US3882166A - Antimicrobial quaternary ammonium compounds - Google Patents

Antimicrobial quaternary ammonium compounds Download PDF

Info

Publication number
US3882166A
US3882166A US242750A US24275072A US3882166A US 3882166 A US3882166 A US 3882166A US 242750 A US242750 A US 242750A US 24275072 A US24275072 A US 24275072A US 3882166 A US3882166 A US 3882166A
Authority
US
United States
Prior art keywords
quaternary ammonium
compounds
bromide
ammonium compounds
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US242750A
Inventor
Robert Andrew Bauman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colgate Palmolive Co
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Priority to US242750A priority Critical patent/US3882166A/en
Priority to US453359A priority patent/US3928618A/en
Priority to US05/551,372 priority patent/US3953605A/en
Application granted granted Critical
Publication of US3882166A publication Critical patent/US3882166A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses

Definitions

  • R is a long chain alkyl group of 12-18 carbon atoms, R and R are methyl or ethyl groups, n is an integer from 1 to 6
  • Ar is an aryl radical comprising a phenyl, naphthyl or substituted phenyl or naphthyl wherein said substituents include alkyl, alkoxy, acetamido, amido, phenyl, naphthyl, haloand/or nitroradicals
  • X is a compatible anion.
  • quaternary ammonium compounds include:
  • halides such as the fluorides, the sulfates and methosulfates, and analogous compounds, may also be employed herein as effective antibactericides.
  • test tube serial dilution test in which an appropriate number of test tubes of broth containing decreasing concentrations of the test agent was innoculated with the test organism.
  • the test agent was initially at a 10% concentration in ethanol which was progressively diluted, first tenfold, and then twofold, each time with broth.
  • the broth employed contained 17 gm of trypticase peptone, 3 gm of phytone peptone, 5 gm of sodium chloride, 2.5 gm of dipotassium phosphate, 2.5 gm of dextrose and water to 1 liter. After a suitable period of incubation, the tubes were examined for the presence or absence of growth.
  • the activity of the test agent was the lowest concentration which inhibited the growth of the organism and is expressed as the minimal inhibitory concentration in ug/ml.
  • compounds of the instant invention When used against bacteria, compounds of the instant invention may be applied directly to the surface to be protected or may be dissolved in a pharmaceutical carrier.
  • a pharmaceutical carrier typically, an effective amount, e.g., 0.1 to about 10% by weight of the compound, is included in an inert carrier and a dispersing or surface-active agent.
  • an effective amount, e.g., 0.1 to about 10% by weight may be incorporated into a solid carrier which may be inert, such as talc, clay, diatomaceous earth, flour, etc.
  • the quaternary ammonium aryl esters of instant invention are particularly effective in inhibiting the development of dental calculus as shown by the results of tests on litter-mated albino rats, in groups of 15 males and 15 females, who were fed a Zipkin-McClure calculus producing diet. For 6 weeks, the teeth of each animal were swabbed for 30 seconds each day with a 0.1% concentration test solution or water for the control group. The animals were then sacrificed, defleshed, and scored by Baers method for calculus. The results were analyzed by Students 1" test and in the results quoted were 99% significant.
  • plaque-reactive compounds have a quaternary ammonium group to provide a temporary binding to the organic constituents of plaque and a reactive site for permanent attachment, whereby the compound is held until the reactive group, namely the aryl ester, has formed a more permanent bond with some atom or group in the protein or carbohydrate of the plaque.
  • Instant quaternary compounds are also effective in reducing caries, as shown by the results of tests on litter-mated caries-susceptible hamsters, in groups of 15 males and 15 females, who were fed a Mitchell cariogenic diet and received constant deionized water. For 6 weeks, the teeth of each animal were swabbed for 30 seconds each day with a 0.1% concentration test solution or water for the control group. The animals were then sacrificed, defleshed, and scored by a modified version of the Keyes scoring method. Mean averages and percentage changes from the control were determined and tested statistically to determine the significance.
  • the oral preparation is a dentifrice, such as a dental cream, tablet or powder, containing as a vehicle about 20-95% by weight of a waterinsoluble polishing material, preferably including water-insoluble phosphate such as dicalcium phosphate, tricalcium phosphate, trimagnesium phosphate.
  • the dentifrice may also include water; binders such as glycerine, sorbitol, propylene glycol, and polyethylene glycol 400; detergents; gelling agents such as Irish moss and sodium carboxymethyl cellulose; additional antibacterial agents; coloring or whitening agents; preservatives; silicones; chlorophyl compounds; additional ammoniated materials; flavoring or sweetening materials; and compounds which provide fluorine-containing ion such as sodium fluoride, stannous fluoride and sodium monofluorophosphate.
  • binders such as glycerine, sorbitol, propylene glycol, and polyethylene glycol 400
  • detergents such as Irish moss and sodium carboxymethyl cellulose
  • additional antibacterial agents such as Irish moss and sodium carboxymethyl cellulose
  • coloring or whitening agents coloring or whitening agents
  • preservatives silicones
  • chlorophyl compounds additional ammoniated materials
  • flavoring or sweetening materials and compounds which provide fluorine-containing ion such
  • the oral preparation may also be a liquid such as mouth rinse, which typically contains 2099% by weight of an aqueous alcohol such as ethanol, mpropyl, or isopropyl alcohol and being present in amount of about 530% by weight of the oral preparation.
  • aqueous alcohol such as ethanol, mpropyl, or isopropyl alcohol
  • Such oral preparations are typically applied by brushing the teeth or rinsing the oral cavity for 30-90 seconds at least once daily.
  • Typical oral preparations of the invention which can be applied in this manner are set forth below.
  • any of the listed 17 quaternary compounds and analagous compounds may be incorporated into above or similar dentifrice or mouth rinse formulations to provide protection against plaque formation, calculus and/or caries.
  • Instant quaternary ammonium arylesters can be prepared by a two-step process of reacting essentially equimolar quantities of a phenol or naphthol with a haloalkanoic acid, or salt of a phenol or naphthol with a halo-alkanoyl halide to form an aryl halo-alkanoate; followed by reacting with essentially an equimolar amount of a tertiary amine to form the quaternary ammonium salt, as illustrated by the following equations:
  • phenolic salts may be used in lieu of thallous phenolate, inclusive of the alkali metal phenolic salts, etc. as the reactant with a halo-alkanoyl halide in accordance with Equation 3.
  • the preferred process utilizes the phenol or naphthol reactant as illustrated by Equation l.
  • R is a long chain alkyl group of 12-18 carbon atoms, R and R are methyl or ethyl groups; n is an integer from 1-6; Ar is a substituted aryl radical selected from the group consisting of phenyl and naphthyl, said substituted moiety being selected from the group consisting of tri-haloand mono-nitro-radicals; and X is an anion selected from the class consisting of halides, sulfates and methosulfates.
  • Ar is a tri-chloro-substituted aryl radical wherein said aryl radical is selected from the group 6. 3-( p-nitrophenoxycarbonyl )-propyldimethyldodecylammonium bromide.

