US3885190A - Shadow mask having all surfaces metal-coated - Google Patents
Shadow mask having all surfaces metal-coated Download PDFInfo
- Publication number
- US3885190A US3885190A US350067A US35006773A US3885190A US 3885190 A US3885190 A US 3885190A US 350067 A US350067 A US 350067A US 35006773 A US35006773 A US 35006773A US 3885190 A US3885190 A US 3885190A
- Authority
- US
- United States
- Prior art keywords
- colour
- picture tube
- metal layer
- selection electrode
- tube according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 42
- 239000002184 metal Substances 0.000 title claims abstract description 42
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- 238000010894 electron beam technology Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 238000009713 electroplating Methods 0.000 claims description 3
- 238000007772 electroless plating Methods 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- QMQXDJATSGGYDR-UHFFFAOYSA-N methylidyneiron Chemical compound [C].[Fe] QMQXDJATSGGYDR-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/02—Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
- H01J29/06—Screens for shielding; Masks interposed in the electron stream
- H01J29/07—Shadow masks for colour television tubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2229/00—Details of cathode ray tubes or electron beam tubes
- H01J2229/07—Shadow masks
- H01J2229/0727—Aperture plate
- H01J2229/0777—Coatings
Definitions
- This invention relates to a colour picture tube. more particularly to an improved construction of a colour selection electrode such as a shadow mask.
- the colour picture tube is generally constructed such that electron beams emanated from an electron gun assembly are caused to impinge through a colour selection electrode upon predetermined positions of a fluorescent screen formed on the inner surface of a panel comprising a portion of the envelope.
- a colour selection electrode included a so-called shadow mask provided with a plurality of small circular perforations, a slit mask provided with a plurality of parallel stripe shaped slits or openings and a so-called slot mask wherein a plurality of transverse bridges are provided for each one of the stripe shaped openings.
- These colour selection electrodes are usually formed by providing perforations or slots through relatively thin soft iron sheets by photoetching technique.
- the soft iron sheet In order to improve the quality of the reproduced colour picture image of the colour picturing tube having such a colour selection electrode it is necessary to manufacture the openings to have an extremely high accuracy. For this reason. it is necessary for the soft iron sheet that the high precision openings can be readily formed therein, that is a soft iron sheet of low carbon content is preferred.
- such low carbon soft iron sheet is softer and has smaller toughness than iron sheets of higher carbon content.
- the shadow mask of a black matrix type colour picture tube for example a shadow mask type colour picture tube is provided with perforations having a diameter larger than that of the phosphor dots, thereby decreasing the mechanical strength of the colour selection electrode when compared with that utilized in the conventional colour picture tubes. Accordingly, the colour selection electrode is caused to vibrate by external shocks created while the colour picture tube is being handled or by the voice generated by the colour television receiver. This causes a missalignism of the openings of the colour selection electrode and corresponding phosphor dots thereby greatly degrading the colour purity of the reproduced colour pictures.
- Such decrease in the mechanical strength of the colour selection electrode also occurs in a post focusing type colour picture tube wherein the diameter of the perforations of the colour selection electrode is larger than a conventional colour picture tube, or a colour picture tube using a colour selection electrode having stripe shaped openings wherein the thickness of the colour selection electrode is made small for the purpose of decreasing the emission of the secondary electrons.
- the thickness of the colour selection electrode is generally increased, the upper limit of the thickness is selected to be about 0.2 mm for the purpose of preserving the accuracy of the configuration of the perforations, and the use of thicker sheets is not advantageous.
- a further object of this invention is to provide a colour picture tube capable of preventing the missalignism of the phosphor dots on a fluorescent screen and the perforations of a colour selection electrode, for example a shadow mask.
- Still further object of this invention is to provide a colour picture tube capable of improving the mechanical strength of the colour selection electrode.
- Another object of this invention is to provide a colour picture tube having an improved colour selection electrode which is not deformed by external vibrations or local heat thereby preventing degradation of the colour purity.
- Yet another object of this invention is to provide a colour picture tube having a colour selection electrode of a small secondary electron emission.
- Still further object of this invention is to provide a colour picture tube provided with a colour selection electrode applied with a reinforcing metal layer on at least one surface thereof.
