US3884030A - Fibrillated foamed textile products and method of making same - Google Patents

Fibrillated foamed textile products and method of making same Download PDF

Info

Publication number
US3884030A
US3884030A US496377A US49637765A US3884030A US 3884030 A US3884030 A US 3884030A US 496377 A US496377 A US 496377A US 49637765 A US49637765 A US 49637765A US 3884030 A US3884030 A US 3884030A
Authority
US
United States
Prior art keywords
yarn
fibre elements
fibre
elements
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US496377A
Inventor
Samuel Baxter
John Harold Gilbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Chemicals Ltd
Fiberweb North America Inc
Original Assignee
Monsanto Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB2932464A external-priority patent/GB1114151A/en
Application filed by Monsanto Chemicals Ltd filed Critical Monsanto Chemicals Ltd
Priority to US496377A priority Critical patent/US3884030A/en
Application granted granted Critical
Publication of US3884030A publication Critical patent/US3884030A/en
Assigned to FIBERWEB NORTH AMERICA, INC., 545 NORTH PLEASANTBURG DRIVE, GREENVILLE, SC 29607, A CORP. OF DE reassignment FIBERWEB NORTH AMERICA, INC., 545 NORTH PLEASANTBURG DRIVE, GREENVILLE, SC 29607, A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: JAMES RIVER PAPER COMPANY, INC., A CORP. OF VA
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/08Fibrillating cellular materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/907Foamed and/or fibrillated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24074Strand or strand-portions
    • Y10T428/24083Nonlinear strands or strand-portions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section

