustrated in FIG. 5 and dethe nomdisplaced second sheet mated; and sc'lbed c.
  • a method of locking together overlying sheets of deformable mammal comprising: placed material of the second sheet to limit its outa piercing first and second overlying sheets discom ward spread and to spread outwardly the displaced m m dons a boundary line defining an area; first sheet material over the outer surface of the b. displacing the material of said first and second 10 mil-displaced second sheet material beyond the sheets within said area out of the planes of the nonedges of the piercings therein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

To fasten together two or more overlying sheets of metal or other material having plasticity or deformable properties by partially piercing and deforming sections of the sheets, a fixed pierce-and-forming punch is used in cooperation with a doubleacting press having two separately actuatable rams. For displacing sections of the overlying sheets, one of the rams carries a hollow cylindrical pierce-and-forming die the die cavity of which is vertically aligned with, and cooperates with, a fixed pierce-and-forming punch supported in the base. The other of the rams carries a flattening punch which is slidably movable within the central bore of the hollow cylindrical die. The pierce-and-forming die is supported by means which includes fine adjustment means so that the position of the die may be adjusted for different thicknesses of sheets to be fastened, and also for wear on the die and/or punch. The flattening punch is supported by phase adjustment means which permits the angular relationship between the flattening punch and the die to be adjusted for different thicknesses of sheets to be fastened. The latter adjustment is made such that the downwardly-moving flattening punch engages the upper displaced section or sections just after the lower displaced section is uncovered by the upwardly-moving cylindrical die, thereby to spread the lower displaced section while the upper section or sections are still constrained.