- a colour picture tube of the class comprising a neck, a funnel, a panel, an electron gun assembly contained in the neck, a fluorescent screen formed on the inner surface of the panel and a colour selection electrode disposed close to the fluorescent screen for transmitting the electron beams emanated by the electron gun assembly to predetermined portions of the fluorescent screen, characterized in that a metal layer is applied onto at least one perforated surface of the colour selection electrode.
- the metal layer can also be applied onto the entire surface of the colour selection electrode including the inner surfaces of the perforations through the colour selection electrode.
- the metal layer or layers are made of nickel or chromium and have a thickness of from 1 to 15 microns preferably from 1.5 to 5 microns.
- FIG. I is a diagrammatic longitudinal sectional view of a colour picture tube to which the invention is applicable.
- FIGS. 2A through 2D are perspective views, partly in section, of typical colour selection electrodes and FIGS. 3 and 4 show sectional views of two examples of the colour selection electrodes embodying the invention.
- FIG. I shows a basic construction of a colour picture tube which comprises a neck I, a funnel 2, and a panel 3.
- An electron gun assembly 4 is contained in the neck 1 and a fluorescent screen 5 is formed on the inner surface of the panel 3. Further, a colour selection electrode 6 is disposed close to the fluorescent screen 5 for causing the electron beams emanated from the electron gun assembly 4 to impinge upon the predetermined portions of the fluorescent screen 4.
- FIG. 3 is an enlarged perspective view of a portion of the colour selection electrode 6 shown in FIG. 2A and constructed in accordance with the invention, in which metal layers 65 for reinforcing the colour selection electrode are applied on both sides as well as on the inner surfaces of the perforations of the colour selection electrode.
- the metal layers 65 are applied on the entire surface of the colour selection electrode 6 it is possible to increase the mechanical strength thereof even when the diameter of the perforations is increased for the purpose of improving the percentage of transmission of the electron beams or even when the thickness of the colour selection electrode is decreased so that a large stress will not be caused by external vibrations or local heating. As a result, it is possible to positively prevent the missalignism of the phosphor dots and corresponding perforations of the colour selection electrode thus assuring a high colour purity of the reproduced colour pictures.
- the colour selection electrode of this construction can be prepared in the following manner.
- a plurality of small circular perforations are formed through a low carbon iron sheet by means of conventional etching technique and after shaping the perforated sheet to have a predetermined configuration or after the perforated sheet has been subjected to a further light exposure and an etching process the metal layer of nickel or chromium is applied onto the colour selection electrode to a thickness of from 1 to microns by any well known technique such as electroplating or electroless plating, When the thickness of the metal layer 65 exceeds l5 microns the diameter of the perforations will be decreased by more than 30 microns whereby the purpose of enlarging the perforations will be lost. If the thickness of the metal layer is smaller than 1 micron. sufficient mechanical strength will not be obtained.
- a preferred range of the thickness of the metal film is from about 1.5 to 5 microns in the case of an electrolytically applied nickel plating. preferably from about 2 to 3 microns.
- the strength of the plated layer can be improved by baking it at a temperature of about 250 to 480C.
- a range of from 250 to 300C is the most suitable for the heat treatmcnt to prevent deformation of the colour selection electrode caused by the heat treatment.
- the colour sc lcction electrode should be designed such that the provision of the reinforcing metal layer will not decrease the percentage of transmission of the electron beams emitted by the electron gun assembly To this end.
- the diameter of the perforations is made slightly larger than that of the prior art design so that the diameter of the perforations will have the desired value when the inner surfaces of the perforations are coated by the metal layer.
- the mechanical strength of the colour selection electrode was improved greatly by applying metal layers over the entire surface of the colour selection electrode.
- black metal layers such as blackened nickel platings are used.
- the heat generated by the local heating caused by the collision of the electron beams can be dissipated efficiently by radiation thus preventing deformation of the colour selection electrode. For this reason. the missalignism between the phosphor dots and corresponding perforations of the color selection electrode can be greatly decreased, thereby improving the colour purity of the reproduced colour picture.
- the surface of the metal layer is roughened it is possible to improve the heat dissipation of the colour selection electrode.