Definitions

  • thermoplastic yarn is continuously produced from an extruded cellular foam material which has been oriented in the direction of extrusion by subjecting the oriented foamed material to forces which break down the cell Walls to form a three-dimensional structure of interconnected fibre elements.
  • This invention relates to textile yarns, and particularly to certain new yarns derived from polymeric materials.
  • a new kind of yarn has now been developed which possesses many of the attributes required of a yarn but which can nevertheless be produced directly by a process that avoids the necessity for the separate production of fine monofilaments.
  • the yarn obtained in this way can if desired be used as such, for example as a yarn in carpet production, because it is one of the features of the yarn produced by the process of the invention that the number of loose ends is small.
  • the yarn can however optionally be subjected to a conventional type of spinning operation be fore use, in which instance it will have a certain amount of twist, although this may be only very slight. Higher degrees of twist can be applied if required, and for example a highly twisted yarn can be produced.
  • the invention also includes a new yarn that is a threedimensional structure of a multiplicity of interconnecting thermoplastic fibre elements, the fibre elements being aligned substantially in the direction of production of the yarn and some of them having crosssections that are branched.
  • a yarn that has been twisted can for example be defined as a yarn comprising a three-dimensional structure of a multiplicity of interconnecting thermoplastic fibre elements arranged substantially as a series of helices having a common axis along the length of the yarn, some of the fibre elements having cross-sections that are branched.
  • FIG. 1 is a section view taken at right angles to the major axis of the fibre and showing the trilobate construction of a fibre element
  • FIG. 2 is the section view of FIG. 1 showing the fibre element having a double trilobate construction
  • FIG. 3 is an enlarged plan view of the yarn of this invention.
  • FIG. 4 is a section view of the yarn of FIG. 3 taken at right angles to the main axis of the yarn;
  • the number of cross-section of fibre elements which are branched may be a minority, such as 30 or 40% or less, but nonetheless their presence (even to the extent of from only 5 to 10% of the total) contributes a distinctive character to the yarn.
  • the proportion of branched cross-sections can be high (such as 60 or 70%), but in many cases it will for example be in the range of 5 to 50%, for instance from 10 to 40%, such as about Because of the way in which they have been formed the fibre elements are in the main elongated in crosssection.
  • a further characteristic of the fibre elements of the yarns of the invention can be expressed as their surface area in square metres per gram. This can for example range from 0.04 to 1.5, particularly from 0.05 to 1.0.
  • Useful yarns may for example contain fibre elements having a surface area of between 0.] to 0.5, such as, for instance, about 0.2 or 0.3. In certain instances the surface area can be higher, such as up to about 2.0 square metres per gram.
  • the surface areas can be controlled by operation of the process of production of the yarns, for instance a higher density foamed material normally results in a yarn having a lower surface area.
  • the thickness of the fibre elements is often in the range of from 0.0001 to 0.004 or 0.005, for example, between 0.0002 and 0.003 inch; it can, for instance, be between 0.0004 and 0.002 inch, such as about 0.0006 or about 0.001 inch.
  • the average distance between points of interconnection as referred to above can be for example from 5 or l0 to 750 times the average thickness of the fibre element or slightly more, for instance up to 1,000 times the average thickness.
  • useful yarns are obtained when the average distances between points of interconnection of fibre elements are from 20 to 500 times the average fibre element thickness, such as from 50 to 300 times.
  • a distance of about 100 or 200 times the average thickness of the major fibre elements is often characteristic.
  • the distance between points of interconnection is often in the range of 0.01 to 0.5 inch, such as from 0.02 to 0.3 inch, for instance, from 0.05 to 0.1 or 0.2 inch.
  • the yarns can be produced continuously and they can in any event be obtained in any length convenient for the intended purpose.
  • Their cross-sections are those usual for yarns, and are normally compact.
  • the yarn cross-section can be more elongated, for instance it can be an elongated rectangle, and the yarn then can be in the form of a ribbon or strip, normally a narrow one.
  • Such a ribbon or strip might for example be up to one-fourth inch wide.
  • the yarn has the more normal compact crosssection this can be a circular or similar cross-section and can vary within wide limits; in general it will be at least 0.005 inch and can for instance be from 0.01 to 0.15 inch or more, such as from 0.02 to 0.05 or 0.1 inch.
  • Thicker yarns can have a diameter up to perhaps 0.25 inch. Yarns having diameters in the upper part of this range are useful in the production of certain coarse fibre or yarn products.
  • the yarns of the invention can for instance have values in the range of to 25,000 for example in the range of 100 to 1,000, such as 200 to 500.
  • the common axis of the helices is normally coincident with the axis of the yarn, and the helices can for example have between /2 or 1 and 25 turns per inch, for example from 2 to l2 turns per inch (such as from 4 or 6 to 10 turns per 'inch).
  • the twisted yarns have a cross-section that is substantially circular.
  • a yarn having a low degree of twist is in general softer than one where the degree of twist is high.
  • the process of the invention also includes a modification in which the yarns are produced by cutting or dividing up a band or web of the appropriate threedimensional structure of interconnected fibre ele ments.
  • the drawn foamed material will of course have a cross-section that is greater than that of the desired yarn, the drawn material is broken down and converted into a three-dimensional structure of interconnected fibre elements. and this structure is divided up longitudinally into a number of yarns having the required cross-sections. Yarns produced in this way can for example usefully be twisted together as described in the preceding paragraph.
  • FIG. 3 It can be seen from FIG. 3 that a large number of interconnections are present, and that in relation to the average thickness of the fibre elements, the interconnections are relatively close together.
  • the portions of fibre elements which in FIG. 3 appear as ends were not necessarily in that state in the yarn. Some of the ends were formed when the small portion of material was broken away from the yarn for examination, whilst others are not in fact loose ends at all; they are portions of fibre elements which are curved and whose remaining portions are aligned either directly towards or directly away from the field of view.
  • the distances between many of the major points of interconnections are about 0.0l inch.
  • FIG. 4 shows the presence of crosssections (about 20% of the total) that are branched.
  • nitrile such as acrylonitrile, or methaerylonitrile
  • vinyl or vinylidene chloride a vinyl ester, such as vinyl acetate
  • an acrylate ester such as ethyl acrylate or methyl methacrylate.
  • the monomer is a hydrocarbon this can be a monoolefin, a diene, or a vinyl-substituted benzene, for instance ethylene, propylene, a butylene, a pentene or a hexenc; butadiene; or a vinyl-substituted benzene, such as styrene or a-methylstyrene.
  • the polymer can be polyethylene (low density or high density material), crystalline polypropylene, or polystyrene or a toughened polystyrene.
  • a copolymer can be, for instance, one involving two or more, such as three, of any of the monomers referred to above.
  • a comonomer can be, for instance, one of a type which will impart a degree of flame-retardance to the copolymer, and an example of such a substance is a vinyl halide. such as vinyl chloride, vinyl bromide or vinylidene chloride. Examples of other comonomers are vinylpyrollidone and a vinylpyridine such as methylvinylpyridine.
  • a copolymer can be for example one derived from two hydrocarbon monomers, such as an ethylene-propylene or a styrenebutadiene copolymer; or a hydrocarbon and a different type of monomer, such as an ethylenevinyl acetate copolymer; or a copolymer derived from dissimilar monomers such as for example acrylonitrile and a minor proportion of vinyl acetate.
  • hydrocarbon monomers such as an ethylene-propylene or a styrenebutadiene copolymer
  • a hydrocarbon and a different type of monomer such as an ethylenevinyl acetate copolymer
  • a copolymer derived from dissimilar monomers such as for example acrylonitrile and a minor proportion of vinyl acetate.
  • the thermoplastic material can also consist of a mixture of two or more polymers or copolymers; it can for example comprise a mixture of a copolymer of acrylonitrile with a minor amount of vinyl acetate, for instance, about l0% by weight, and polyvinyl chloride; or a mixture of an acrylonitrile-vinyl acetate copolymer and a copolymer of acrylonitrile with methylvinylpyridine.
  • the polymer is a thermoplastic resin material, but it can be an elastomeric material, for instance a copolymer derived from sufficient of a diene monomer, such as butadiene, to impart some degree of clastomeric properties to the copolymer; natural rubber; or a synthetic rubber such as for instance a polybutadiene, styrenebutadiene or acrylonitrilebutadiene rubber.
  • a thermoplastic resin material can be non-crystalline, as in amorphous polystyrene, or crystalline, as in crystalline polyethylene or,polypropylene.
  • thermoplastic material is regenerated natural fibre it is preferably one based on cellulose, for example rayon, cellulose acetate. cellulose triacetate or cellulose acetate-butyrate.
  • the starting material is an extruded foamed polymeric material, and if desired this can be produced by conventional extrusion techniques.
  • the extruded strand or ribbon offoamed material has a cross-section consistent with the ultimate aim of producing a yarn.
  • the extruded strand which includes a rod or ribbon, can be of virtually any relatively compact cross-section, but often the cross-section is circular or substantially circular, although it can also be square or rectangular.
  • the yarn is for example to be twisted it can if desired have a less compact cross-section, and hence the extruded foamed material can (although this is not essential) have a cross-section that is a more elongated rectangle or similar shape, and the extruded material can then be a ribbon or strip, although a relatively narrow one.
  • a suitable strand or ribbon can be obtained by slitting longitudinally a sheet or board of a drawn extruded foamed material.
  • the average diameter can be between 0.1 and 1 inch for instance between 0.2 to 0.5 inch.
  • the density of the foamed material can for instance be between 1 pound and 10 pounds or more per cubic foot, such as from about 2 to 4 or 5 pounds per cubic foot.
  • the fact that the starting material is foamed can also be expressed in terms of the volume fraction of voids that it contains, and this can be as low as 0.5.
  • the volume fraction of voids is often not less than 0.9, so that the range can for instance be from 0.95 to 0.985, for instance from 0.96 or 0.97 to 0.98.
  • a volume fraction of voids of 0.5 is equal to a ratio of the volume of foam over the volume ofthermoplastic material it contains of two to one.
  • the blowing agent will be a low boiling substance or a chemical blowing agent.
  • the foamed material usually contains closed cells, although material (for instance polyethylene) can be employed which contains cells which to some extent are interconnecting or open.
  • the agent is a volatile substance, and is often one that is a'gas or vapour under normal atmospheric conditions (such as 20C. and l atmosphere pressure), but which while under pressure before extrusion will be present in solution in the molten or semi-molten thermoplastic material.
  • the blowing agent can however be one, such as pentane or a pentane fraction, which is a volatile liquid under normal conditions.
  • volatile substances examples include lower aliphatic hydrocarbons, such as methane, ethane, ethylene, propane, a butane, or a pentane; low alkyl halides, such as methyl chloride, trichloromethane or l,2-dichlorotetrafluorethane; acetone; and inorganic gases, such as carbon dioxide or nitrogen.
  • the lower aliphatic hydrocarbons, especially butane are useful in respect of polyolefinic materials, such as polystyrene and polyethylene.
  • the blowing agent can also be a chemical blowing agent, which can for example be a bicarbonate such as for example sodium bicarbonate or ammonium bicarbonate, or an organic nitrogen compound that yields nitrogen on heating, such as for example dinitrosopentamethylenediamine or barium azodicarboxylate. From 3 to 30%, especially 7 to 20%, by weight based on the weight of the thermoplastic material is often a suitable proportion of blowing agent, and for example the use of from 7 to 15% by weight of butane in conjunction with a polyolefinic material has given excellent results. Sometimes the blowing agent will be employed in conjunction with a nucleating agent, which assists in the formation of a large number of small cells.
  • a chemical blowing agent can for example be a bicarbonate such as for example sodium bicarbonate or ammonium bicarbonate, or an organic nitrogen compound that yields nitrogen on heating, such as for example dinitrosopentamethylenediamine or barium azodicarboxylate. From 3 to 30%, especially 7 to 20%,