Description

United States Patent Hafner 1 51 May 27, 1975 able properties by partially piercing and deforming SHEETS sections of the sheets, a fixed pierce-and-forming unch is used in coo eration with a double-acting [76] Inventor Otto i Paddock gress having two separ tely actuatable rams. For discheny 08034 placing sections of the overlying sheets, one of the Filed: Aug. 16, 1974 rams carries a hollow cylindrical pierce-and-forming die the die cavity of which is vertically aligned with,
Appl' 497884 and cooperates with, a fixed pierce-and-forming Related U.S. Application Data punch supported in the base. The other of the rams Division f Sen 334.494 Aug 1 [973 carries a flattening punch which is slidably movable within the central bore of the hollow cylindrical die.
The pierce and-forming die is supported by means which includes fine adjustment means so that the posil l METHOD OF INTERLOCKING OVERLYING 52] U.S. 29/521; 29/4322; 113/116 FF Int. B23p 11/00 non of the die may be adjusted for different thicknesses of sheets to be fastened, and also for wear on the die and/or punch. The flattening punch is sup- 9 D 0 6 53, 29 28 1 1/ 2m 22 3., 41 lull! 2 1 F we. 6 MN 3 m5 m0 0 mm 2 d l e .1 F l 8 5 .l
5 References Cited ported by phase adjustment means which permits the E T angular relationship between the flattening punch and UNIT D STATES PA ENTS the die to be adjusted for different thicknesses of 2,254,558 9/1941 Williams............,....,,... ll3/l l6 FF Williams.1.....,,....,,,.....,.........
sheets to be fastened. The latter adjustment is made such that the downwardly-moving flattening punch engages the upper displaced section or sections just after 57 j jgi g E g the lower displaced section is uncovered by the up- 8 wardly-moving cylindrical die, thereby to spread the [57] lower displaced section while the upper section or sections are still constrained.
ABSTRACT To fasten together two or more overlying sheets of metal or other material having plasticity or deform- P/RTENTEJ 3,885,299
SHEET [ESP 2 METHOD OF INTERLOCKING OVERLYING SHEETS This is a division of application Ser. No. 384,494, filed Aug. 1, I973.
BACKGROUND OF THE INVENTION This invention relates to a machine for fastening together overlying sheets of deformable metal or other material having the property of yielding or flowing under load and of sustaining appreciable permanent deformation without rupture. In some instances there may be an intervening layer or film of another material between the sheets to be fastened.
SUMMARY OF THE INVENTION An object of the present invention is to provide, for a double-acting press of the type disclosed in my US. Pat. No. 3,726,000, granted Apr. l0, I973, adjustable support means for the cutting-and-forming die and also the flattening punch so that adjustment may be made for different thickness of sheets to be fastened, as well as to adjust for wear of the die and/or punch.
A more specific object is to provide adjustment means so that the upper sheet or sheets of the displaced section (displaced by the die and fixed punch) is not engaged by the downwardly-moving flattening punch until the lowermost sheet of the displaced section is uncovered by the upwardly-moving die so as to allow the lower sheet of the displaced section to be spread while the upper sheet or sheets are still confined by the die.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an elevational view, largely in section, of the head portion of a fastening machine incorporating the present invention.
FIG. 2 is a fragmentary view, largely in section, looking along the lines 2-2 of FIG. 1.
FIG. 3 is an enlarged fragmentary view, in section, of the lower portion of the structure shown in FIG. 1.
FIG. 4 is a view looking down along the line 44 of FIG. 3.
FIG. 5 is an enlarged illustration showing that the lower sheet of the displaced section is uncovered by the die at the instant the downwardly-moving flattening punch engages the upper sheet, thereby to spread the lower sheet of the displaced section.
FIG. 6 is a view, in section, looking downwardly along the line 6-6 of FIG. 3.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to FIG. 1, a crank shaft 10, which is driven rotationally by means not shown, has at its forward end a pair of spaced- apart shear blocks 12 and 13 which are supported by a crank housing 20.
Supported on crank shaft 10, within the housing 20, are three eccentric discs 21, 22 and 23. The two outside discs 21 and 23 are keyed to the crank shaft. The holes of the two outside eccentric discs 21 and 23 are identically positioned and hence these two outside ec centrics move in timed coincidence with each other. The center eccentric 22 is supported free on shaft 10, and by means to be described, is maintained in out-ofphase relation with the two outside eccentrics. This phase relationship is adjustable by a phase selector drive plate 34. In a typical case, for a particular metal thickness, the center eccentric may, for example, have a delay angle of the order of 37.
As clearly seen in FIGS. 1 and 2, the angular position of the center eccentric disc 22 is determined and controlled by the phase selector drive plate 34 which is fixed to crank shaft 10, as by set screw 35 and key in keyway. Plate 34 is provided with a series of holes 36 for receiving selectively a pin 37 which extends through a hole in eccentric disc 22 and is spring-loaded by a spring 39 which thrusts against a flange 38 on the pin. It will be seen that by withdrawing pin 39 from the plate 34, moving the disc 22 angularly, and then reinserting the drive pin 39 in a different hole 36, the angular position, and hence the phase relationship, of the center eccentric disc 22 may be adjustable relative to the two outside discs 21 and 23. Spring 39 is retained by retainer 139.