- layers 67 of a substance such as graphite capable of suppressing the emission of secondary electrons are applied on the metal layers for the purpose of decreasing the secondary electron emission from the colour selection electrode.
- metal layers are applied on the entire surface of the colour selection electrode it is also possible to improve the mechanical strength thereof even when such metal layer is applied to only one side of the colour selection electrode. lt will be readily understood that the metal layers can also be applied to other types of the colour selection electrodes shown in FIGS. 28, 2C and 2D.
- a colour picture tube of the class comprising a neck. a funnel, an electron gun assembly contained in the neck, a fluorescent screen of colour display type coated on the inner surface of the panel in triads and a colour selection electrode, made of iron and having a plurality of perforations, adjacent to the fluorescent screen for transmitting the electron beams emanated by the electron gun assembly to predetermined portions of the fluorescent screen, and a metal layer applied onto all surface areas of the colour selection elec trode for increasing the strength of said colour selection electrode.
Landscapes
- Electrodes For Cathode-Ray Tubes (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1972042437U JPS493458U (enrdf_load_stackoverflow) | 1972-04-12 | 1972-04-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3885190A true US3885190A (en) | 1975-05-20 |
Family
ID=12636035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US350067A Expired - Lifetime US3885190A (en) | 1972-04-12 | 1973-04-11 | Shadow mask having all surfaces metal-coated |
Country Status (7)
Country | Link |
---|---|
US (1) | US3885190A (enrdf_load_stackoverflow) |
JP (1) | JPS493458U (enrdf_load_stackoverflow) |
CA (1) | CA976222A (enrdf_load_stackoverflow) |
DE (1) | DE2318546C3 (enrdf_load_stackoverflow) |
FR (1) | FR2180047B1 (enrdf_load_stackoverflow) |
GB (1) | GB1388231A (enrdf_load_stackoverflow) |
IT (1) | IT986059B (enrdf_load_stackoverflow) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5576553A (en) * | 1978-12-05 | 1980-06-09 | Mitsubishi Electric Corp | Color braun tube |
US4286189A (en) * | 1977-11-04 | 1981-08-25 | Hitachi, Ltd. | Color cathode ray tube with shadow mask having inwardly bent skirt portions |
US4292565A (en) * | 1979-04-19 | 1981-09-29 | Tokyo Shibaura Denki Kabushiki Kaisha | Shadow mask assembly for a cathode ray tube |
US4339687A (en) * | 1980-05-29 | 1982-07-13 | General Electric Company | Shadow mask having a layer of high atomic number material on gun side |
US5723169A (en) * | 1995-11-08 | 1998-03-03 | Samsung Display Devices Co., Ltd. | Method for making a shadow mask for a color picture tube |
US5811919A (en) * | 1994-07-18 | 1998-09-22 | U.S. Philips Corporation | Thin-panel picture display device |
US6008571A (en) * | 1996-10-11 | 1999-12-28 | U.S. Philips Corporation | Color cathode ray tube having a shadow mask provided with an anti-backscattering layer |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52109859A (en) * | 1975-07-03 | 1977-09-14 | Mitsubishi Electric Corp | Color cathode ray tube |
DE4118734A1 (de) * | 1991-06-07 | 1992-12-10 | Nokia Deutschland Gmbh | Schattenmaske fuer bildroehren |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2663821A (en) * | 1951-06-16 | 1953-12-22 | Rca Corp | Masked target kinescope |
US2971117A (en) * | 1956-03-01 | 1961-02-07 | Rca Corp | Color-kinescopes, etc. |
US3231380A (en) * | 1960-11-14 | 1966-01-25 | Rca Corp | Art of making electron-optical reticles |
-
1972
- 1972-04-12 JP JP1972042437U patent/JPS493458U/ja active Pending
-
1973
- 1973-04-10 CA CA168,373A patent/CA976222A/en not_active Expired
