US3884825A - Imaging composition - Google Patents

Imaging composition Download PDF

Info

Publication number
US3884825A
US3884825A US277542A US27754272A US3884825A US 3884825 A US3884825 A US 3884825A US 277542 A US277542 A US 277542A US 27754272 A US27754272 A US 27754272A US 3884825 A US3884825 A US 3884825A
Authority
US
United States
Prior art keywords
toner
additive
particles
developing material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US277542A
Inventor
Nero R Lindblad
Gordon E Johnson
James H Sharp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US277542A priority Critical patent/US3884825A/en
Priority to CA169,036A priority patent/CA1009492A/en
Priority to DE2326273A priority patent/DE2326273A1/en
Priority to BE133939A priority patent/BE802878A/en
Priority to IT27303/73A priority patent/IT991465B/en
Priority to GB3644073A priority patent/GB1437042A/en
Priority to NL7310672A priority patent/NL7310672A/xx
Priority to JP8670873A priority patent/JPS5410254B2/ja
Priority to SU731953600A priority patent/SU637099A3/en
Priority to BR5960/73A priority patent/BR7305960D0/en
Priority to FR7328589A priority patent/FR2194992B1/fr
Priority to AU58908/73A priority patent/AU467048B2/en
Priority to US480782A priority patent/US3900589A/en
Application granted granted Critical
Publication of US3884825A publication Critical patent/US3884825A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09783Organo-metallic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • ABSTRACT An electrostatographic developing material comprising particles, said particles including finely divided electroscopic toner material and a minor proportion based on the weight of said toner material of at least one finely divided compound selected from the group consisting of phthalic acid, isophthalic acid, terephthalic acid, the metal and ammonium salts thereof;' and a method-of electrostatographic development employing said developing material.
  • the electroscopic powder and carrier should be selected in which the powder is triboelectrically negative in relation to the carrier.
  • This triboelectric relationship between the powder and carrier depends on their relative positions in a triboelectric series where the materials are arranged in such a way that each material is charged with a positive electrical charge when contacted with any material below it in the series and with a negative electrical charge when contacted with any material above it in the series.
  • the toner particles are electrostatically deposited and secured to the charged portions of the latent image and are not deposited on the uncharged or background portions of the image.
  • Another technique for developing electrostatic images is the magnetic brushprocess as disclosed, for example, inU.S. Pat. No. 2,874,063.
  • a developer material containingitoner and magnetic carrier particles is carried by a magnet.
  • the magnetic field of the magnet causes alignment of the magnetic carriers in a brush-like configuration.
  • This magnetic brush is engaged with an electrostatic image bearing surface and the toner particles are drawn from the brush to the electrostatic image by electrostatic attraction.
  • Many other methods such as touchdown development, as disclosed by C. R. Mayo in US. Pat. No. 2.895847, are known for applying electroscopic particles to electrostatic latent images to be developed.
  • the development processes, as mentioned above. together with numerous variations, are well known to the art through various patents and publications and through the widespread availability and utilization of electrostatographic imaging equipment.
  • a xerographic plate in the form of an endless imaging surface, which is continuously rotated through a cycle of sequential operations including charging, exposing, developing, transfer and cleaning.
  • the plate is usually charged by means of a corona generating device of the type disclosed by L. E. Walkup in US. Pat. No. 2,777,957, which is connected to a suitable source of high potential.
  • a corona generating device of the type disclosed by L. E. Walkup in US. Pat. No. 2,777,957, which is connected to a suitable source of high potential.
  • the powder image is electrostatically transferred to a support surface by means of a corona generating device, such as the corona device mentioned above.
  • a receiving surface to which a powder image is to be transferred, is moved through the equipment at the same rate as the periphery of the drum and contacts the drum at the transfer position interposed between the drum surface and the corona generating device.
  • Transfer is effected by a corona generating device which imparts an electrostatic charge to attract the powder image from the drum to the support surface.
  • the polarity of charge required to effect image transfer is dependent upon the visual form of the original copy relative to the reproduction and the electroscopic characteristics of the developing material employed to effect development. For example, where a positive reproduction is to be made on the positive original, it is conventional to employ a positive polarity corona to effect transfer of a negatively charged toner image to a receiving surface.
  • a typical brush cleaning apparatus is disclosed by L. E. Walkup el al. in U.S. Pat. No. 2,832,977.
  • Brush type cleaning means usually comprise one or more rotating brushes, which brush residual powder from the plate into a stream of air which is exhausted through a filtering system.
  • a typical web cleaning device is disclosed by W. P. Graff, Jr. et al in U.S. Pat. No. 3,186,838. As disclosed by Graff, Jr. et al, removal of the residual powder from the plate is effected by passing a web fibrous material over the plate surface.
  • the sensitivity of the imaging member to abrasion requires that special precautions be exercised during the cleaning phase of the copying cycle. For example, pressure contact between cleaning webs and imaging surfaces must be kept to a minimum to prevent rapid destruction of the imaging surface. Although thick protective coatings would protect the imaging surfaces for longer periods of time, the electrical properties of the photoconductive layer impose certain limitations as to the acceptable maximum thickness of the coating.
  • lt is a further object of this invention to provide a developing composition which promotes removal of toner particles from imaging surfaces by cleaning devices.
  • lt is yet a further object to provide a system employing a developing process utilizing a novel developing composition.
  • the selected compound can be applied to and maintained on the imaging surface by a variety of techniques. It can be dry dusted onto the surface by a powder puff, dry aerosol, brush, etc., and, as with all techniques discussed herein, reapplied intermittently or continuously to maintain an effective layer on the imaging surface. It also can be applied as a film to the imaging surface via a solution or dispersion of the same in a fugitive vehicle or solvent. Further, it may be applied by way of contacting the imaging surface with a a web, impregnated or coated with the selected compound and effecting relative motion between the web and the imaging surface. The compound may also be applied by rubbing a bar of the compound either directly against the imaging surface or by having a rotating brush or web rub against such a bar and permitting the fibers to transport the compound to the imaging surface.
  • a particularly preferred technique of applying the compound to the imaging surface is by incorporating the compound, as an additive, in an electrostatographic face.
  • This layer must be present to an extent sufficient to lubricate the imaging surface or to provide a surface having a free surface energy significantly less than that of the imaging surface per se.
  • the additive best applied in a form discrete or distinct from the toner material, for example, as individual powder grains or platelets.
  • phthalic acid isophthalic acid, terephthalic acid, the metal or ammoniumm salts thereof, removing at least a portion of at least any residual developed image from said imaging surface; and repeating the process sequence at least one additional time.
  • terephthalic acid is considerably more effective than either phthalic acid, isophthalic acid, or its own metal and ammmonium salts and the metal or ammonium salts of phthalic acid and isophthalic acid, it is the preferred additive of the present invention. It is intended by the phrases metal salts and ammonium salts of phthalic acid, isophthalic acid and terephthalic acid to describe the monovalent monoor dicarboxylates of said acids. In addition, in the case of dior polyvalent metals, such acid salts include the carboxylates of one or more acid molecules.
  • salt forming metals of the above acids also include such elements as zinc, cadmium, aluminum, Fe cobalt, lead, silver, Cu, and nickel.
  • the developer composition of the present invention When the developer composition of the present invention is employed for general copying purposes, there may ultimately build up an excessive thickness of the additive on the imaging surface. This buildup can interface with effective imaging and development. Experience has shown that the average film thickness should not be permitted to exceed about 200 A. Any effective means can be employed to maintain the buildup within the limits indicated. Whatever means is employed, it must not be so effective as to completely remove the additive film or coating. As an approximate lower limit, the means must permit a coating or film having an average thickness of at least about 1 A to remain on the imaging surface.
  • a cleaning member e.g., a rotating brush, a web or a wiper blade
  • a mildly abrasive additive in conjunction with the additive of this invention, as taught in copending application Ser. No. 188,570, filed Oct. 12, 1971 in the names of Don B. Jugle et al may be employed.
  • the particle size of the additive in general is not critical, however, gross particle sizes obviously will be less effective. Broadly stated, a particle size range of 0.5 to 20 microns is preferred.
  • the additive should be present in a proportion at least sufficient to form an adherent deposit substantially uniformly distributed over at least 20 percent of the area of an imaging surface during cyclic use of the imaging surface. It is preferred that approximately 100 percent of the imaging area becomes coated with the additive material. It has been found that from about 0.01 to about percent, by weight, of
  • a particularly preferred ratio is from about 0.1 percent to about 4.0 percent, by weight, based on the weight .of
  • the toner material of the present invention may be any electroscopic toner material which preferably is pigmented or dyed.