  • nucleating agents can be employed; including finely-divided inert solids such as for example silica or alumina, perhaps in conjunction with Zinc stearate, or small quantities of a substance that decomposes at the extrusion temperature to give a gas can be used.
  • An example of the latter class of nucleating agents is sodium bicarbonate, used if desired in conjunction with a weak acid such as for example tartaric acid or citric acid.
  • a small proportion of the nucleating agent for example up to by weight of the thermoplastic material, is usually effective.
  • a plasticiser can also be present where this is appropriate.
  • the drawing operation is preferably conducted on a continuous basis (although this is not essential), and the step of breaking down the foam may follow immediately or it may be carried out subsequently, for instance on discrete lengths of drawn foamed material.
  • the extruded foamed thermoplastic material is drawn along the extrusion direction, and in doing so it is orientated unidirectionally (uniaxially) and the cells of the foam are elongated.
  • the drawn material usually has a slightly higher density than the material before drawing.
  • the precise conditions that are necessary in the drawing operation to achieve the required results depend on the particular thermoplastic material that is employed, but in general draw-down ratios of from :1 to 2:1 have been found useful, for example from 15:1 to 3:1.
  • An amorphous thermoplastic material should normally be drawn above its glass transition temperature, whilst a crystalline thermoplastic material can be drawn at a temperature lower than its crystalline melting point. If the foamed material is still hot from the extrusion operation it may need to be cooled before it is possible to draw it in a subsequent operation, but in the more normal course of events a foamed material needs to be heated to a suitable temperature before it can be drawn, because for example even in a continuous operation the temperature of the foamed material can have dropped too low by the time it is possible to draw it.
  • the heat treatment that is applied is as has been explained such that the extruded foam is sufficiently ductile to be drawn, and this can involve for instance either heating the foamed material at a steady temperature, or subjecting it to a relatively high temperature (perhaps as high as 200C.) for a short time followed by a period (normally longer) at a lower temperature.
  • a foamed material that is produced in a form which has an outer skin of material (which has a higher density than the inner material) may give better results with a heat treatment which involves a short initial period at a higher temperature.
  • This initial treatment can be useful in the instance of a thermoplastic material such as crystalline polypropylene, and can be as short as a few seconds.
  • anyconvenient method of applying heat can be employed.
  • the extruded foamed material can passed through hot air or some inert gas, or through a heated bath of suitable inert liquid, such as water, glycerol or ethylene glycol.
  • suitable inert liquid such as water, glycerol or ethylene glycol.
  • the drawing can be performed at room temperatures, for example with nylon materials.
  • the foamed thermoplastic material After the foamed thermoplastic material has been drawn it is partially disintegrated to the yarn, i.e. it is broken down into the three-dimensional network of interconnected fibre elements. In this operation the walls of the elongated cells of thermoplastic material are broken down or fibrillated" to give fibre elements.
  • the solid three-point connections at the ends of the cells are in some instances the junction points of a number of interconnecting fibre elements.
  • the disintegration can for example be effected by mechanically working the drawn material so that some shear is applied to it, preferably in a transverse direction, and several ways of doing this can be employed, including rubbing, rolling, twisting, shaking, beating or otherwise subjecting the material to forces tending to draw it laterally at right angles to the direction of orientation.
  • thermoplastic resins the temperature at which the partial disintegration is carried out is room temperature, 20C., or somewhat higher perhaps up to 30C.
  • temperature used is normally lower then room temperature, for instance 5C. or 0C. or even lower.
  • the reciprocating and stationary nips referred to above can in practice for example consist of two pairs (1 and 2) of metal bars as shown in end elevation in FIG. 5 an in side elevation in FIG. 6.
  • the bars 1 and 2 are of square cross-section, with radiused edges, and each pair consists of two similar bars mounted vertically above each other.
  • the bars in each pair are maintained lightly in contact by means of the spring-loaded guides 3.
  • the left hand pair of bars 1 are stationary, and are maintained in contact with the bars 2 by the action of a leaf spring 4.
  • Supporting means (not shown) are provided for supporting the assembly of bars.
  • the bars 2 are moved reciprocally up and down by the freelymoving vertical plunger 5, which is driven by a circular eccentric 6 on the shaft of an electric motor (not shown).
  • the drawn foamed material moves through the bars from right to left, by means of the pair of driven rollers 7.
  • the three-dimensional network of fibre elements as obtained by breaking down the drawn foam can be disintegrated to a greater or lesser extent, to give yarns which are potentially more or less voluminous respectively.
  • the yarns produced can if desired to teazed out to give bulkier and lighter-weight products, and
  • some of the fibre elements may be present as bundles. with some of the component fibres being interconnected to the fibres of adjacent bundles.
  • the bundles occur particularly where the yarn has been produced using only a low degree of disintegration of the drawn extruded foam.
  • Additional operations for example dyeing or sizing. can be carried out on a yarn of the invention if desired.
  • the starting material was a strand, or rod, of foamed high density polyethylene having a circular crosssection of diameter 0.4 inch, which had been produced by extrusion, through an orifice die 0.1 inch in diameter and of land 0.3 inch, of a foamable polyethylene composition containing 100 partsby weight of a high density polyethylene of density 0.96 grams per cc., 12 parts by weight of butane as blowing agent, and 1 part of finely-divided silica as a nucleating agent.
  • the foamed strand was passed through an ethylene glycol bath at about 1 10C. and whilst at this temperature was drawn in the longitudinal direction to approximately 10 times its original length; this caused orientation in a longitudinal direction of the cells of the foamed polyethylene.
  • the drawn material was allowed to cool to room temperature, and was subjected to a shearing action from the reciprocating motion ofa nip (of the type described above and shown in FIGS. and 6) through which the orientated foamed polyethylene was passed. This procedure resulted in the yarn of the invention.
  • the bars 1 and 2 of the nip assembly were of polished aluminium, and each was 4 inches long with a crosssection of one-fourth inch by one-fourth inch.
  • the speed of the electric motor was 1,400 revolutions per minute, and the vertical movement of the bars 2 was one-half inch.
  • the foamed drawn thermoplastic material was passed through the nip assembly at a linear rate of 2 feet per minute.
  • This yarn was very flexible and possessed a useful tensile strength; it could be employed as a twine or made use of as a yarn in weaving a cloth.
  • the yarn consisted of a mass of high density polyethylene fibres that were interconnected in three dimensions at a large number of points. The fibres were substantially parallel to the length of the yarn (although there were many bridging or interconnecting fibres that were not parallel to the main body of fibres), and there were very few unconnected or loose ends of fibre.
  • the fibre elements had on average a mean thickness of about 0.001 inch, and their appearance was substantially as shown in FIGS. 3 and 4. The average surface area of the fibre elements was 0.35 square metres per gram.
  • a sample of the yarn was twisted to the extent of turns per inch to give a twisted yarn with an average diameter of 0.06 inch; again it was flexible with an excellent tensile strength.
  • a further sample of the yarn as produced was twisted to the extent of4 turns per inch, and then three lengths of this were twisted together to the extent of 6 turns per inch. The resulting product was doubled and twisted again to the extent of 6 turns per inch.
  • the denier of this 2 X 3 ply yarn was 4,600, and its tensile strength was 1.2 gram per denier.
  • EXAMPLE 2 This Example describes a new yarn obtained from crystalline polypropylene, having a melt index of.0.3.
  • Extruded foamed polypropylene was obtained by extrusion of a mixture of the polypropylene and 12% by weight of butane. A 1 inch extruder was employed, with a circular aperture of diameter five sixty-fourths inch, the land being one-half inch long. The extrusion temperature was 140C. and the die pressure 1.000 pounds per square inch. The resulting foamed polypropylene consisted of a rod of material about one-half inch in diameter having a density of 1.28 pound per cubic foot; the material was fairly flexible, with a silvery skin.
  • the foamed material was heated by passing it through a zone fitted with electric heaters; the heat treatment was for 15 seconds at 250C. The temperature was then allowed to fall to C., and at this temperature the material was drawn at a rate of7,0007z per minute to give an elongation of l,300%.
  • the extruded drawn material was cooled to room temperature and then passed through the reciprocating nip referred to in Example 1. There resulted in a length of very flexible yarn having a thickness of about 0.08 inch, and consisting of a mass of interconnected fibre elements having a few loose ends.
  • the surface area of the yarn was 0.26 square metres per gram.
  • the yarn possessed a useful tensile strength, of 4 5 pounds at 90C. and 10,000% per minute rate of elongation.
  • the thickness of the fibre elements varied between 0.0008 and 0.006 inch and the breadth between 0.0076 and 0.112 inch.
  • the tensile strength could be increased by twisting the yarn, for instance in the range of A to 10 turns per inch.
  • EXAMPLE 3 This Example describes a yarn of the invention produced from polystyrene.
  • the starting material was a long rod of foamed polystyrene which had been produced by extrusion through a circular die of a foamable polystyrene composition containing a butane blowing agent and finely-divided silica as a nucleating agent.
  • the rod of foamed polystyrene which was one-half inch thick and had a density of 2 pounds per cubic foot, was passed through a bath of glycerol at C. and whilst at this temperature was drawn to 6 times its original length. This caused orientation in a longitudinal direction of the cells of the foamed polystyrene, which was now about 0.1 inch in diameter.
  • EXAMPLE 4 This Example describes a new fibre assembly obtained from a nylon, which was a copolymer type having a low melting point 160C.) and known as a 6, 6:6 and 6:10 copolymer; it was sold under the trade-mark Maranyl DA.
  • This nylon copolymer comprised an interpolyamide of caprolactam, hexamethylene adipamide and hexamethylene sebacamide.
  • Foamed material was obtained by extruding a mixture of the nylon, by weight of acetone and 2% by weight of finely-divided silica through a circular die of diameter 3/32 inch, using a 1V2 inch extruder; the die temperature was 131C. and the pressure 1,200 pounds per square inch.
  • the cooled extruded foamed strand had a diameter of about one-fourth inch.
  • the foamed strand was heated to a temperature of 60C. in a hot air oven, and then was drawn to over 100070 at 1000 10,000% per minute rate of elongation.
  • An extruded thermoplastic yarn comprising a network of randomly interconnected fibre elements generally residing longitudinally with respect to the direction of extrusion, said fibre elements being branched and being interconnected by having common branches and at least portions of said fibre elements having a trilobate construction in cross-section with respect to the direction of extrusion said branched fibre elements and said trilobate construction being formed by the breaking down of an extruded and drawn cellular foam rodshaped material, said rod shaped material being drawn in the direction of extrusion.
  • thermoplastic material which is a synthetic polymer selected from the group consisting of a polyamide, a polyester and a polylactam.
  • the yarn of claim 6 wherein the fibre elements are composed of a copolymer of acrylonitrile and vinyl acetate.
  • a cord comprising a plurality of twisted yarn of claim 1.
  • a foamed, thermoplastic yarn structure comprising a plurality of spaced apart, longitudinally extending fiber elements integrally joined to one another by a plurality of spaced apart, cross fibers to produce an integral net-like structure, the fibers of said structure being characterized by internal voids throughout the fibers, surface unevenness, and surface pits.
  • a foamed, thermoplastic structure comprising a plurality of spaced apart, longitudinally extending fiber elements integrally joined to one another by a plurality of spaced apart, crossed fibers to produce an integral net-like structure, the fibers of said structure being characterized by internal voids throughout the fibers, surface unevenness, and surface pits.
  • a process for manufacturing a fibrous product comprising the steps of:

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

A thermoplastic yarn is continuously produced from an extruded cellular foam material which has been oriented in the direction of extrusion by subjecting the oriented foamed material to forces which break down the cell walls to form a three-dimensional structure of interconnected fibre elements.

Description

United States Patent Baxter et al.
FIBRILLATED FOAMED TEXTILE PRODUCTS AND METHOD OF MAKING SAME Inventors: Samuel Baxter, Penhow; John Harold Gilbert, Chepstow, both of England Assignee: Monsanto Chemicals Limited,
London, England Filed:
Oct. 15, 1965 Appl. No.: 496,377
Related U.S. Application Data Continuation-impart of Ser. No. 468,269, June 30, 1965, abandoned.
Foreign Application Priority Data 161/178; 264/103; 264/DIG. 8
Int. Cl D02g 3/06; B29d 27/00; B32b 5/18 Field of Search 57/31, 34, 140, 155, 157, 57/167, 157 l-IS; 28/l.4 F, 1.4 D, 1,72, DIG. 1; 264/53, 321,168, 290, 291,51, 54, 288, 289, 103, DIG. 8; 161/168,172, 109, 169,
[451 May 20, 1975 [56] References Cited UNITED STATES PATENTS 2,268,160 12/1941 Miles 28/].4 F 2,372,695 4/1945 Taylor 28/l.4 F 2,948,927 8/1960 Rasmussen..... 264/291 2,954,587 10/1960 Rasmussen 28/l.4 F 2,980,982 4/1961 Costa et al.... 161/169 3,003,304 10/1961 Rasmussen 57/157 3,081,519 3/1963 Blades et a1. 57/140 3,137,611 6/1964 Krolik, Jr 161/109 3,165,563 1/1965 Rasmussen 28/l.4 F 3,210,239 10/1965 Eberl et a1 28/l.4 F 3,227,784 l/1966 Blades et a1... 264/53 3,242,035 3/1966 White 1 1 161/168 3,253,967 5/1966 Blakey, Jr. et al.... 264/53 X 3,273,329 9/1966 Scragg 57/140 3,302,501 2/1967 Greene 28/1.4 F
Primary Examiner.lohn Petrakes Attorney, Agent, or Firm-J. Bowen Ross, Jr.; Russell E. Weinkauf [57] ABSTRACT A thermoplastic yarn is continuously produced from an extruded cellular foam material which has been oriented in the direction of extrusion by subjecting the oriented foamed material to forces which break down the cell Walls to form a three-dimensional structure of interconnected fibre elements.
16 Claims, 6 Drawing Figures PATEETED MAY 2 0 ms I I .'I
V INVENTORS MUEL BAXTER 0 HAROLD GILBERT FIBRILLATED FOAMED TEXTILE PRODUCTS AND METHOD OF MAKING SAME The present application is a continuation-in-part of application Ser. No. 468,269, filed June 30, 1965, by Samuel Baxter and John Harold Gilbert, now abancloned.
This invention relates to textile yarns, and particularly to certain new yarns derived from polymeric materials.
It has been previously proposed to produce textile yarns from polymeric resins by a process in which a molten resin or a solution of the resin is extruded from a very small orifice and caused to solidify by one means or another; this produces a monofilament of the resin. A monofilament that is sufficiently thick and strong to be woven into cloth is, however, normally rather inflexible, and in order to improve the flexibility it is accordingly necessary to produce relatively fine monofilaments which are then used in conjunction to give the necessary strength. Sometimes for example the fine monofilaments are chopped up to form a staple fibre which is then spun.
A new kind of yarn has now been developed which possesses many of the attributes required of a yarn but which can nevertheless be produced directly by a process that avoids the necessity for the separate production of fine monofilaments.
The process of the invention for the production of the yarn comprises drawing a strand or ribbon of an extruded foamed thermoplastic material so that it becomes orientated essentially in the direction of extrusion and subjecting the drawn foamed material to forces such that the walls of the foam are broken down and converted into a three-dimensional structure of interconnected fibre elements.
The yarn obtained in this way can if desired be used as such, for example as a yarn in carpet production, because it is one of the features of the yarn produced by the process of the invention that the number of loose ends is small. The yarn can however optionally be subjected to a conventional type of spinning operation be fore use, in which instance it will have a certain amount of twist, although this may be only very slight. Higher degrees of twist can be applied if required, and for example a highly twisted yarn can be produced.
The invention also includes a new yarn that is a threedimensional structure of a multiplicity of interconnecting thermoplastic fibre elements, the fibre elements being aligned substantially in the direction of production of the yarn and some of them having crosssections that are branched.
A yarn that has been twisted can for example be defined as a yarn comprising a three-dimensional structure of a multiplicity of interconnecting thermoplastic fibre elements arranged substantially as a series of helices having a common axis along the length of the yarn, some of the fibre elements having cross-sections that are branched.
Fibre elements are referred to and not fibres because in general the elements in question are essentially interconnecting in thrce-dimensions. Accordingly the number ofloose ends" in the yarn is normally low, and the yarn contains few fibres' as such, that is to say fibres each of which has two ends.
FIG. 1 is a section view taken at right angles to the major axis of the fibre and showing the trilobate construction of a fibre element;
FIG. 2 is the section view of FIG. 1 showing the fibre element having a double trilobate construction;
FIG. 3 is an enlarged plan view of the yarn of this invention;
FIG. 4 is a section view of the yarn of FIG. 3 taken at right angles to the main axis of the yarn;
FIG. 5 is a front elevation view of the apparatus for breaking down the cell walls of the extruded cellular foam material to form the yarn of this invention; and
FIG. 6 is a side elevation view of the apparatus shown in FIG. 5.
Fibre elements that have a cross-section, at right angles to the major axis of the fibre element, that is branched are present in the yarn because the fibre elements are obtained from an orientated foamed thermoplastic material by the partial disintegration or break down of the walls of the cells or pores making up the foamed structure. The fibre elements accordingly consist of the remains of the cell walls, and because of this possess certain characteristic features as described below. Fibres that have cross-sections that are branched are derived from parts of the walls of several cells that were present in the original orientated foamed material, and the branch occurs where a fragment of the wall of one cell is joined to fragments of the wall of an adjoining cell or cells. In the simplest instance a branched cross-section of a fibre element can be termed trilobate, because it consist of three lobes or arms, as is exemplified in the cross-sections shown in FIG. I, which are taken at right angles to the major axis of the fibre elements. Related but more complicated branched cross-sections can consist of two or more trilobate crosssections joined together, as for example shown in FIG. 11. Cross-sections such as are for example exemplified in FIGS. I and II are those which can exist at one point along the major axis of a fibre element, and a fibre element does not necessarily possess constant cross-section along its length. Not only does the cross-section usually change along the length of a fibre element, but the fibre element itself is not straight and parallel to the yarn as a Whole. Accordingly a series of cross-sections across a yarn taken at right angles to the direction of production of the yarn will show the cross-section of a given fibre element in a number of different forms.
In a typical cross-section of a yarn the number of cross-section of fibre elements which are branched may be a minority, such as 30 or 40% or less, but nonetheless their presence (even to the extent of from only 5 to 10% of the total) contributes a distinctive character to the yarn. In certain instances the proportion of branched cross-sections can be high (such as 60 or 70%), but in many cases it will for example be in the range of 5 to 50%, for instance from 10 to 40%, such as about Because of the way in which they have been formed the fibre elements are in the main elongated in crosssection. Very often a cross-section of a fibre element contains at least one pair of substantially parallel sides, although at least in the instance of the fibre elements having a branched cross-section these parallel sides will usually be curved. Other cross-sections may be polygonal, for example quadrilateral, and can be rectangular or essentially rectangular; more than four sides can however be present. In considering a cross-section of a fibre element the longer (or longest) dimension is taken as the breadth and the smaller (or smallest) dimension is taken as the thickness. In general terms the elongated cross-sections can have a breadth to thickness ratio of from 3 to l to 20 to l or even more, such as for example 30 to l. A proportion, for example up to 50% of the total, of the crosssections can be compact, for example essentially square; often the number of compact cross-sections is small.
A further characteristic of the fibre elements of the yarns of the invention can be expressed as their surface area in square metres per gram. This can for example range from 0.04 to 1.5, particularly from 0.05 to 1.0. Useful yarns may for example contain fibre elements having a surface area of between 0.] to 0.5, such as, for instance, about 0.2 or 0.3. In certain instances the surface area can be higher, such as up to about 2.0 square metres per gram. The surface areas can be controlled by operation of the process of production of the yarns, for instance a higher density foamed material normally results in a yarn having a lower surface area.
The thickness of the fibre elements is often in the range of from 0.0001 to 0.004 or 0.005, for example, between 0.0002 and 0.003 inch; it can, for instance, be between 0.0004 and 0.002 inch, such as about 0.0006 or about 0.001 inch.
The average distance between points of interconnection as referred to above can be for example from 5 or l0 to 750 times the average thickness of the fibre element or slightly more, for instance up to 1,000 times the average thickness. For example, useful yarns are obtained when the average distances between points of interconnection of fibre elements are from 20 to 500 times the average fibre element thickness, such as from 50 to 300 times. A distance of about 100 or 200 times the average thickness of the major fibre elements is often characteristic. In absolute terms the distance between points of interconnection is often in the range of 0.01 to 0.5 inch, such as from 0.02 to 0.3 inch, for instance, from 0.05 to 0.1 or 0.2 inch.
The yarns can be produced continuously and they can in any event be obtained in any length convenient for the intended purpose. Their cross-sections are those usual for yarns, and are normally compact. In special instances, for example where the yarn is to be subsequently twisted, the yarn cross-section can be more elongated, for instance it can be an elongated rectangle, and the yarn then can be in the form of a ribbon or strip, normally a narrow one. Such a ribbon or strip might for example be up to one-fourth inch wide. Where the yarn has the more normal compact crosssection this can be a circular or similar cross-section and can vary within wide limits; in general it will be at least 0.005 inch and can for instance be from 0.01 to 0.15 inch or more, such as from 0.02 to 0.05 or 0.1 inch. Thicker yarns can have a diameter up to perhaps 0.25 inch. Yarns having diameters in the upper part of this range are useful in the production of certain coarse fibre or yarn products. In terms of denier, that is to say the weight in grams of 900 meters of yarn, the yarns of the invention can for instance have values in the range of to 25,000 for example in the range of 100 to 1,000, such as 200 to 500.
Where the yarn has been twisted, the common axis of the helices is normally coincident with the axis of the yarn, and the helices can for example have between /2 or 1 and 25 turns per inch, for example from 2 to l2 turns per inch (such as from 4 or 6 to 10 turns per 'inch). The twisted yarns have a cross-section that is substantially circular. A yarn having a low degree of twist is in general softer than one where the degree of twist is high.
If the yarn of the invention is to be twisted this can be carried out in any convenient way, and it can be performed as the extruded material is partially disintegrated or as a separate operation. In some instances the two procedures can be combined together in a single step. One yarn can be twisted to give a oneply twisted yarn. or two or three or more yarns can be produced and twisted together to give yarns consisting of several plies. The twisted yarns can if necessary be heat-set or wound under tension as in the conventional practice.
The process of the invention also includes a modification in which the yarns are produced by cutting or dividing up a band or web of the appropriate threedimensional structure of interconnected fibre ele ments. In this modification the drawn foamed material will of course have a cross-section that is greater than that of the desired yarn, the drawn material is broken down and converted into a three-dimensional structure of interconnected fibre elements. and this structure is divided up longitudinally into a number of yarns having the required cross-sections. Yarns produced in this way can for example usefully be twisted together as described in the preceding paragraph.
Some indication of the nature of the yarns of the invention is given by the accompanying Drawings, where:
FIG. 3 shows a magnified (X 120) representation of the plan view of a yarn, and
FIG. 4 shows a magnified (X 200) view of a portion only of the same yarn along a cross-section taken at right angles to the direction of extrusion.
It can be seen from FIG. 3 that a large number of interconnections are present, and that in relation to the average thickness of the fibre elements, the interconnections are relatively close together. The portions of fibre elements which in FIG. 3 appear as ends were not necessarily in that state in the yarn. Some of the ends were formed when the small portion of material was broken away from the yarn for examination, whilst others are not in fact loose ends at all; they are portions of fibre elements which are curved and whose remaining portions are aligned either directly towards or directly away from the field of view. In FIG. 3 the distances between many of the major points of interconnections are about 0.0l inch. FIG. 4 shows the presence of crosssections (about 20% of the total) that are branched.
In general the new yarns of the invention have excellent flexibility, and are capable of being woven into cloth and textile materials. and of being converted into fibre and yarn products, for instance nets, ropes and twines. The strength in the direction of production is good, and as has been made clear virtually all the fibre of production of the yarn. In general the yarns are attractive in appearance; for example they often possess a sheen on the surface.
The thermoplastic material from which the yarn is derived is one capable of being formed into an extruded foam; it is in practice usually a synthetic material, and one that is fibre-forming. Excellent results are obtained with a thermoplastic synthetic material, for example a polymer or copolymer obtained by polymerisation (which includes copolymerisation) of an ethylenically unsaturated monomer. Such a monomcr can be an ethylenieally unsaturated hydrocarbon. but it can be for instance a nitrile, such as acrylonitrile, or methaerylonitrile; vinyl or vinylidene chloride; a vinyl ester, such as vinyl acetate; or an acrylate ester, such as ethyl acrylate or methyl methacrylate. Where the monomer is a hydrocarbon this can be a monoolefin, a diene, or a vinyl-substituted benzene, for instance ethylene, propylene, a butylene, a pentene or a hexenc; butadiene; or a vinyl-substituted benzene, such as styrene or a-methylstyrene. For example the polymer can be polyethylene (low density or high density material), crystalline polypropylene, or polystyrene or a toughened polystyrene. A copolymer can be, for instance, one involving two or more, such as three, of any of the monomers referred to above. A comonomer can be, for instance, one of a type which will impart a degree of flame-retardance to the copolymer, and an example of such a substance is a vinyl halide. such as vinyl chloride, vinyl bromide or vinylidene chloride. Examples of other comonomers are vinylpyrollidone and a vinylpyridine such as methylvinylpyridine. A copolymer can be for example one derived from two hydrocarbon monomers, such as an ethylene-propylene or a styrenebutadiene copolymer; or a hydrocarbon and a different type of monomer, such as an ethylenevinyl acetate copolymer; or a copolymer derived from dissimilar monomers such as for example acrylonitrile and a minor proportion of vinyl acetate. The thermoplastic material can also consist of a mixture of two or more polymers or copolymers; it can for example comprise a mixture of a copolymer of acrylonitrile with a minor amount of vinyl acetate, for instance, about l0% by weight, and polyvinyl chloride; or a mixture of an acrylonitrile-vinyl acetate copolymer and a copolymer of acrylonitrile with methylvinylpyridine. Preferably the polymer is a thermoplastic resin material, but it can be an elastomeric material, for instance a copolymer derived from sufficient of a diene monomer, such as butadiene, to impart some degree of clastomeric properties to the copolymer; natural rubber; or a synthetic rubber such as for instance a polybutadiene, styrenebutadiene or acrylonitrilebutadiene rubber. A thermoplastic resin material can be non-crystalline, as in amorphous polystyrene, or crystalline, as in crystalline polyethylene or,polypropylene. Other types of synthetic materials that can be employed include polyamides, such as for example nylon 11, nylon 6l0 and nylon 66', polyurethanes; polylactams, such as a polyeaprolactam; and polyesters, such as of the polyethylene terephthalate type. Where the thermoplastic material is regenerated natural fibre it is preferably one based on cellulose, for example rayon, cellulose acetate. cellulose triacetate or cellulose acetate-butyrate.
hi the process of the invention the starting material is an extruded foamed polymeric material, and if desired this can be produced by conventional extrusion techniques. However it is produced the extruded strand or ribbon offoamed material has a cross-section consistent with the ultimate aim of producing a yarn. The extruded strand, which includes a rod or ribbon, can be of virtually any relatively compact cross-section, but often the cross-section is circular or substantially circular, although it can also be square or rectangular. Where the yarn is for example to be twisted it can if desired have a less compact cross-section, and hence the extruded foamed material can (although this is not essential) have a cross-section that is a more elongated rectangle or similar shape, and the extruded material can then be a ribbon or strip, although a relatively narrow one. If desired, a suitable strand or ribbon can be obtained by slitting longitudinally a sheet or board of a drawn extruded foamed material. In general, and by way of example, where the extruded strand has a circular or roughly circular cross-section the average diameter can be between 0.1 and 1 inch for instance between 0.2 to 0.5 inch. The density of the foamed material can for instance be between 1 pound and 10 pounds or more per cubic foot, such as from about 2 to 4 or 5 pounds per cubic foot. The fact that the starting material is foamed can also be expressed in terms of the volume fraction of voids that it contains, and this can be as low as 0.5. However, in practice the volume fraction of voids is often not less than 0.9, so that the range can for instance be from 0.95 to 0.985, for instance from 0.96 or 0.97 to 0.98. A volume fraction of voids of 0.5 is equal to a ratio of the volume of foam over the volume ofthermoplastic material it contains of two to one.
In general in the production of the extruded foamed thermoplastic material the blowing agent will be a low boiling substance or a chemical blowing agent. The foamed material usually contains closed cells, although material (for instance polyethylene) can be employed which contains cells which to some extent are interconnecting or open. In many instances the agent is a volatile substance, and is often one that is a'gas or vapour under normal atmospheric conditions (such as 20C. and l atmosphere pressure), but which while under pressure before extrusion will be present in solution in the molten or semi-molten thermoplastic material. The blowing agent can however be one, such as pentane or a pentane fraction, which is a volatile liquid under normal conditions. Examples of volatile substances that can be used include lower aliphatic hydrocarbons, such as methane, ethane, ethylene, propane, a butane, or a pentane; low alkyl halides, such as methyl chloride, trichloromethane or l,2-dichlorotetrafluorethane; acetone; and inorganic gases, such as carbon dioxide or nitrogen. The lower aliphatic hydrocarbons, especially butane, are useful in respect of polyolefinic materials, such as polystyrene and polyethylene. The blowing agent can also be a chemical blowing agent, which can for example be a bicarbonate such as for example sodium bicarbonate or ammonium bicarbonate, or an organic nitrogen compound that yields nitrogen on heating, such as for example dinitrosopentamethylenediamine or barium azodicarboxylate. From 3 to 30%, especially 7 to 20%, by weight based on the weight of the thermoplastic material is often a suitable proportion of blowing agent, and for example the use of from 7 to 15% by weight of butane in conjunction with a polyolefinic material has given excellent results. Sometimes the blowing agent will be employed in conjunction with a nucleating agent, which assists in the formation of a large number of small cells. A wide range of nucleating agents can be employed; including finely-divided inert solids such as for example silica or alumina, perhaps in conjunction with Zinc stearate, or small quantities of a substance that decomposes at the extrusion temperature to give a gas can be used. An example of the latter class of nucleating agents is sodium bicarbonate, used if desired in conjunction with a weak acid such as for example tartaric acid or citric acid. A small proportion of the nucleating agent, for example up to by weight of the thermoplastic material, is usually effective. A plasticiser can also be present where this is appropriate.
The drawing operation is preferably conducted on a continuous basis (although this is not essential), and the step of breaking down the foam may follow immediately or it may be carried out subsequently, for instance on discrete lengths of drawn foamed material. The extruded foamed thermoplastic material is drawn along the extrusion direction, and in doing so it is orientated unidirectionally (uniaxially) and the cells of the foam are elongated. The drawn material usually has a slightly higher density than the material before drawing. The precise conditions that are necessary in the drawing operation to achieve the required results depend on the particular thermoplastic material that is employed, but in general draw-down ratios of from :1 to 2:1 have been found useful, for example from 15:1 to 3:1. Good results have been obtained with a ratio between 12:1 and 5:1, for instance from 10:1 to 7:1. The temperature employed again depends on the particular thermoplastic material, but it is an elevated one in most instances, for example above 40C. or 50C. and up to 130C. or 140C. or rather more in some cases. A temperature in the range of 80C. to 100C. such as about 90C., is often useful. In principle it is desirable for the foamed material to be heated to a moderately elevated temperature, not high enough to damage the foam structure but high enough for the material to be sufficiently ductile. For instance, extruded foamed styrene can be drawn at from 120C. to 140C, while for foamed high density polyethylene a temperature between 40C. and 100C. is preferable. An amorphous thermoplastic material should normally be drawn above its glass transition temperature, whilst a crystalline thermoplastic material can be drawn at a temperature lower than its crystalline melting point. If the foamed material is still hot from the extrusion operation it may need to be cooled before it is possible to draw it in a subsequent operation, but in the more normal course of events a foamed material needs to be heated to a suitable temperature before it can be drawn, because for example even in a continuous operation the temperature of the foamed material can have dropped too low by the time it is possible to draw it. The heat treatment that is applied is as has been explained such that the extruded foam is sufficiently ductile to be drawn, and this can involve for instance either heating the foamed material at a steady temperature, or subjecting it to a relatively high temperature (perhaps as high as 200C.) for a short time followed by a period (normally longer) at a lower temperature. For example a foamed material that is produced in a form which has an outer skin of material (which has a higher density than the inner material) may give better results with a heat treatment which involves a short initial period at a higher temperature. This initial treatment can be useful in the instance of a thermoplastic material such as crystalline polypropylene, and can be as short as a few seconds. The precise conditions necessary in order to ensure that a foamed material is in a condition suitable for drawing can easily be found by simple experiments. In general anyconvenient method of applying heat can be employed. For example the extruded foamed material can passed through hot air or some inert gas, or through a heated bath of suitable inert liquid, such as water, glycerol or ethylene glycol. In certain instances the drawing can be performed at room temperatures, for example with nylon materials.
After the foamed thermoplastic material has been drawn it is partially disintegrated to the yarn, i.e. it is broken down into the three-dimensional network of interconnected fibre elements. In this operation the walls of the elongated cells of thermoplastic material are broken down or fibrillated" to give fibre elements. The solid three-point connections at the ends of the cells are in some instances the junction points of a number of interconnecting fibre elements. The disintegration can for example be effected by mechanically working the drawn material so that some shear is applied to it, preferably in a transverse direction, and several ways of doing this can be employed, including rubbing, rolling, twisting, shaking, beating or otherwise subjecting the material to forces tending to draw it laterally at right angles to the direction of orientation. For example there can be employed a reciprocating nip in conjunction with an adjacent stationary nip, as is described later. Other methods can entail use of two cylindrical brushes, one stationary and one revolving; a hammer mill; and moving rubber surfaces, inthe form of plates, belts or rolls. Ultrasonic vibrations can also be used, or suitable directed jets of air. In general in the instance of thermoplastic resins the temperature at which the partial disintegration is carried out is room temperature, 20C., or somewhat higher perhaps up to 30C. In the instance of certain specific thermoplastic resins, particularly those which possess a degree of elasticity and are therefore relatively tough, and of elastomeric materials in general, the temperature used is normally lower then room temperature, for instance 5C. or 0C. or even lower.