The three eccentric discs 21, 22 and 23 carry, respectively, cranks 31, 32 and 33, suitably supported on bushings 131, 132, 133. In FIG. 1, the outside eccentric discs 21 and 23 are illustrated in such position that the outside cranks 31 and 33 are at the bottom of their downward strokes. At this same instant, the center eccentric disc 22 is in the position shown in FIG. 2. As seen in FIG. 2, the center crank 32 has started its downward descent, but will not reach its downward limit for another 37.
The two outside cranks 31 and 33 each carries at its lower end a stub-shaft, 41 and 43, respective, suitably journalled in bushings 141 and 143. The inward ends of the stub shafts 41 and 43 project into opposing holes in the walls of a hollow rectangular ram or slide 50 which is slidable up and down within, and is guided by, the hollow rectangular lower guide portion 24 of the housing 20. Guide portion 24 is secured to the upper portion of the housing, as by bolts and dowels 25.
Referring now to FIG. 3, bolted as by bolts and dowels 52 to the lower end of the rectangular slide or ram 50, and carried thereby, is a hollow neck portion 53 the upper neck of which adapts to the rectangular opening between rams 50 and the lower portion of which is round having a central bore into which a cylindrical screw and die holder is inserted.
The upper end portion of neck portion 53 has a recess 54 into which is inserted a nut 55 which is nonrotatable in the neck 53. The non-rotatable nut 55 is provided with fine threads 58 which receive the fine threaded upper end portion 61 of the die holder 60. The lower end 62 of die holder 60 has an enlarged diameter and is externally threaded at 63 with threads which are much larger than the fine threads of the upper end portion 61. An internally-threaded clamping ring 65 is screwed onto the external threads 63 and tightened against the end surface 57 of the neck 53.
The enlarged-diameter lower end portion of the die holder 60 has a recess which receives the upper end portion of a hollow cylindrical cutting-and-forming due 70. The lower end portion 71 of the cutting-andforming due is of reduced diameter forming, at the junction with the upper end portion, a shoulder 72. A lock cap 67 is fitted over the reduced-diameter portion 71 of die 70 and abuts against the shoulder 72 of the due 70. Cap 67 is secured, as by bolts 66, to the end surface of the die holder 60.
The cylindrical cutting-and-forming die 70 has cutting edges and recessed portions which function as the forming portions. The die 70 may correspond to that disclosed and illustrated in FIG. 9 of my aforesaid US. Pat. No. 3,726,000.
Positioned below the cutting-and-forming die 70 in the base 90 of the press is a pierce-and-forming punch 80. The pierce-and-forming punch 80 has cutting edges for piercing, and recessed portions for forming. The punch 80 may correspond to the punch described in my US. Pat. No. 3,726,000, and may be axially adjustable as there shown. Surrounding the pierce-and-forming punch 80 is a stripper or spring member 81 which may preferably be formed of urethane material.
Positioned within the aligned bores of the die holder 60 and die 70 is the enlongated shank of a flattening punch 92. As seen in FIGS. l-3, flattening punch 92 is supported by a punch holder 292 fastened to a center ram or slide 392 which is carried by pin 42 and adjustable member 44. Adjustable member 44 is supported adjustably by a bolt 45 which in turn is supported by a plate 46 secured, as by screws 47 (FIG. 2) to the underside of center crank 32. Plate 46 has a depending por tion 146 having therein a pair of slots 48 which receive screws 49. In this way, the member 44 is supported against rotation. Bolt 45 has an enlarged portion head 145 which is supported in a recess in plate 46. Bolt 45 also has an integral enlarged round portion 245 with holes for pin which may be engaged, as by a pin wrench, to turn bolt 45 to raise or lower member 44, thereby to adjust the position of the head 192 of flattening punch 92 relative to the pierce-and-forming punch 80. To make this adjustment, it is, of course, necessary to loosen the screws 49.
To adjust the position of the cutting-and-forming die 70 relative to the fixed pierce-and-forming punch 80, the operator manually unscrews clamping ring 65 and then manually grasps and moves die holder 60 in one rotational direction or the other. Since nut 55 is nonrotatable in the recess 54 in neck 53, when the die holder 60 in manually rotated, it turns on threads 58 and is therefore moved adjustably upwardly or downwardly in neck 53, according to the direction in which holder 60 is rotated. When holder 60 is so adjusted up wardly or downwardly, the cutting-and-forming die 70 is moved adjustably in corresponding manner since it is carried by the holder 60. And, since threads 58 are fine threads, fine and accurate adjustment may be made of the position of the cutting-and-forming die 70.