  • Typical toner materials include the following resin materials: polystyrene, polyacrylic, polyethylene, polyvinyl chloride, polyacrylamide, methacrylate, polyethylene terephthalate, polyamide, and copolymers, polyblends and mixtures thereof.
  • the following are contemplated: gum copal, gum sandarac, rosin, rosin-modified phenol formaldehyde resins, epoxy resins.
  • Vinyl resins having a melting point or range starting at least about 1 10F. are especially suitable for use in the toner of this invention.
  • vinyl resins may be a homopolymer or a copolymer of two or more vinyl monomers.
  • Typical monomeric units which may be employed to form vinyl polymers include: styrene, vinyl naphthalene; mono-olefins, such as ethylene, propylene, butylene, isobutylene and the like; vinyl esters, such as vinyl acetate, vinyl propionate, vinyl benzoate, vinyl butyrate and the like; esters of alphamethylene aliphatic monocarboxylic acids such as methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, dodecyl acrylate, n-octyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, and the like; vinyl ethers such as vinyl methyl ether, vinyl isobutyl ether, vinyl ethyl ether, and the like
  • Suitable materials employed as the toner will usually have an average molecular weight between about 2,000 to about 500,000 and higher.
  • any suitable pigment or dye may be employed as the colorant if needed or desired.
  • suitable pigment or dye examples include carbon black, nigrosine dye, aniline blue, Calco Oil Blue, Chrome yellow, ultramarine blue, duPont Oil Red, quinoline yellow, methylene blue chloride, phthalocyanine blue, Malachite Green Oxalate, lamp black, Rose Bengal and mixtures thereof.
  • the pigment or dyes should be present in the toner in a sufficient quantity to render it highly colored so that it will form a clearly visible image on a recording member.
  • the toner may comprise a black pigment, such as carbon black.
  • the pigment is employed in an amount of from about 1 to about 30 percent, by weight, based on the total weight of the colored toner. If the toner colorant employed is a dye, substantially smaller guantities of the colorant may be used.
  • the toner materials of the present invention are to be employed in any of the aforementioned development processes, the toner should preferably have an average particle size by weight percent of less than about 30 microns.
  • compositions of the present invention find utility inall known electrostatographic development systems. This includes systems which employ a carrier material, such as magnetic brush development and cascade development, as well as systems which do not necessarily employ a carrier material,
  • . 7 such as powder cloud, fiber brush and touchdown development.
  • the carrier particles comprise any suitable solid material, provided ,that the carrier particles acquire a charge having an opposite polarity to that of the toner particles when brought in contact with the toner particlesso that the toner particles cling to and surround the carrier particles.
  • the carrier particles are selected so that the toner particles acquire a charge having a polarity opposite to that of the electrostatic image.
  • the carrier is selected so that the toner particles acquire a charge having the same polarity as that of the electrostatic image.
  • the materials for the carrier particles are selected in accordance with its triboelectric properties in respect to the electroscopic toner so that when mixed or brought into mutual contact, one component of the developer is charged positively if the other component is below the first component in a triboelectric series and negatively if the other component is above the first component in a triboelectric series.
  • the carriers may be employed with or without a coating. Many of the foregoing and other typical carriers are described in US. Pat. No. 2,618,552.
  • An ultimate coated particle diameter between about 50 microns to about 2000 microns is preferred because the carrier particles then possess sufficient density and inertia to avoid adherence to the electrostatic images during the cascade development process- Adherence of carrier beads to electrostatic drums is undesirable because of the formation of deep scratches on the surface during the image transfer and drum cleaning steps. Also, print deletion occurs when large carrier beads adhere to xerographic imaging surfaces.
  • carrier particles having an average particle size less than about 800 microns are satisfactory. Generally speaking, satisfactory results are obtained when about 1 part toner is used with about 10 to about 1000 parts by weight of carrier in the cascade and magnetic brush developers.
  • the developer compositions of the instant invention may be employed to develop electrostatic latent images on any suitable imaging surface, including conventional photoconductive and nonphotoconductive surfaces.
  • Well known photoconductive materials include vitreous selenium, zinc oxide, organic or inorganic photoconductors embedded in a nonphotoconductive matrix or inorganic or organic photoconductors embedded in a photoconductive matrix or homogeneous organic photoconductor, typified by PVK/TNF photoconductors or the like.
  • Representative patents which disclose contemplated photoconductive materials include US.
  • conventional means may be employed to clean or remove residual toner from the imaging surface after developed image transfer to a receiving surface.
  • These means include any type of fiber brush, woven or nonwoven web, resil- Satisfactory results have been obtained in one system employing a single synthetic rubber blade, operating in a chiseling attitude with a blade pressure of about 0.06 pounds per linear inch against an endless photoceptor surface having a speed of about 6.6 inches per second.
  • the vitreous selenium photoconductor drum of an automatic copying machine is, corona charged to a positive voltage of about 800 volts and exposed to alight and shadow image to form an electrostatic latent image.
  • the drum is then rotated through a magnetic brush development station.
  • the control developer used in this process comprises 2 parts toner, which contains a commercially available styrene-nfbutyl methacrylate copolymer, colored with carbon black, and about parts of commercially available steel shot carrier beads. These toner particles have an average particle size of about 12 microns and the carrier beads an average particle size of about microns.
  • the resulting toner image is transferred to a sheet of paper at a transfer station and removed means of a synthetic rubber doctor blade held at a chiseling attitude to the photoreceptor.
  • v 1 1 Initial copies reveal good copy quality in all respects however, after about 500 copies, image quality is markedly inferior showing high background density, poor image fill and decreased resolution. Inspection of the drum reveals a significant toner film buildup on the imaging surface.
  • Example II The procedure of Example I is repeated except the toner. Thereafter, the toner and additive is mixed with the carrier.
  • Example III The process of Example I is repeated except the developer is modified in the same mannerof Example II by the addition of 2.0 percent phthalic acid having an average particle size distribution of from 0.5 to 10 microns.
  • Example IV The process of Example I is repeated except the developer is modified in the same manner of Example II by the addition of 3.0 percent isophthalic acid, having an average particle size distribution of from 0.5 to 10 microns. After 5,000 cycles, copy quality is noticeably better than Example I with far less toner film buildup.
  • Example V EXAMPLE VI
  • the process of Example I is repeated except the developer is modified in the same manner of Example II by the addition of 0.25 percent of the calcium salt of isophthalic acid.
  • the salt has an average particle size distribution of from 0.5 to 10 microns. After 7,000 cy- I cles, copy quality is significantly better than Example I with far less toner film buildup.
  • Example VII The process of Example I is repeated except the developer is modified in the same manner of Example II by the addition of 1.0 percent of the zinc salt of terephthalic acid.
  • the salt has an average particle size 'distribution of from 0.5 to l0 microns. After 7,000-cycles, copy quality is significantly better than Example] with far less toner film buildup.
  • Example VIII The process of Example I is-repeated except the developer is modified in the same manner of Example II by the addition of the ammonium salt of terephthalic acid.
  • the salt has an average particle size distribution of 0.5 to 10 microns. After 7,000 cycles, copy quality is better than Example I and there isless toner buildup on the photoreceptor. 7 1
  • Example IX The process of Example I is repeated except that the copier is equiped with a poly-N-vinylcarbazole photoconductive imaging member of a type disclosed in US. Pat. No. 3,484,237.
  • toner filming of the photoconductive surface of the imaging member is observed after only 500 copies with noticeable deterioration in copy quality.
  • Example IX The processof Example IX is repeated except that (a) the toner laden photoconductive imaging member of Example IX is replaced by a clean, unused imaging member of the samecomposition, and,(b) the developer is modified by the addition of terephthalic acid having an. average particle size distribution of from about 0.5 to 10 microns. This latter modification is effected simply by mechanically uniformly mixing 0.25 weight percent terephthalic acid, based on the weight of the toner. with the toner. Thereafter, the toner and additive are mixed with the carrier.
  • a developer composition comprising particles, said particles including finely divided discrete particles having a size of less than about 30 microns of electrostatographic electroscopic toner material and a minor proportion based upon the weight of said toner material of discrete particles having asize of from about 0.5 to about 20 microns of at least one finely divided, solid additive compound selected from the group consisting of phthalic acid, isophthalic acid, terephthalic acid, the metal and ammonium salts thereof.
  • ad-- ditive is an ammonium salt of phthalic acid, isophthalic acid or terephthalic acid.
  • developing material'of claim 1 wherein said developing material comprises from about 0.01 percent to about 10 percent by weight of said additive based on the weight of said toner.
  • the developing material of claim 1 wherein said developing material comprises from about 0.1 percent having a size of less than about 30 microns of electrostatographic electroscopic toner material and from about 0.1 to about 10 percent by weight based upon the weight of said toner material of discrete, finely divided, solid additive particles of terephthalic acid having a size of from about 0.5 to about 20 microns.