The reciprocating and stationary nips referred to above can in practice for example consist of two pairs (1 and 2) of metal bars as shown in end elevation in FIG. 5 an in side elevation in FIG. 6. The bars 1 and 2 are of square cross-section, with radiused edges, and each pair consists of two similar bars mounted vertically above each other. The bars in each pair are maintained lightly in contact by means of the spring-loaded guides 3. The left hand pair of bars 1 are stationary, and are maintained in contact with the bars 2 by the action of a leaf spring 4. Supporting means (not shown) are provided for supporting the assembly of bars. The bars 2 are moved reciprocally up and down by the freelymoving vertical plunger 5, which is driven by a circular eccentric 6 on the shaft of an electric motor (not shown). The drawn foamed material moves through the bars from right to left, by means of the pair of driven rollers 7.
The three-dimensional network of fibre elements as obtained by breaking down the drawn foam can be disintegrated to a greater or lesser extent, to give yarns which are potentially more or less voluminous respectively. The yarns produced can if desired to teazed out to give bulkier and lighter-weight products, and
this operation can be carried out by conventional textile means, for instance mechanically, such as by corrugated rollers, or by use for example of air jets.
In certain of the yarns some of the fibre elements may be present as bundles. with some of the component fibres being interconnected to the fibres of adjacent bundles. The bundles occur particularly where the yarn has been produced using only a low degree of disintegration of the drawn extruded foam.
Additional operations, for example dyeing or sizing. can be carried out on a yarn of the invention if desired.
The invention is illustrated by the following Examples.
EXAMPLE 1 This Example described a new high density polyethylene yarn of the invention and a process for its production.
The starting material was a strand, or rod, of foamed high density polyethylene having a circular crosssection of diameter 0.4 inch, which had been produced by extrusion, through an orifice die 0.1 inch in diameter and of land 0.3 inch, of a foamable polyethylene composition containing 100 partsby weight of a high density polyethylene of density 0.96 grams per cc., 12 parts by weight of butane as blowing agent, and 1 part of finely-divided silica as a nucleating agent. The foamed strand was passed through an ethylene glycol bath at about 1 10C. and whilst at this temperature was drawn in the longitudinal direction to approximately 10 times its original length; this caused orientation in a longitudinal direction of the cells of the foamed polyethylene. The drawn material was allowed to cool to room temperature, and was subjected to a shearing action from the reciprocating motion ofa nip (of the type described above and shown in FIGS. and 6) through which the orientated foamed polyethylene was passed. This procedure resulted in the yarn of the invention.
The bars 1 and 2 of the nip assembly were of polished aluminium, and each was 4 inches long with a crosssection of one-fourth inch by one-fourth inch. The speed of the electric motor was 1,400 revolutions per minute, and the vertical movement of the bars 2 was one-half inch. The foamed drawn thermoplastic material was passed through the nip assembly at a linear rate of 2 feet per minute.
This yarn was very flexible and possessed a useful tensile strength; it could be employed as a twine or made use of as a yarn in weaving a cloth. The yarn consisted of a mass of high density polyethylene fibres that were interconnected in three dimensions at a large number of points. The fibres were substantially parallel to the length of the yarn (although there were many bridging or interconnecting fibres that were not parallel to the main body of fibres), and there were very few unconnected or loose ends of fibre. The fibre elements had on average a mean thickness of about 0.001 inch, and their appearance was substantially as shown in FIGS. 3 and 4. The average surface area of the fibre elements was 0.35 square metres per gram.
A sample of the yarn was twisted to the extent of turns per inch to give a twisted yarn with an average diameter of 0.06 inch; again it was flexible with an excellent tensile strength.
A further sample of the yarn as produced was twisted to the extent of4 turns per inch, and then three lengths of this were twisted together to the extent of 6 turns per inch. The resulting product was doubled and twisted again to the extent of 6 turns per inch. The denier of this 2 X 3 ply yarn was 4,600, and its tensile strength was 1.2 gram per denier.
Using as starting material a foamed strand of diameter 0.07 inch, the other conditions being similar, there was produced a finer yarn. In twisted form this had an average diameter of 0.01 inch.
EXAMPLE 2 This Example describes a new yarn obtained from crystalline polypropylene, having a melt index of.0.3.
Extruded foamed polypropylene was obtained by extrusion of a mixture of the polypropylene and 12% by weight of butane. A 1 inch extruder was employed, with a circular aperture of diameter five sixty-fourths inch, the land being one-half inch long. The extrusion temperature was 140C. and the die pressure 1.000 pounds per square inch. The resulting foamed polypropylene consisted of a rod of material about one-half inch in diameter having a density of 1.28 pound per cubic foot; the material was fairly flexible, with a silvery skin.
The foamed material was heated by passing it through a zone fitted with electric heaters; the heat treatment was for 15 seconds at 250C. The temperature was then allowed to fall to C., and at this temperature the material was drawn at a rate of7,0007z per minute to give an elongation of l,300%.
The extruded drawn material was cooled to room temperature and then passed through the reciprocating nip referred to in Example 1. There resulted in a length of very flexible yarn having a thickness of about 0.08 inch, and consisting of a mass of interconnected fibre elements having a few loose ends. The surface area of the yarn was 0.26 square metres per gram. As produced the yarn possessed a useful tensile strength, of 4 5 pounds at 90C. and 10,000% per minute rate of elongation. The thickness of the fibre elements varied between 0.0008 and 0.006 inch and the breadth between 0.0076 and 0.112 inch. The tensile strength could be increased by twisting the yarn, for instance in the range of A to 10 turns per inch.
Three lengths of the yarn as produced were each twisted to the extent of 4 turns per inch and then twisted together to the extent of 6 turns per inch. The resulting 3 ply yarn had a denier of 8,150 and a tensile strength of 1.9 per denier.
EXAMPLE 3 This Example describes a yarn of the invention produced from polystyrene.
The starting material was a long rod of foamed polystyrene which had been produced by extrusion through a circular die of a foamable polystyrene composition containing a butane blowing agent and finely-divided silica as a nucleating agent. The rod of foamed polystyrene, which was one-half inch thick and had a density of 2 pounds per cubic foot, was passed through a bath of glycerol at C. and whilst at this temperature was drawn to 6 times its original length. This caused orientation in a longitudinal direction of the cells of the foamed polystyrene, which was now about 0.1 inch in diameter.
The drawn-foamed material was cooled to room temperature and passed through the reciprocating nip referred to in Example 1. The resulting yarn possessed an attractive White satiny sheen and it was very flexible. It consisted of a mass of polystyrene fibre elements that were interconnected in three dimensions at a large number of points. The fibre elements were substantially parallel to the direction of extrusion, although there were many bridging or interconnecting fibre elements that were not parallel to the main body, and there were very few loose ends.
An increase in tensile strength was achieved by twisting the yarn to the extent of 10 turns per inch.
Similar polystyrene yarns were obtained from a web 0.1 inch thick of the interconnected fibre elements, which had been produced by drawing a sheet of extruded foamed polystyrene and then breaking down the walls of the foam. The web was cut longitudinally into narrow ribbons each one-fourth inch wide, three of which could be twisted together to give a yarn.
EXAMPLE 4 This Example describes a new fibre assembly obtained from a nylon, which was a copolymer type having a low melting point 160C.) and known as a 6, 6:6 and 6:10 copolymer; it was sold under the trade-mark Maranyl DA. This nylon copolymer comprised an interpolyamide of caprolactam, hexamethylene adipamide and hexamethylene sebacamide.
Foamed material was obtained by extruding a mixture of the nylon, by weight of acetone and 2% by weight of finely-divided silica through a circular die of diameter 3/32 inch, using a 1V2 inch extruder; the die temperature was 131C. and the pressure 1,200 pounds per square inch. The cooled extruded foamed strand had a diameter of about one-fourth inch.
The foamed strand was heated to a temperature of 60C. in a hot air oven, and then was drawn to over 100070 at 1000 10,000% per minute rate of elongation.
The surfaces of the drawn extruded strand were moistened with ethyl alcohol, and then passed through the mechanical nip described in Example 1 to give a length of yarn having a three-dimensional structure of interconnected nylon fibre elements.
What is claimed is:
1. An extruded thermoplastic yarn comprising a network of randomly interconnected fibre elements generally residing longitudinally with respect to the direction of extrusion, said fibre elements being branched and being interconnected by having common branches and at least portions of said fibre elements having a trilobate construction in cross-section with respect to the direction of extrusion said branched fibre elements and said trilobate construction being formed by the breaking down of an extruded and drawn cellular foam rodshaped material, said rod shaped material being drawn in the direction of extrusion.
2. The yarn of claim 1 wherein said yarn is provided with from 1 to 25 twists per inch.
3. The yarn of claim 2 wherein said yarn has a diameter of from 0.005 to 0.15 inches.
4. The yarn of claiml wherein a cross-section taken at right angles to the axis of said yarn shows from 10 to 40% of said fibre elements being branched.
5. The yarn of claim 4 wherein said fibre elements have a surface area of between 0.05 and 1.5 square meters per gram.
6. The yarn of claim 5 wherein the average distance between points of interconnection between the fiber elements is from 10 to 740 times greater than the average thickness of the fibre elements.
7. The yarn of claim 6 wherein the fibre elements are composed of a thermoplastic material which is a synthetic polymer selected from the group consisting of a polyamide, a polyester and a polylactam.
8. The yarn of claim 6 wherein the fibre elements are composed of polyethylene.
9. The yarn of claim 6 wherein the fibre elements are composed of polypropylene.
10. The yarn of claim 6 wherein the fibre elements are composed of polystyrene.
11. The yarn of claim 6 wherein the fibre elements are composed of a copolymer of acrylonitrile and vinyl acetate.
12. A fabric woven from the yarn of claim 1.
13. A cord comprising a plurality of twisted yarn of claim 1.
14. A foamed, thermoplastic yarn structure comprising a plurality of spaced apart, longitudinally extending fiber elements integrally joined to one another by a plurality of spaced apart, cross fibers to produce an integral net-like structure, the fibers of said structure being characterized by internal voids throughout the fibers, surface unevenness, and surface pits.
15. A foamed, thermoplastic structure comprising a plurality of spaced apart, longitudinally extending fiber elements integrally joined to one another by a plurality of spaced apart, crossed fibers to produce an integral net-like structure, the fibers of said structure being characterized by internal voids throughout the fibers, surface unevenness, and surface pits.
16. A process for manufacturing a fibrous product comprising the steps of:
a. forming a cellular thermoplastic structure with the cells having been formed by the expansion of a blowing agent;
b. drawing said cellular thermoplastic structure at a ratio of at least about 3:1 to orient said structure and increase its longitudinal strength relative its transverse strength; and
c. forming a network of spaced apart and interconnected fiber elements generally being aligned in the direction of drawing, said fiber elements being branched and being interconnected by having common branches, by subjecting said structure to fibrillating forces such that the walls defining said cells are broken down and are converted into said network of interconnected fiber elements.