After the fine adjustment just described has been made, clamping ring 65 is replaced and tightened. The threads 63 of clamping ring 65 and of the lower enlarged portion 62 of the die holder 60 are large and heavy in comparison with the fine threads at the upper end of the die holder 60. Thus, when the cutting-andforming die 70 is lowered by its slide ram 50 to pierce and form the overlying metal sheets, the reactive load or thrust is upward through the heavy threads 63. The thrust path may be traced from the cutting-and-forming die 70 through shoulder 68 of die holder 60, holder 60, the large heavy threads 63, the clamping ring 65, the abutting end surface 57 of neck portion 53, the rectangular slide ram 50, stub shafts 41 and 43 and their associated bushings 141 and 143, and cranks 31 and 33 and their associated bushings 131 and 133. It is to be noted that this upward thrust or load during the cutting and forming operation is not placed on the fine threads 58 which are employed for adjusting of the cutting and forming die 70.
As already indicated, adjusting of flattening punch 92, relative to the fixed pierce-and-forming punch 80, is made by loosening screws 49 (to allow them to move up or down in the slots 48) and then rotating the threaded bolt 45 in the member 44. This is done by inserting a pin in a hole of enlarged portion 245 and rotating the part.
At a section 4-4 of FIG. 3, the flattening punch 92 may have a shape such as is shown in FIG. 4. To maintain proper orientation between the flattening punch 92 and the annular terminal end of the cylindrical cutting-and-forming die 70, the outer surface of the shank of the flattening punch 92 and the inner wall of the hollow cylindrical cutting-and-forming die 70 may each be provided with flats (flat surfaces). These flats are clearly seen in FIG. 4, which is a view taken along the line 4-4 of FIG. 3. The flattening punch 92 is maintained in its proper oriented position by punch holder 292 which is secured to the center ram 392.
The fixed pierce-and-forming punch 80 in the base 90 of the machine is supported in a punch holder 180 which has a flat 181. The flat on the punch 80 is oriented to correspond with the flat 181 on the punch holder 180.
FIG. illustrates two overlying sheets 28 and 29 at a time instant in the operating cycle of the fastening machine just after the sections 128 and 129 have been displaced by the downwardly-moving cylindrical cutting-and-forming die 70 in cooperation with the fixed pierce-and-forming punch 80. In FIG. 5, the cylindrical cutting-and-forming die 70 is now rising and flattening punch 92 is moving downwardly. The end face 192 of the downwardly-moving flattening punch 92 has just engaged the upper surface of the upper displaced section 128. At this instant, the upwardly-moving cylindrical die 70 has just cleared the lower displaced section 129. The upper displaced section 128 is still encased. This represents a desirable timing relationship. It allows the flattening punch 92 to transmit its energy through the still-encased upper displaced section 128 to the lower displaced section 129 to spread the lower section 129 over the upper sheet 28.
One means for achieving the desirable timing relationship just described between the cylindrical cuttingand-forming die 70 and the flattening punch 92 is illustrated in FIGS. 1 and 2, and has already been briefly described hereinbefore. It will be seen that the phase relationship between the flattening punch 92 and the cylindrical die 70 is adjustable by means of the phase selector drive plate 34. To adjust the phase relationship, the drive pin 37 is pulled out of the hole 36 in which it had been positioned, the freely-mounted disc 22 is rotated adjustably on the shaft 10, and the drive pin 37 is reinserted in a different hole 36 of the series of holes provided in the phase selector drive plate 34. The phase adjustment allows the desirable timing relationship described above, and illustrated in FIG. 5, to be maintained for different thicknesses of sheets.
As has already been indicated, the relationship between the pierce-and-forming punch 80 in the base of the machine and the flattening punch 92 may be adjusted for different thicknesses of sheets, and/or for wear, either by adjusting the flattening punch 92 as described in the present application or by adjusting the base punch 80 as described in my earlier-filed application. In either case, adjustment of the phase relationship between the flattening punch 92 and the cylindri- 6 cal die 70, as by means such as have been described exterior surface of the displaced first sheet material herein, is desirable in order to achieve the advantais just beyond the plane of the exterior surface of genus timing relationship illustrated in FIG. 5 and dethe nomdisplaced second sheet mated; and sc'lbed c. compressing together the displaced material of what clamed 5 said first and second sheets while confining the dis- 1. A method of locking together overlying sheets of deformable mammal said method comprising: placed material of the second sheet to limit its outa piercing first and second overlying sheets discom ward spread and to spread outwardly the displaced m m dons a boundary line defining an area; first sheet material over the outer surface of the b. displacing the material of said first and second 10 mil-displaced second sheet material beyond the sheets within said area out of the planes of the nonedges of the piercings therein.
displaced first and second sheet material until the