Abstract

An electrostatographic developing material comprising particles, said particles including finely divided electroscopic toner material and a minor proportion based on the weight of said toner material of at least one finely divided compound selected from the group consisting of phthalic acid, isophthalic acid, terephthalic acid, the metal and ammonium salts thereof; and a method of electrostatographic development employing said developing material.

Description

United States Patent 1191 Lindblad et al.
[451 May 20, 1975 1 IMAGING COMPOSITION [75] Inventors: Nero R. Lindblad, Palmyra; Gordon E. Johnson, Webster; James II. Sharp, Rochester, all of NY.
[73] Assignee: Xerox Corporation, Stamford,
' Conn.
22 Filed: Aug. 3, 1972 21 Appl. No.:- 277,542
52 US. Cl. 252/62.I; 96/1 SD; 117/175 Varron 252/62.1
3,655,374 4/1972 Palermiti et a1. 252/62.l
FOREIGN PATENTS OR APPLICATIONS 1,022,378 l/l958 Germany OTHER PUBLICATIONS Chem. Abstracts, Vol. 54, l6873g, 1960.
Primary Examiner-Norman G. Torchin Assistant ExaminerJ. P. Brammer [57] ABSTRACT An electrostatographic developing material comprising particles, said particles including finely divided electroscopic toner material and a minor proportion based on the weight of said toner material of at least one finely divided compound selected from the group consisting of phthalic acid, isophthalic acid, terephthalic acid, the metal and ammonium salts thereof;' and a method-of electrostatographic development employing said developing material.
13 Claims, No Drawings 1 IMAGING coMPosr toN BACKGROUND OF 'TI-I'E INVENTION This invention relates in general to an electrostatographic developing material and, more particularly, to improved imaging materials, their manufacture and use.
The formation and development of images on the surface of photoconductive materials by electrostatic means is well known. The basic xerographic process as taught by C. F. Carlson in US. Pat. No. 2,297,691, involves placing a uniform electrostatic charge on a photoconductive insulating layer, exposing the layer to a light and shadow image to dissipate the charge on the areas of the layer exposed to the light and developing the resulting latent electrostatic image by depositing on the image a finely divided electroscopic material referred to in the art as toner. The toner will normally be attracted to those areas of the layer which retain a charge, thereby forming a toner image corresponding to the latent electroscopic image. This powder image may then be transferred to a support surface such as paper. The transferred image may subsequently be permanently affixed to the support surface by heat. Other suitable fixing means such as solvent or overcoating treatment may be substituted for the foregoing heat fixing step.
Many methods are known for applying the electroscopic particles to the latent electrostatic image to be developed. One development method as disclosed by E. N. Wise in US. Pat. No. 2,618,552 is known as cascade development. In this method, developer material comprising relatively large carrier particles having finely divided toner particles electrostatically clinging to their surface of the carrier particles is conveyed to and rolled or cascaded across the latent electrostatic image bearing surface. The composition of the toner particles is so chosen as to have a triboelectric polarity opposite that of the carrier particles. In order to develop a negatively charged latent electrostatic image, an electroscopic powder and carrier combination should be selected in which the powder is triboelectrically positive in relation to the carrier. Conversely, to develop a positively charged latent electrostatic image, the electroscopic powder and carrier should be selected in which the powder is triboelectrically negative in relation to the carrier. This triboelectric relationship between the powder and carrier depends on their relative positions in a triboelectric series where the materials are arranged in such a way that each material is charged with a positive electrical charge when contacted with any material below it in the series and with a negative electrical charge when contacted with any material above it in the series. As the mixture cascades or rolls across the image bearing surface, the toner particles are electrostatically deposited and secured to the charged portions of the latent image and are not deposited on the uncharged or background portions of the image. Most of the toner particles accidentally deposited in the background are removed by the rolling carrier, due apparently, to the greater electrostatic attraction between the toner and the carrier than between the toner and the discharged background. The carrier particles and unused toner particles are then'recycled. This technique is extremely good for the development of line copy images.
Another technique for developing electrostatic images is the magnetic brushprocess as disclosed, for example, inU.S. Pat. No. 2,874,063. In this method, a developer material containingitoner and magnetic carrier particles is carried by a magnet. The magnetic field of the magnet causes alignment of the magnetic carriers in a brush-like configuration. This magnetic brush is engaged with an electrostatic image bearing surface and the toner particles are drawn from the brush to the electrostatic image by electrostatic attraction. Many other methods such as touchdown development, as disclosed by C. R. Mayo in US. Pat. No. 2.895847, are known for applying electroscopic particles to electrostatic latent images to be developed. The development processes, as mentioned above. together with numerous variations, are well known to the art through various patents and publications and through the widespread availability and utilization of electrostatographic imaging equipment.
In automatic xerographic equipment, it is conventional to employ a xerographic plate in the form of an endless imaging surface, which is continuously rotated through a cycle of sequential operations including charging, exposing, developing, transfer and cleaning. The plate is usually charged by means of a corona generating device of the type disclosed by L. E. Walkup in US. Pat. No. 2,777,957, which is connected to a suitable source of high potential. After forming a powder image on the electrostatic latent image during the development step, the powder image is electrostatically transferred to a support surface by means of a corona generating device, such as the corona device mentioned above. In automatic equipment employing a rotating drum, a receiving surface, to which a powder image is to be transferred, is moved through the equipment at the same rate as the periphery of the drum and contacts the drum at the transfer position interposed between the drum surface and the corona generating device. Transfer is effected by a corona generating device which imparts an electrostatic charge to attract the powder image from the drum to the support surface. The polarity of charge required to effect image transfer is dependent upon the visual form of the original copy relative to the reproduction and the electroscopic characteristics of the developing material employed to effect development. For example, where a positive reproduction is to be made on the positive original, it is conventional to employ a positive polarity corona to effect transfer of a negatively charged toner image to a receiving surface. When a positive reproduction from a negative original is desired, it is conventional to employ a positive charged developing material which is repelled by the charged areas on the plate and deposits on the discharged areas to form a positive image which may be transferred by negative polarity corona. In either case, a residual powder image usually remains on the plate after transfer. Before the plate may be reused for a subsequent cycle, it is necessary that the residual image be removed to prevent ghost images from forming on subsequent copies and to prevent residual film buildup on the photoreceptor. In the positive to positive reproduction process described above, the residual developer powder is tightly retained on the plate surface by a phenomenon that is not fully understood but believed to be caused by an electrical charge that prevents complete transfer of the powder to the receiving surface. particularly in the image area. Discharge is substantially neutralized by means of a corona generating device prior to contact of the residual powder image with a cleaning device. The neutralization of the charge enhances the cleaning efficiency of the cleaning device.