- 1973-04-11 US US350067A patent/US3885190A/en not_active Expired - Lifetime
- 1973-04-11 GB GB1728573A patent/GB1388231A/en not_active Expired
- 1973-04-12 DE DE2318546A patent/DE2318546C3/de not_active Expired
- 1973-04-12 IT IT7322914A patent/IT986059B/it active
- 1973-04-12 FR FR7313297A patent/FR2180047B1/fr not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2663821A (en) * | 1951-06-16 | 1953-12-22 | Rca Corp | Masked target kinescope |
US2971117A (en) * | 1956-03-01 | 1961-02-07 | Rca Corp | Color-kinescopes, etc. |
US3231380A (en) * | 1960-11-14 | 1966-01-25 | Rca Corp | Art of making electron-optical reticles |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4286189A (en) * | 1977-11-04 | 1981-08-25 | Hitachi, Ltd. | Color cathode ray tube with shadow mask having inwardly bent skirt portions |
JPS5576553A (en) * | 1978-12-05 | 1980-06-09 | Mitsubishi Electric Corp | Color braun tube |
US4292565A (en) * | 1979-04-19 | 1981-09-29 | Tokyo Shibaura Denki Kabushiki Kaisha | Shadow mask assembly for a cathode ray tube |
US4339687A (en) * | 1980-05-29 | 1982-07-13 | General Electric Company | Shadow mask having a layer of high atomic number material on gun side |
US5811919A (en) * | 1994-07-18 | 1998-09-22 | U.S. Philips Corporation | Thin-panel picture display device |
US5723169A (en) * | 1995-11-08 | 1998-03-03 | Samsung Display Devices Co., Ltd. | Method for making a shadow mask for a color picture tube |
US6008571A (en) * | 1996-10-11 | 1999-12-28 | U.S. Philips Corporation | Color cathode ray tube having a shadow mask provided with an anti-backscattering layer |
Also Published As
Publication number | Publication date |
---|---|
JPS493458U (enrdf_load_stackoverflow) | 1974-01-12 |
DE2318546A1 (de) | 1973-10-31 |
FR2180047A1 (enrdf_load_stackoverflow) | 1973-11-23 |
DE2318546B2 (de) | 1979-01-25 |
DE2318546C3 (de) | 1979-09-27 |
IT986059B (it) | 1975-01-10 |
GB1388231A (en) | 1975-03-26 |
FR2180047B1 (enrdf_load_stackoverflow) | 1978-02-17 |
CA976222A (en) | 1975-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3731129A (en) | Rectangular color tube with funnel section changing from rectangular to circular | |
US5917273A (en) | Color cathode-ray tube including a shadow mask having holes arranged with a monotonically non-decreasing arrangement pitch | |
US3885190A (en) | Shadow mask having all surfaces metal-coated | |
US3862448A (en) | Colour picture tube including shadow mask having self-compensation function for thermal stress | |
GB1566897A (en) | Colour cathode ray tube | |
US3883770A (en) | Colour picture tubes | |
US2728008A (en) | Color-kinescopes, etc. | |
EP0489432B1 (en) | Electron gun for color cathode-ray tube | |
US4971590A (en) | Process for improving the emissivity of a non-based tension shadow mask | |
US4626737A (en) | Mask focusing color picture tube | |
US2942130A (en) | Aperture mask coating to prevent cathode poisoning | |
US4292565A (en) | Shadow mask assembly for a cathode ray tube | |
JPH10116572A (ja) | カラー陰極線管 | |
CA2050347C (en) | Blackening of ni-based ftm shadow masks | |
JPH08203446A (ja) | インライン型陰極線管 | |
EP0187026A1 (en) | Color picture tube | |
US5880555A (en) | Color cathode ray tube and a magnetic shielding body therefor | |
KR200148989Y1 (ko) | 음극선관의 인바새도우마스크-프레임 조립체 | |
US3835347A (en) | Colour picture tube with improved color purity | |
KR880003372Y1 (ko) | 칼라 tv용 수상관의 전자총 | |
KR100322067B1 (ko) | 칼라 음극선관용 전자총 | |
US3141988A (en) | Electron-gun using combined magnetic and electrostatic focussing | |
US3619706A (en) | Cathode-ray tube in which screening electrodes are provided at the electron gun to produce a beam of uniform density over its cross section along its path to the display screen | |
KR0164871B1 (ko) | 칼라수상관용 전자총 | |
KR940008755B1 (ko) | 칼라음극선관의 섀도우마스크 |