Claims (1)

1. A method of locking together overlying sheets of deformable material, said method comprising: a. piercing first and second overlying sheets discontinuously along a boundary line defining an area; b. displacing the material of said first and second sheets within said area out of the planes of the non-displaced first and second sheet material until the exterior surface of the Displaced first sheet material is just beyond the plane of the exterior surface of the non-displaced second sheet material; and c. compressing together the displaced material of said first and second sheets while confining the displaced material of the second sheet to limit its outward spread and to spread outwardly the displaced first sheet material over the outer surface of the non-displaced second sheet material beyond the edges of the piercings therein.
US497884A 1973-08-01 1974-08-16 Method of interlocking overlying sheets Expired - Lifetime US3885299A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US497884A US3885299A (en) 1973-08-01 1974-08-16 Method of interlocking overlying sheets
US05/560,786 US3934327A (en) 1974-08-16 1975-03-21 Method of interlocking overlapping sheet material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US384494A US3862485A (en) 1972-07-28 1973-08-01 Adjustable die and punch for sheet material fastening machines
US497884A US3885299A (en) 1973-08-01 1974-08-16 Method of interlocking overlying sheets

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US384494A Division US3862485A (en) 1972-07-28 1973-08-01 Adjustable die and punch for sheet material fastening machines

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/560,786 Continuation-In-Part US3934327A (en) 1974-08-16 1975-03-21 Method of interlocking overlapping sheet material

Publications (1)

Publication Number Publication Date
US3885299A true US3885299A (en) 1975-05-27

Family

ID=27010616

Family Applications (1)

Application Number Title Priority Date Filing Date
US497884A Expired - Lifetime US3885299A (en) 1973-08-01 1974-08-16 Method of interlocking overlying sheets

Country Status (1)

Country Link
US (1) US3885299A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306511A (en) * 1979-12-03 1981-12-22 Dofasco Inc. Apparatus for the fastening together of sheet materials
US4574453A (en) * 1982-04-30 1986-03-11 Btm Corporation Self-attaching fastener and method of securing same to sheet material
US4757609A (en) * 1980-09-08 1988-07-19 Btm Corporation Apparatus for joining sheet material
US4897912A (en) * 1987-07-08 1990-02-06 Weldex, Inc. Method and apparatus for forming joints
US5177861A (en) * 1980-09-08 1993-01-12 Btm Corporation Apparatus for joining sheet material
US5208973A (en) * 1980-09-08 1993-05-11 Btm Corporation Apparatus for joining sheet material
US5208974A (en) * 1980-09-08 1993-05-11 Btm Corporation Apparatus for attaching a fastener to sheet material
US5339509A (en) * 1980-09-08 1994-08-23 Btm Corporation Method for attachment of fastener to sheet material
US5581860A (en) * 1980-09-08 1996-12-10 Btm Corporation Apparatus for joining sheet material
US5984563A (en) * 1994-07-22 1999-11-16 Btm Corporation Apparatus for joining sheet material and joint formed therein
US6152456A (en) * 1997-12-18 2000-11-28 Elringklinger Gmbh Cylinder head gasket
US20100212131A1 (en) * 2009-02-23 2010-08-26 Btm Corporation Clinching tool
US10109417B2 (en) 2014-03-10 2018-10-23 Mitsui High-Tec, Inc. Laminated iron core and method of manufacturing laminated iron core with caulking protrusion
US10328481B2 (en) 2014-03-18 2019-06-25 Btm Company Llc Clinching punch and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2254558A (en) * 1938-10-10 1941-09-02 Ivan A Williams Fastening element and method of making same
US2688890A (en) * 1952-08-09 1954-09-14 Ivan A Williams Method of uniting superimposed metal sheets