Various electrostatographic plate cleaning devices such as brush cleaning apparatus and web type cleaning apparatus are known in the prior art. A typical brush cleaning apparatus is disclosed by L. E. Walkup el al. in U.S. Pat. No. 2,832,977. Brush type cleaning means usually comprise one or more rotating brushes, which brush residual powder from the plate into a stream of air which is exhausted through a filtering system. A typical web cleaning device is disclosed by W. P. Graff, Jr. et al in U.S. Pat. No. 3,186,838. As disclosed by Graff, Jr. et al, removal of the residual powder from the plate is effected by passing a web fibrous material over the plate surface.
The sensitivity of the imaging member to abrasion, however, requires that special precautions be exercised during the cleaning phase of the copying cycle. For example, pressure contact between cleaning webs and imaging surfaces must be kept to a minimum to prevent rapid destruction of the imaging surface. Although thick protective coatings would protect the imaging surfaces for longer periods of time, the electrical properties of the photoconductive layer impose certain limitations as to the acceptable maximum thickness of the coating. Since thick protective coatings are normally applied by conventional coating techniques, including the use of a film forming material suspended in a solvent, considerable inconvenience, expense and time is involved in removing the photoreceptor from the machine, preparing the eroded photoreceptor surface for reception of a new coating, applying the new coating, allowing the new coating to dry and reinstalling the newly coated photoreceptor into the machine. Certain extremely thin films, applied to the imaging surface as a pretreatment or in situ during the machine sequence, have been successful, however, the art is constantly on the lookout for improved films or at least practical alternatives. Further, for reasons which are not entirely clear, toner particles are frequently difficult to remove DESCRIPTION OF PREFERRED EMBODIMENTS It is, therefore, an object of this invention to provide a system, employing any of the foregoing development techniques, which overcomes the above noted deficiencies.
It is another object of this invention to provide an electrostatographic developing composition which facilitates transfer of toner particles from an electrostatic imaging surface to a receiving surface.
lt is a further object of this invention to provide a developing composition which promotes removal of toner particles from imaging surfaces by cleaning devices.
It is a still further object of this invention to provide a developing composition which reduces mechanical abrasion of electrostatic imaging surfaces.
4 It is another object of this invention to provide a developing composition which promotes the formation of dense transferred toner images.
It is a further object of this invention to provide a developing composition which enhances the electrical stability of electrostatic imaging surfaces.
It is still a further object of this invention to provide a treatment system which provides electrostatographic imaging surfaces having physical and chemical properties superior to those of known electrostatographic imaging surfaces.
lt is yet a further object to provide a system employing a developing process utilizing a novel developing composition.
The above objects and others are accomplished, generally speaking, by providing a system employing a reusable elcctrostatographic imaging surface having maintained thereon at least one compound selected from the group consisting of phthalic acid, isophthalic acid, terephthalic acid, the metal and ammonium salts thereof.
It is not understood why maintaining a thin film of the defined compound on an imaging surface in a repetetive system effectively protects the imaging surface, facilitates image development, developed image transfer, removal of residual toner and minimization of toner filming or buildup on the imaging surface. Since the above defined compounds are not known for their lubricating or friction reducing characteristics, their efficacy for the intended purpose was unexpected.
The selected compound can be applied to and maintained on the imaging surface by a variety of techniques. It can be dry dusted onto the surface by a powder puff, dry aerosol, brush, etc., and, as with all techniques discussed herein, reapplied intermittently or continuously to maintain an effective layer on the imaging surface. It also can be applied as a film to the imaging surface via a solution or dispersion of the same in a fugitive vehicle or solvent. Further, it may be applied by way of contacting the imaging surface with a a web, impregnated or coated with the selected compound and effecting relative motion between the web and the imaging surface. The compound may also be applied by rubbing a bar of the compound either directly against the imaging surface or by having a rotating brush or web rub against such a bar and permitting the fibers to transport the compound to the imaging surface.
A particularly preferred technique of applying the compound to the imaging surface is by incorporating the compound, as an additive, in an electrostatographic face. This layer must be present to an extent sufficient to lubricate the imaging surface or to provide a surface having a free surface energy significantly less than that of the imaging surface per se.
The additive best applied in a form discrete or distinct from the toner material, for example, as individual powder grains or platelets.
rial and (2) at least one finely divided compound selected from the group consisting of phthalic acid. isophthalic acid, terephthalic acid, the metal or ammoniumm salts thereof, removing at least a portion of at least any residual developed image from said imaging surface; and repeating the process sequence at least one additional time.
Because terephthalic acid is considerably more effective than either phthalic acid, isophthalic acid, or its own metal and ammmonium salts and the metal or ammonium salts of phthalic acid and isophthalic acid, it is the preferred additive of the present invention. It is intended by the phrases metal salts and ammonium salts of phthalic acid, isophthalic acid and terephthalic acid to describe the monovalent monoor dicarboxylates of said acids. In addition, in the case of dior polyvalent metals, such acid salts include the carboxylates of one or more acid molecules. Representative of some of these metals are the alkali metals--lithium, sodium, potassium, rubidium, cesium; and the alkaline earth metals--magnesium, calcium, strontium, barium. Salt forming metals of the above acids also include such elements as zinc, cadmium, aluminum, Fe cobalt, lead, silver, Cu, and nickel.