Claims (16)

1. AN EXTRUDED THERMOPLASTIC YARN COMPRISING A NETWORK OF RANDOMLY INTERCONNECTED FIBRE ELEMENTS GENERALLY RESIDING LONGITUDINALLY WITH RESPECT TO THE DIRECTION EXTRUSION, SAID FIBRE ELEMENTS BEING BRANCHED AND BEING INTERCONNECTED BY HAVING COMMON BRANCHES AND AT LEAST PORTIONS OF SAID FIBRE ELEMENTS HAVING A TRILOBARE CONSTRUCTION IN CROSS-SECTIOM WITH RESPECT TO THE DIRECTION OF EXTRUSION SAID BRANCHED FIBRE ELEMENTS AND SAID TRILOBATE CONSTRUCTION BEING FORMED BY THE BREAKING DOWN OF AN EXTRUDED AND DRAWN CELLULAR FOAM RODSHAPED MATERIAL, SAID ROD SHAPED MATERIAL BEING DRAWN IN THE DIRECTION OF EXTRUSION.
2. The yarn of claim 1 wherein said yarn is provided with from 1 to 25 twists per inch.
3. The yarn of claim 2 wherein said yarn has a diameter of from 0.005 to 0.15 inches.
4. The yarn of claim 1 wherein a cross-section taken at right angles to the axis of said yarn shows from 10 to 40% of said fibre elements being branched.
5. The yarn of claim 4 wherein said fibre elements have a surface area of between 0.05 and 1.5 square meters per gram.
6. The yarn of claim 5 wherein the average distance between points of interconnection between the fiber elements is from 10 to 740 times greater than the average thickness of the fibre elements.
7. The yarn of claim 6 wherein the fibre elements are composed of a thermoplastic material which is a synthetic polymer selected from the group consisting of a polyamide, a polyester and a polylactam.
8. The yarn of claim 6 wherein the fibre elements are composed of polyethylene.
9. The yarn of claim 6 wherein the fibre elements are composed of polypropylene.
10. The yarn of claim 6 wherein the fibre elements are composed of polystyrene.
11. The yarn of claim 6 wherein the fibre elements are composed of a copolymer of acrylonitrile and vinyl acetate.
12. A fabric woven from the yarn of claim 1.
13. A cord comprising a plurality of twisted yarn of claim 1.
14. A foamed, thermoplastic yarn structure comprising a plurality of spaced apart, longitudinally extending fiber elements integrally joined to one another by a plurality of spaced apart, cross fibers to produce an integral net-like structure, the fibers of said structure being characterized by internal voids throughout the fibers, surface unevenness, and surface pits.
15. A foamed, thermoplastic structure comprising a plurality of spaced apart, longitudinally extending fiber elements integrally joined to one another by a plurality of spaced apart, crossed fibers to produce an integral net-like structure, the fibers of said structure being characterized by internal voids throughout the fibers, surface unevenness, and surface pits.
16. A PROCESS FOR MANUFACTURING A GIVROUS PRODUCT COMPRISING THE STEPS OF: A. FORMING A CELLULAR THERMOPLASTIC STRUCTURE WITH THE CELLS HAVING BEEN FORMED BY THE EXPANSION OF A BLOWING AGENT; B. DRAWING SAID CELLULAR THERMOPLASTIC STRUCTURE AT A RATIO
US496377A 1964-07-17 1965-10-15 Fibrillated foamed textile products and method of making same Expired - Lifetime US3884030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US496377A US3884030A (en) 1964-07-17 1965-10-15 Fibrillated foamed textile products and method of making same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
GB2932464A GB1114151A (en) 1964-07-17 1964-07-17 Fibre assemblies
GB4393664 1964-10-28
GB4852764 1964-11-30
GB4872664 1964-12-01
US46826965A 1965-06-30 1965-06-30
US496377A US3884030A (en) 1964-07-17 1965-10-15 Fibrillated foamed textile products and method of making same

Publications (1)

Publication Number Publication Date
US3884030A true US3884030A (en) 1975-05-20

Family

ID=27546717

Family Applications (1)

Application Number Title Priority Date Filing Date
US496377A Expired - Lifetime US3884030A (en) 1964-07-17 1965-10-15 Fibrillated foamed textile products and method of making same

Country Status (1)