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2254558A (en) * 1938-10-10 1941-09-02 Ivan A Williams Fastening element and method of making same
US2688890A (en) * 1952-08-09 1954-09-14 Ivan A Williams Method of uniting superimposed metal sheets

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306511A (en) * 1979-12-03 1981-12-22 Dofasco Inc. Apparatus for the fastening together of sheet materials
US5581860A (en) * 1980-09-08 1996-12-10 Btm Corporation Apparatus for joining sheet material
US4757609A (en) * 1980-09-08 1988-07-19 Btm Corporation Apparatus for joining sheet material
US5177861A (en) * 1980-09-08 1993-01-12 Btm Corporation Apparatus for joining sheet material
US5208973A (en) * 1980-09-08 1993-05-11 Btm Corporation Apparatus for joining sheet material
US5208974A (en) * 1980-09-08 1993-05-11 Btm Corporation Apparatus for attaching a fastener to sheet material
US5339509A (en) * 1980-09-08 1994-08-23 Btm Corporation Method for attachment of fastener to sheet material
US4574453A (en) * 1982-04-30 1986-03-11 Btm Corporation Self-attaching fastener and method of securing same to sheet material
US4897912A (en) * 1987-07-08 1990-02-06 Weldex, Inc. Method and apparatus for forming joints
US5984563A (en) * 1994-07-22 1999-11-16 Btm Corporation Apparatus for joining sheet material and joint formed therein
US6152456A (en) * 1997-12-18 2000-11-28 Elringklinger Gmbh Cylinder head gasket
US20100212131A1 (en) * 2009-02-23 2010-08-26 Btm Corporation Clinching tool
US8650730B2 (en) 2009-02-23 2014-02-18 Btm Corporation Clinching tool
US10109417B2 (en) 2014-03-10 2018-10-23 Mitsui High-Tec, Inc. Laminated iron core and method of manufacturing laminated iron core with caulking protrusion
US10328481B2 (en) 2014-03-18 2019-06-25 Btm Company Llc Clinching punch and apparatus

Similar Documents

Publication Publication Date Title
US3934327A (en) Method of interlocking overlapping sheet material
US3981064A (en) Method and apparatus for interlocking overlapping sheet material
US3862485A (en) Adjustable die and punch for sheet material fastening machines
US3885299A (en) Method of interlocking overlying sheets
US3924378A (en) Interlocking joint for overlying sheet material
US7168356B2 (en) Adjustable length punch assembly
EP2036629B1 (en) Method and device for fine cutting and forming of a workpiece
US6370931B2 (en) Stamping die for producing smooth-edged metal parts having complex perimeter shapes
US7631532B2 (en) Cold-headed standoff
US4738173A (en) Shearing in punch press and die therefor
DE102007017595B3 (en) Precision cutting press for producing precision cut parts of metal strip, has cross bars that are pressed against flange and plunger by force of respective cylinders during power stroke and are long such that bars support tool at pins
US2542864A (en) Machine for making nuts
WO1994003306A1 (en) Device for fastening bolt-shaped elements
DE102009017626B3 (en) Precision cutting press
USRE31737E (en) Adjustable die and punch for sheet material fastening machines
DE2942314A1 (en) DEVICE AND METHOD FOR COMPACTING POWDER MATERIAL
CN110605333A (en) Stamping die that roughness is high
DE10217026C1 (en) cutter
DE2715901A1 (en) PRESS FOR CUTTING AND FORMING NAPFF-SHAPED SHEET METAL OBJECTS, IN PARTICULAR BOTTLE CAPS
DE1297571B (en) Upsetting tool for a press
KR102028426B1 (en) Radial forging machine
EP0896846B1 (en) Trimming apparatus
DE2338460B2 (en) Method and device for connecting metal sheets lying on top of one another by punching cams
US3786528A (en) Apparatus and method for manufacturing weld nuts
EP1425141B1 (en) Cold-headed standoff