When the developer composition of the present invention is employed for general copying purposes, there may ultimately build up an excessive thickness of the additive on the imaging surface. This buildup can interface with effective imaging and development. Experience has shown that the average film thickness should not be permitted to exceed about 200 A. Any effective means can be employed to maintain the buildup within the limits indicated. Whatever means is employed, it must not be so effective as to completely remove the additive film or coating. As an approximate lower limit, the means must permit a coating or film having an average thickness of at least about 1 A to remain on the imaging surface. As examples of means effective for this purpose, a cleaning member, e.g., a rotating brush, a web or a wiper blade, may be employed with sufficient force and friction to prevent excessive buildup; or the technique of employing a mildly abrasive additive in conjunction with the additive of this invention, as taught in copending application Ser. No. 188,570, filed Oct. 12, 1971 in the names of Don B. Jugle et al may be employed. The particle size of the additive in general is not critical, however, gross particle sizes obviously will be less effective. Broadly stated, a particle size range of 0.5 to 20 microns is preferred.
Concerning the broad relative proportions of the toner material versus the additive of the present invention, functionally stated, the additive should be present in a proportion at least sufficient to form an adherent deposit substantially uniformly distributed over at least 20 percent of the area of an imaging surface during cyclic use of the imaging surface. It is preferred that approximately 100 percent of the imaging area becomes coated with the additive material. it has been found that from about 0.01 to about percent, by weight, of
the additive based on the weight of the toner material will achieve the foregoing degree of coverage. A particularly preferred ratio is from about 0.1 percent to about 4.0 percent, by weight, based on the weight .of
toner.
The toner material of the present invention may be any electroscopic toner material which preferably is pigmented or dyed. Typical toner materials include the following resin materials: polystyrene, polyacrylic, polyethylene, polyvinyl chloride, polyacrylamide, methacrylate, polyethylene terephthalate, polyamide, and copolymers, polyblends and mixtures thereof. In addition, the following are contemplated: gum copal, gum sandarac, rosin, rosin-modified phenol formaldehyde resins, epoxy resins. Vinyl resins having a melting point or range starting at least about 1 10F. are especially suitable for use in the toner of this invention. These vinyl resins may be a homopolymer or a copolymer of two or more vinyl monomers. Typical monomeric units which may be employed to form vinyl polymers include: styrene, vinyl naphthalene; mono-olefins, such as ethylene, propylene, butylene, isobutylene and the like; vinyl esters, such as vinyl acetate, vinyl propionate, vinyl benzoate, vinyl butyrate and the like; esters of alphamethylene aliphatic monocarboxylic acids such as methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, dodecyl acrylate, n-octyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, and the like; vinyl ethers such as vinyl methyl ether, vinyl isobutyl ether, vinyl ethyl ether, and the like; vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone, methyl isopropenyl ketone and the like; polyester toner materials of the type disclosed in U.S. Pat. No. 3,590,000; and mixtures thereof.
Suitable materials employed as the toner will usually have an average molecular weight between about 2,000 to about 500,000 and higher. I
Any suitable pigment or dye may be employed as the colorant if needed or desired. Examples include carbon black, nigrosine dye, aniline blue, Calco Oil Blue, Chrome yellow, ultramarine blue, duPont Oil Red, quinoline yellow, methylene blue chloride, phthalocyanine blue, Malachite Green Oxalate, lamp black, Rose Bengal and mixtures thereof. The pigment or dyes should be present in the toner in a sufficient quantity to render it highly colored so that it will form a clearly visible image on a recording member. Thus, for example, where conventional xerographic copies of typed documents are desired, the toner may comprise a black pigment, such as carbon black. Preferably, the pigment is employed in an amount of from about 1 to about 30 percent, by weight, based on the total weight of the colored toner. If the toner colorant employed is a dye, substantially smaller guantities of the colorant may be used.
When the toner materials of the present invention are to be employed in any of the aforementioned development processes, the toner should preferably have an average particle size by weight percent of less than about 30 microns.
As indicated above, the compositions of the present invention find utility inall known electrostatographic development systems. This includes systems which employ a carrier material, such as magnetic brush development and cascade development, as well as systems which do not necessarily employ a carrier material,
. 7 such as powder cloud, fiber brush and touchdown development.
Suitable coated and uncoated carrier materials for cascade development are well known in the art. The carrier particles comprise any suitable solid material, provided ,that the carrier particles acquire a charge having an opposite polarity to that of the toner particles when brought in contact with the toner particlesso that the toner particles cling to and surround the carrier particles. When a positive reproduction of the electrostatic images is desired, the carrier particles are selected so that the toner particles acquire a charge having a polarity opposite to that of the electrostatic image. Alternatively, if a reversal reproduction of the electrostatic image is desired, the carrier is selected so that the toner particles acquire a charge having the same polarity as that of the electrostatic image. Thus, the materials for the carrier particles are selected in accordance with its triboelectric properties in respect to the electroscopic toner so that when mixed or brought into mutual contact, one component of the developer is charged positively if the other component is below the first component in a triboelectric series and negatively if the other component is above the first component in a triboelectric series. By proper selection of materials in accordance with their triboelectric effects, the
potassium chlorate, granular zircon, granular silica, fer,-
rites, methyl methacrylate, glass and the like. The carriers may be employed with or without a coating. Many of the foregoing and other typical carriers are described in US. Pat. No. 2,618,552. An ultimate coated particle diameter between about 50 microns to about 2000 microns is preferred because the carrier particles then possess sufficient density and inertia to avoid adherence to the electrostatic images during the cascade development process- Adherence of carrier beads to electrostatic drums is undesirable because of the formation of deep scratches on the surface during the image transfer and drum cleaning steps. Also, print deletion occurs when large carrier beads adhere to xerographic imaging surfaces. For magnetic brush development, carrier particles having an average particle size less than about 800 microns are satisfactory. Generally speaking, satisfactory results are obtained when about 1 part toner is used with about 10 to about 1000 parts by weight of carrier in the cascade and magnetic brush developers.
The developer compositions of the instant invention may be employed to develop electrostatic latent images on any suitable imaging surface, including conventional photoconductive and nonphotoconductive surfaces. Well known photoconductive materials include vitreous selenium, zinc oxide, organic or inorganic photoconductors embedded in a nonphotoconductive matrix or inorganic or organic photoconductors embedded in a photoconductive matrix or homogeneous organic photoconductor, typified by PVK/TNF photoconductors or the like. Representative patents which disclose contemplated photoconductive materials include US.