Country Link
US (1) US3884030A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939849A (en) * 1970-11-18 1976-02-24 Monsanto Chemicals Limited Filter elements
US4036003A (en) * 1975-11-20 1977-07-19 Celanese Corporation Poly(ethylene terephthalate) fibrillated tape sewing thread
US4064307A (en) * 1976-10-18 1977-12-20 L. Lajoie Inc. Molding and coating compositions
US4091607A (en) * 1975-07-29 1978-05-30 Aspin Shaw, Ltd. Twine and method of forming same
US4146510A (en) * 1971-11-12 1979-03-27 Mitsubishi Rayon Company Limited Flake- or sliver-like porous structure of polymeric material and process of producing same, and process of producing sheet-like structure therefrom
US4364998A (en) * 1981-07-20 1982-12-21 E. I. Du Pont De Nemours And Company Spunlike yarns
US4384018A (en) * 1982-01-25 1983-05-17 Wayn-Tex Inc. Secondary carpet backing fabric
US5124098A (en) * 1990-03-09 1992-06-23 Hoechst Aktiengesellschaft Process for producing foam fiber
US5498468A (en) * 1994-09-23 1996-03-12 Kimberly-Clark Corporation Fabrics composed of ribbon-like fibrous material and method to make the same
US5567486A (en) * 1993-08-03 1996-10-22 The Family Trust U/T/A Ribbon assembly
US6057024A (en) * 1997-10-31 2000-05-02 Kimberly-Clark Worldwide, Inc. Composite elastic material with ribbon-shaped filaments
US6642429B1 (en) 1999-06-30 2003-11-04 Kimberly-Clark Worldwide, Inc. Personal care articles with reduced polymer fibers
US20050127578A1 (en) * 2003-12-11 2005-06-16 Triebes Thomas G. Method of making fiber reinforced elastomeric articles
US20050130522A1 (en) * 2003-12-11 2005-06-16 Kaiyuan Yang Fiber reinforced elastomeric article
US20060143767A1 (en) * 2004-12-14 2006-07-06 Kaiyuan Yang Breathable protective articles
US20190218690A1 (en) * 2018-01-12 2019-07-18 Intelligence Textile Technology Co., Ltd. Signaling yarn and manufacturing method thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2268160A (en) * 1939-06-21 1941-12-30 Du Pont Spongy superpolymer
US2372695A (en) * 1939-06-08 1945-04-03 Celanese Corp Production of thermoplastic materials in fibrous or cellular form
US2948927A (en) * 1957-04-29 1960-08-16 Rasmussen Ole-Bendt Method of manufacturing fibrous and porous materials
US2954587A (en) * 1954-05-29 1960-10-04 Rasmussen Ole-Bendt Method of producing fibrous materials
US2980982A (en) * 1954-05-27 1961-04-25 Dow Chemical Co Fibrous article
US3003304A (en) * 1955-10-31 1961-10-10 Rasmussen Ole-Bendt Method of manufacturing non-woven fabrics and yarns
US3081519A (en) * 1962-01-31 1963-03-19 Fibrillated strand
US3137611A (en) * 1961-03-10 1964-06-16 Jr Day Krolik Non-woven fabrics and method of manufacture
US3165563A (en) * 1959-06-25 1965-01-12 Phillips Petroleum Co Method for the production of a fibrous material
US3210239A (en) * 1962-06-21 1965-10-05 Scott Paper Co Process of forming paper containing foamed aminoplast resins
US3227784A (en) * 1961-12-07 1966-01-04 Du Pont Process for producing molecularly oriented structures by extrusion of a polymer solution
US3242035A (en) * 1963-10-28 1966-03-22 Du Pont Fibrillated product
US3253967A (en) * 1962-12-18 1966-05-31 Du Pont Process for producing foam cigarette filters
US3273329A (en) * 1963-07-25 1966-09-20 Scragg & Sons Textile yarns
US3302501A (en) * 1965-09-24 1967-02-07 Phillips Petroleum Co Method of fibrillating plastic film by passing the film through rotating piercing means

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2372695A (en) * 1939-06-08 1945-04-03 Celanese Corp Production of thermoplastic materials in fibrous or cellular form
US2268160A (en) * 1939-06-21 1941-12-30 Du Pont Spongy superpolymer
US2980982A (en) * 1954-05-27 1961-04-25 Dow Chemical Co Fibrous article
US2954587A (en) * 1954-05-29 1960-10-04 Rasmussen Ole-Bendt Method of producing fibrous materials
US3003304A (en) * 1955-10-31 1961-10-10 Rasmussen Ole-Bendt Method of manufacturing non-woven fabrics and yarns
US2948927A (en) * 1957-04-29 1960-08-16 Rasmussen Ole-Bendt Method of manufacturing fibrous and porous materials
US3165563A (en) * 1959-06-25 1965-01-12 Phillips Petroleum Co Method for the production of a fibrous material
US3137611A (en) * 1961-03-10 1964-06-16 Jr Day Krolik Non-woven fabrics and method of manufacture
US3227784A (en) * 1961-12-07 1966-01-04 Du Pont Process for producing molecularly oriented structures by extrusion of a polymer solution
US3081519A (en) * 1962-01-31 1963-03-19 Fibrillated strand
US3210239A (en) * 1962-06-21 1965-10-05 Scott Paper Co Process of forming paper containing foamed aminoplast resins
US3253967A (en) * 1962-12-18 1966-05-31 Du Pont Process for producing foam cigarette filters
US3273329A (en) * 1963-07-25 1966-09-20 Scragg & Sons Textile yarns
US3242035A (en) * 1963-10-28 1966-03-22 Du Pont Fibrillated product
US3302501A (en) * 1965-09-24 1967-02-07 Phillips Petroleum Co Method of fibrillating plastic film by passing the film through rotating piercing means

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939849A (en) * 1970-11-18 1976-02-24 Monsanto Chemicals Limited Filter elements
US4146510A (en) * 1971-11-12 1979-03-27 Mitsubishi Rayon Company Limited Flake- or sliver-like porous structure of polymeric material and process of producing same, and process of producing sheet-like structure therefrom
US4091607A (en) * 1975-07-29 1978-05-30 Aspin Shaw, Ltd. Twine and method of forming same
US4036003A (en) * 1975-11-20 1977-07-19 Celanese Corporation Poly(ethylene terephthalate) fibrillated tape sewing thread
US4064307A (en) * 1976-10-18 1977-12-20 L. Lajoie Inc. Molding and coating compositions
US4364998A (en) * 1981-07-20 1982-12-21 E. I. Du Pont De Nemours And Company Spunlike yarns
US4384018A (en) * 1982-01-25 1983-05-17 Wayn-Tex Inc. Secondary carpet backing fabric
US5124098A (en) * 1990-03-09 1992-06-23 Hoechst Aktiengesellschaft Process for producing foam fiber
US5679415A (en) * 1993-08-03 1997-10-21 Southpac Trust International, Inc. Ribbon assembly
US5567486A (en) * 1993-08-03 1996-10-22 The Family Trust U/T/A Ribbon assembly
US5498468A (en) * 1994-09-23 1996-03-12 Kimberly-Clark Corporation Fabrics composed of ribbon-like fibrous material and method to make the same
US6057024A (en) * 1997-10-31 2000-05-02 Kimberly-Clark Worldwide, Inc. Composite elastic material with ribbon-shaped filaments
US6642429B1 (en) 1999-06-30 2003-11-04 Kimberly-Clark Worldwide, Inc. Personal care articles with reduced polymer fibers
US20050127578A1 (en) * 2003-12-11 2005-06-16 Triebes Thomas G. Method of making fiber reinforced elastomeric articles
US20050130522A1 (en) * 2003-12-11 2005-06-16 Kaiyuan Yang Fiber reinforced elastomeric article
US20060143767A1 (en) * 2004-12-14 2006-07-06 Kaiyuan Yang Breathable protective articles
US20190218690A1 (en) * 2018-01-12 2019-07-18 Intelligence Textile Technology Co., Ltd. Signaling yarn and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US3884030A (en) Fibrillated foamed textile products and method of making same
US3242035A (en) Fibrillated product
US3480507A (en) Process for the preparation of fibrous,filamentous products and the resultant product
US3509013A (en) Composite polypropylene filament
US2377810A (en) Crinkled polymeric vinylidene chloride fibers
US3634564A (en) Process for the manufacture of fibrillated foamed films
US2210774A (en) Fibers from ethylene polymers
US3470685A (en) Synthetic textile yarn
US5277976A (en) Oriented profile fibers
US3117362A (en) Composite filament
US3695025A (en) Fibrillated film yarn
US2476293A (en) Artificial fiber
US3576931A (en) Process for producing fibrillated staple fibers
US3611699A (en) Fibrous yarn product
US3513110A (en) Open-celled low density filamentary material
US2399259A (en) Method of making hollow filaments and product thereof
JP2829147B2 (en) Nonwoven fabric manufacturing method
US2695835A (en) Process for making rough surfaced filaments
EP0087291B1 (en) Process for increasing void volume of hollow filaments
US2399260A (en) Filamentous product
US3641760A (en) Foam fibrillated yarn and process
Galanti et al. Polypropylene fibers and films
US4147749A (en) Varied orientation of fibers
US3511901A (en) Fibrillation of plastic film
US3549467A (en) Pile fabric having fibrillated pile yarn and method of making same

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIBERWEB NORTH AMERICA, INC., 545 NORTH PLEASANTBU

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:JAMES RIVER PAPER COMPANY, INC., A CORP. OF VA;REEL/FRAME:005500/0274

Effective date: 19900403