Pat. Nos. 2,803,542; 2,970,906; 3,121,006; 3,121,007 3,151,982 and 3,484,237.
In the process of the present invention conventional means may be employed to clean or remove residual toner from the imaging surface after developed image transfer to a receiving surface. These means include any type of fiber brush, woven or nonwoven web, resil- Satisfactory results have been obtained in one system employing a single synthetic rubber blade, operating in a chiseling attitude with a blade pressure of about 0.06 pounds per linear inch against an endless photoceptor surface having a speed of about 6.6 inches per second.
DESCRIPTION OF PREFERRED EMBODIMENTS The following examples further define, describe and compare exemplary developing compositionsfand the use thereof in a developingand cleaning process. Parts and percentages are by weight unless otherwise indi cated.
EXAMPLE I The vitreous selenium photoconductor drum of an automatic copying machine is, corona charged to a positive voltage of about 800 volts and exposed to alight and shadow image to form an electrostatic latent image. The drum is then rotated through a magnetic brush development station. The control developer used in this process comprises 2 parts toner, which contains a commercially available styrene-nfbutyl methacrylate copolymer, colored with carbon black, and about parts of commercially available steel shot carrier beads. These toner particles have an average particle size of about 12 microns and the carrier beads an average particle size of about microns.
After the latent image is developed, the resulting toner image is transferred to a sheet of paper at a transfer station and removed means of a synthetic rubber doctor blade held at a chiseling attitude to the photoreceptor. v 1 1 Initial copies reveal good copy quality in all respects however, after about 500 copies, image quality is markedly inferior showing high background density, poor image fill and decreased resolution. Inspection of the drum reveals a significant toner film buildup on the imaging surface. A
EXAMPLE II The procedure of Example I is repeated except the toner. Thereafter, the toner and additive is mixed with the carrier.
developer is. modified by the addition of terephthalic After 15,000 cycles, copy quality remained good in comparison with Example I and no deleterious toner film buildup was seen on the photoreceptor.
EXAMPLE III The process of Example I is repeated except the developer is modified in the same mannerof Example II by the addition of 2.0 percent phthalic acid having an average particle size distribution of from 0.5 to 10 microns.
After 5,000 cycles, copy quality is better than Example I with far less toner film buildup on the photoreceptor.
EXAMPLE IV The process of Example I is repeated except the developer is modified in the same manner of Example II by the addition of 3.0 percent isophthalic acid, having an average particle size distribution of from 0.5 to 10 microns. After 5,000 cycles, copy quality is noticeably better than Example I with far less toner film buildup.
EXAMPLE V EXAMPLE VI The process of Example I is repeated except the developer is modified in the same manner of Example II by the addition of 0.25 percent of the calcium salt of isophthalic acid. The salt has an average particle size distribution of from 0.5 to 10 microns. After 7,000 cy- I cles, copy quality is significantly better than Example I with far less toner film buildup.
EXAMPLE VII The process of Example I is repeated except the developer is modified in the same manner of Example II by the addition of 1.0 percent of the zinc salt of terephthalic acid. The salt has an average particle size 'distribution of from 0.5 to l0 microns. After 7,000-cycles, copy quality is significantly better than Example] with far less toner film buildup.
EXAMPLE VIII The process of Example I is-repeated except the developer is modified in the same manner of Example II by the addition of the ammonium salt of terephthalic acid. The salt has an average particle size distribution of 0.5 to 10 microns. After 7,000 cycles, copy quality is better than Example I and there isless toner buildup on the photoreceptor. 7 1
EXAMPLE IX The process of Example I is repeated except that the copier is equiped with a poly-N-vinylcarbazole photoconductive imaging member of a type disclosed in US. Pat. No. 3,484,237. Here, as in Example l, toner filming of the photoconductive surface of the imaging member is observed after only 500 copies with noticeable deterioration in copy quality.
EXAMPLE X The processof Example IX is repeated except that (a) the toner laden photoconductive imaging member of Example IX is replaced by a clean, unused imaging member of the samecomposition, and,(b) the developer is modified by the addition of terephthalic acid having an. average particle size distribution of from about 0.5 to 10 microns. This latter modification is effected simply by mechanically uniformly mixing 0.25 weight percent terephthalic acid, based on the weight of the toner. with the toner. Thereafter, the toner and additive are mixed with the carrier.
After 15,000 copying cycles, copy quality remains relatively uniform in comparison to Example I, and toner filming of the photoconductive surface of the imaging member is negligible.
Although specific materials and conditions are set forth in the foregoing examples. these are merely intended as illustrations of the present invention. Various other suitable components, additives, colorants, carriers and development techniques, such as those referred to above, maybe substituted in the Examples with similar results.
Other modifications of the present invention will occur to those skilled in the art upon a reading of the present invention. These are intended to be included within the scope of this invention.
What is claimed is:
1. A developer composition comprising particles, said particles including finely divided discrete particles having a size of less than about 30 microns of electrostatographic electroscopic toner material and a minor proportion based upon the weight of said toner material of discrete particles having asize of from about 0.5 to about 20 microns of at least one finely divided, solid additive compound selected from the group consisting of phthalic acid, isophthalic acid, terephthalic acid, the metal and ammonium salts thereof.
2. The developing material of claim 1 wherein the additive is the metal salt of phthalic acid, isophthalic acid,
or terephthalic acid.
3. The developing material ofclaim 2 wherein the additive is selected from the group consisting of an alkali metal salt, an alkaline earth metal salt, a zinc, cadmium, aluminum, Fe cobalt, lead, silver, Cu, and
nickel salt.
4. The developing material of claim 3 wherein the additive is the sodium salt of terephthalic acid..
5'. The developing material of claim 3 wherein the additive is the calcium salt of terephthalic acid.
6. The developing material of claim 1 wherein the ad-- ditive is an ammonium salt of phthalic acid, isophthalic acid or terephthalic acid.
7. The developingmaterial of claim 1 wherein said additive is terephthalic acid 8. The developing material of claim l-wherein said additive is isophthalic acid.
9. The developing materialof claim 1 wherein sai additive is phthalic acid. 1 v
10. The developing material'of claim 1 wherein said developing material comprises from about 0.01 percent to about 10 percent by weight of said additive based on the weight of said toner. Y
11. The developing material of claim 1 wherein said developing material comprises from about 0.1 percent having a size of less than about 30 microns of electrostatographic electroscopic toner material and from about 0.1 to about 10 percent by weight based upon the weight of said toner material of discrete, finely divided, solid additive particles of terephthalic acid having a size of from about 0.5 to about 20 microns.

Claims (13)

1. A DEVELOPER COMPOSITION COMPRISING PARTICLES, SAID PARTICLES INCLUDING FINELY DIVIDED DISCRETE PARTICLES HAVING A SIZE OF LESS THAN ABOUT 30 MICRONS OF ELECTROSTATOGRAPHIC ELECTROSCOPIC TONER MATERIAL AND A MINOR PROPORTION BASED UPON THE WEIGHT OF SAID TONER MATERIAL OF DISCRETE PARTICLES HAVING A SIZE OF FROM ABOUT 0.5 TO ABOUT 20 MICRONS OF AT LEAST ONE FINELY DIVIDED, SOLID ADDITIVE COMPOUND SELECTED FROM THE GROUP CONSISTING OF PHTHALIC ACID, ISOPHTHALIC ACID, TEREPHTHALIC ACID, THE METAL AND AMMONIUM SALTS THEREOF.
2. The developing material of claim 1 wherein the additive is the metal salt of phthalic acid, isophthalic acid, or terephthalic acid.
3. The developing material of claim 2 wherein the additive is selected from the group consisting of an alkali metal salt, an alkaline earth metal salt, a zinc, cadmium, aluminum, Fe , cobalt, lead, silver, Cu , and nickel salt.
4. The developing material of claim 3 wherein the additive is the sodium salt of terephthalic acid.
5. The developing material of claim 3 wherein the additive is the calcium salt of terephthalic acid.
6. The developing material of claim 1 wherein the additive is an ammonium salt of phthalic acid, isophthalic acid or terephthalic acid.
7. The developing material of claim 1 wherein said additive is terephthalic acid.
8. The developing material of claim 1 wherein said additive is isophthalic acid.
9. The developing material of claim 1 wherein said additive is phthalic acid.
10. The developing material of claim 1 wherein said developing material comprises from about 0.01 percent to about 10 percent by weight of said additive based on the weight of said toner.
11. The developing material of claim 1 wherein said developing material comprises from about 0.1 percent to about 4 percent by weight of said additive based on the weight of said toner.
12. The developing material of claim 1 including from 10-1000 parts by weight of carrier particles per part of toner, said carrier particles being larger than said finely divided toner material.
13. A developer composition comprising particles, said particles including finely divided discrete particles having a size of less than about 30 microns of electrostatographic electroscopic toner material and from about 0.1 to about 10 percent by weight based upon the weight of said toner material of discrete, finely divided, solid additive particles of terephthalic acid having a size of from about 0.5 to about 20 microns.
US277542A 1972-08-03 1972-08-03 Imaging composition Expired - Lifetime US3884825A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US277542A US3884825A (en) 1972-08-03 1972-08-03 Imaging composition
CA169,036A CA1009492A (en) 1972-08-03 1973-04-18 Imaging composition and process for using
DE2326273A DE2326273A1 (en) 1972-08-03 1973-05-23 ILLUSTRATIVE MATERIAL AND METHODS OF USING THEM
BE133939A BE802878A (en) 1972-08-03 1973-07-27 ELECTROSTATOGRAPHIC DEVELOPMENT MATERIALS CONTAINING PHTHALIC ACID OR ITS SALTS AND IMAGE FORMATION PROCESS USING THESE MATERIALS
IT27303/73A IT991465B (en) 1972-08-03 1973-07-30 DEVELOPMENT MATERIAL TOGRAPHIC ELECTROSTAL PARTICULARLY USEFUL IN XEROGRAPHY
GB3644073A GB1437042A (en) 1972-08-03 1973-07-31 Particulate electrostatographic developer material and a proces using such material
NL7310672A NL7310672A (en) 1972-08-03 1973-08-01
JP8670873A JPS5410254B2 (en) 1972-08-03 1973-08-01
SU731953600A SU637099A3 (en) 1972-08-03 1973-08-02 Electrographic developer
BR5960/73A BR7305960D0 (en) 1972-08-03 1973-08-03 PERFECTED ELECTROSTATOGRAPHIC REVELATION MATERIAL AND IMPROVED IMAGE FORMATION PROCESS AS THE SAME
FR7328589A FR2194992B1 (en) 1972-08-03 1973-08-03
AU58908/73A AU467048B2 (en) 1972-08-03 1973-08-03 Imaging composition and process for using
US480782A US3900589A (en) 1972-08-03 1974-06-19 Electrostatographic imaging process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US277542A US3884825A (en) 1972-08-03 1972-08-03 Imaging composition

Publications (1)

Publication Number Publication Date
US3884825A true US3884825A (en) 1975-05-20

Family

ID=23061309

Family Applications (1)

Application Number Title Priority Date Filing Date
US277542A Expired - Lifetime US3884825A (en) 1972-08-03 1972-08-03 Imaging composition

Country Status (11)

Country Link
US (1) US3884825A (en)
JP (1) JPS5410254B2 (en)
BE (1) BE802878A (en)
BR (1) BR7305960D0 (en)
CA (1) CA1009492A (en)
DE (1) DE2326273A1 (en)
FR (1) FR2194992B1 (en)
GB (1) GB1437042A (en)
IT (1) IT991465B (en)
NL (1) NL7310672A (en)
SU (1) SU637099A3 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155883A (en) * 1976-05-12 1979-05-22 Tokyo Shibaura Electric Co., Ltd. Toner for electrostatic image development
US4410617A (en) * 1982-04-12 1983-10-18 Xerox Corporation Colored toner and developer composition
US4411975A (en) * 1982-04-12 1983-10-25 Xerox Corporation Para-halo phenyl carboxylic acid charge enhancing additives
US4411974A (en) * 1982-04-12 1983-10-25 Xerox Corporation Ortho-halo phenyl carboxylic acid charge enhancing additives
US4442189A (en) * 1983-01-26 1984-04-10 Xerox Corporation Toner compositions containing polyanhydride resins
US4963127A (en) * 1988-07-27 1990-10-16 Synthetic Products Company Stannic terephthalate
US4983688A (en) * 1989-04-28 1991-01-08 Synthetic Products Company Liquid crystal polymer compositions
US5026888A (en) * 1988-07-27 1991-06-25 Synthetic Products Company Ruthenium terephthalate
US5162557A (en) * 1988-07-27 1992-11-10 Synthetic Products Company Ruthenium aromatic polycarboxylates
US5164458A (en) * 1989-04-28 1992-11-17 Synthetic Products Company High performance engineering polymer compositions
US5176977A (en) * 1991-07-01 1993-01-05 Eastman Kodak Company Nonpolymeric amorphous developer compositions and developing processes
US5296585A (en) * 1989-04-28 1994-03-22 Synthetic Products Company Polymeric metal terephthalate and isophthalate fibers and method of making
US5332637A (en) * 1993-08-31 1994-07-26 Eastman Kodak Company Electrostatographic dry toner and developer compositions with hydroxyphthalimide
US5358814A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Toner compositions containing as a negative charge-controlling agent a mixture of ortho-benzoic sulfimide and para-anisic acid
US5358815A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Toner compositions containing negative charge-controlling additive
US5358817A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Toner compositions containing as a negative charge-controlling agent the calcium salt of ortho-benzoic sulfimide
US5358816A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Zinc salt of ortho-benzoic sulfimide as negative charge-controlling additive for toner and developer compositions
US5358818A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Ortho-benzoic sulfimide as charge-controlling agent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113739A (en) * 1976-03-19 1977-09-24 Canon Inc Electrostatically developing toner
JPS587284Y2 (en) * 1978-04-08 1983-02-08 宇部興産株式会社 angle measuring instrument

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2893976A (en) * 1957-03-28 1959-07-07 Monsanto Chemicals Color stable blends of styrene polymers and rubbery diene polymers containing azo dyes and terephthalic or isophthalic acid
US2940934A (en) * 1953-06-22 1960-06-14 Haloid Xerox Inc Electrostatic developer composition and method therefor
US3236639A (en) * 1959-09-04 1966-02-22 Azoplate Corp Two component partially removable electrophotographic developer powder and process for utilizing same
US3262806A (en) * 1961-12-16 1966-07-26 Azoplate Corp Three component magnetic developer for electrophotographic purposes and method for using it
US3510338A (en) * 1965-08-06 1970-05-05 Inmont Corp Method of electrostatic printing
US3655374A (en) * 1967-06-05 1972-04-11 Xerox Corp Imaging process employing novel solid developer material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7213836A (en) * 1971-10-12 1973-04-16 Electrophotographic dry toner developer - contg fatty acid salt and hydrophobic colloidal silica
ZA763694B (en) * 1975-06-24 1977-08-31 Kenlowe Accessories & Co Ltd An ignition system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2940934A (en) * 1953-06-22 1960-06-14 Haloid Xerox Inc Electrostatic developer composition and method therefor
US2893976A (en) * 1957-03-28 1959-07-07 Monsanto Chemicals Color stable blends of styrene polymers and rubbery diene polymers containing azo dyes and terephthalic or isophthalic acid
US3236639A (en) * 1959-09-04 1966-02-22 Azoplate Corp Two component partially removable electrophotographic developer powder and process for utilizing same
US3262806A (en) * 1961-12-16 1966-07-26 Azoplate Corp Three component magnetic developer for electrophotographic purposes and method for using it
US3510338A (en) * 1965-08-06 1970-05-05 Inmont Corp Method of electrostatic printing
US3655374A (en) * 1967-06-05 1972-04-11 Xerox Corp Imaging process employing novel solid developer material

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155883A (en) * 1976-05-12 1979-05-22 Tokyo Shibaura Electric Co., Ltd. Toner for electrostatic image development
US4410617A (en) * 1982-04-12 1983-10-18 Xerox Corporation Colored toner and developer composition
US4411975A (en) * 1982-04-12 1983-10-25 Xerox Corporation Para-halo phenyl carboxylic acid charge enhancing additives
US4411974A (en) * 1982-04-12 1983-10-25 Xerox Corporation Ortho-halo phenyl carboxylic acid charge enhancing additives
US4442189A (en) * 1983-01-26 1984-04-10 Xerox Corporation Toner compositions containing polyanhydride resins
US5162557A (en) * 1988-07-27 1992-11-10 Synthetic Products Company Ruthenium aromatic polycarboxylates
US5026888A (en) * 1988-07-27 1991-06-25 Synthetic Products Company Ruthenium terephthalate
US4963127A (en) * 1988-07-27 1990-10-16 Synthetic Products Company Stannic terephthalate
US5380593A (en) * 1989-04-28 1995-01-10 Synthetic Products Company Polymeric metal terephthalate and isophthalate fibers
US5164458A (en) * 1989-04-28 1992-11-17 Synthetic Products Company High performance engineering polymer compositions
US5296585A (en) * 1989-04-28 1994-03-22 Synthetic Products Company Polymeric metal terephthalate and isophthalate fibers and method of making
US4983688A (en) * 1989-04-28 1991-01-08 Synthetic Products Company Liquid crystal polymer compositions
US5176977A (en) * 1991-07-01 1993-01-05 Eastman Kodak Company Nonpolymeric amorphous developer compositions and developing processes
US5332637A (en) * 1993-08-31 1994-07-26 Eastman Kodak Company Electrostatographic dry toner and developer compositions with hydroxyphthalimide
US5358815A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Toner compositions containing negative charge-controlling additive
US5358817A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Toner compositions containing as a negative charge-controlling agent the calcium salt of ortho-benzoic sulfimide
US5358816A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Zinc salt of ortho-benzoic sulfimide as negative charge-controlling additive for toner and developer compositions
US5358818A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Ortho-benzoic sulfimide as charge-controlling agent
US5358814A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Toner compositions containing as a negative charge-controlling agent a mixture of ortho-benzoic sulfimide and para-anisic acid

Also Published As

Publication number Publication date
SU637099A3 (en) 1978-12-05
FR2194992A1 (en) 1974-03-01
GB1437042A (en) 1976-05-26
DE2326273A1 (en) 1974-02-14
BE802878A (en) 1973-11-16
CA1009492A (en) 1977-05-03
NL7310672A (en) 1974-01-25
JPS5410254B2 (en) 1979-05-02
IT991465B (en) 1975-07-30
FR2194992B1 (en) 1977-05-13
JPS4960229A (en) 1974-06-11
BR7305960D0 (en) 1974-07-25
AU5890873A (en) 1975-02-06

Similar Documents

Publication Publication Date Title
US3884825A (en) Imaging composition
US3900588A (en) Non-filming dual additive developer
US3752666A (en) Electrostatic imaging process using carrier beads containing conductive particles
US2618551A (en) Developer for electrostatic images
US4264697A (en) Imaging system
US3983045A (en) Three component developer composition
US4051077A (en) Non-filming dual additive developer
US3649262A (en) Simultaneous development-cleaning of the same area of an electrostatographic image support surface
US4040969A (en) High surface area carrier
CA1041344A (en) High surface area carrier
US3969251A (en) Developer mixture
US3635704A (en) Imaging system
US4099968A (en) Dicarboxylic acid bis-amides in electrostatic imaging compositions and processes
US3942979A (en) Imaging system
US3973843A (en) Electrostatographic imaging apparatus
US3948654A (en) Electrophotographic Process
CA1169915A (en) Particles for magnetic brush cleaning
US3856692A (en) Liquid electrostatographic developer compositions
US4076641A (en) ω-AND CIS Alkenoic acid amides in electrostatographic developers
US3595794A (en) Electrostatographic developer
US4126566A (en) Electrostatic developer material
US3900589A (en) Electrostatographic imaging process
US4187329A (en) Electrophotographic developing process and compositions for use therein
US4053310A (en) Durable carrier coating compositions comprising polysulfone
US4126454A (en) Imaging process utilizing classified high surface area carrier materials