Abstract

Novel quaternary ammonium compounds which include an aryl ester linked to the quaternary ammonium group by a hydrocarbon chain.

Description

United States Patent [1 1 Bauman ANTIMICROBIAL QUATERNARY AMMONIUM COMPOUNDS [75] Inventor: Robert Andrew Bauman, New
Brunswick, NJ.
[73] Assignee: Colgate-Palmolive Company, New
York, NY.
221 Filed: Apr. 10, 1972 211 Appl. No.: 242,750
[52] US. Cl 260/479 S; 424/3 ll [51] Int. Cl. C07c 101/42 [58] Field of Search 260/479 S [56] References Cited UNITED STATES PATENTS 2,087,565 7/1937 Balle et al 260/482 2,367,878 l/l945 Lee 260/482 FOREIGN PATENTS OR APPLICATIONS l, l 24,508 3/1962 Germany OTHER PUBLICATIONS Janata II, Chem. Abstracts, Vol. 65, (1966), p. l2l0l.
Capek et al., Chem. Abstracts, Vol. 72 (1970), Abstr. No. l08238j.
Chem. Abstracts, Subj. Index (l972-Pt.l p. 2525.
Vandenberghe, Chem. Abstracts, Vol. 72 (I970), Abstr. No. 78705q.
Primary Examiner.lames A. Patten Attorney, Agent, or Firm-Robert L. Stone; Murray M. Grill; Herbert S. Sylvester 5 7 ABSTRACT Novel quaternary ammonium compounds which include an aryl ester linked to the quaternary ammonium group by a hydrocarbon chain.
6 Claims, No Drawings ANTIMICROBIAL QUATERNARY AMMONIUM COMPOUNDS The present invention relates to novel quaternary ammonium compounds represented by the general formula:
wherein R is a long chain alkyl group of 12-18 carbon atoms, R and R are methyl or ethyl groups, n is an integer from 1 to 6, Ar is an aryl radical comprising a phenyl, naphthyl or substituted phenyl or naphthyl wherein said substituents include alkyl, alkoxy, acetamido, amido, phenyl, naphthyl, haloand/or nitroradicals, and X is a compatible anion. These quaternary compounds possess superior anti-microbial, anti-caries, and anti-calculus activity, are mild and substantially non-toxic.
Typical examples of the quaternary ammonium compounds embraced by this invention include:
1 3-( p-cresoxycarbonyl) propyldimethyltetradecylammonium bromide 2. phenoxycarbonylmethyldimethyltetradecylammonium bromide 3. 3-( phenoxycarbonyl)propyldimethyltetradecylammonium bromide 4. 3-(phenoxycarbonyl)propyldimethyldodecylammonium bromide 5. phenoxycarbonylmethyldimethyldodecylammonium bromide 6. p-nitrophenoxycarbonylmethyldimethyltetradecylammonium bromide 7. 3-( pnitrophenoxycarbonyl )propyldimethyldodecylammonium bromide 8. 3 p-nitrophenoxycarbonyl )propyldimethyltetradecylammonium bromide 9. 3-( 2 ',4',6' trichlorophenoxycarbonyl)propyldimethyldodecylammonium bromide.
10. 3-(2' ,4 ,6 trichlorophenoxycarbonyl)propyldimethyltetradecyl ammonium bromide.
l l. 3-(p-cresoxycarbonyl)propyltetradecyldimethyl ammonium chloride.
12. 3-(2,4',6' trichlorophenoxycarbonyl)propyldim ethyltetradecyl ammonium iodide.
13. S-(p-cresoxycarbonyl)pentyldimethylhexadecyl ammonium chloride 14. 6-(phenoxycarbonyl)hexyldiethylocatadecyl ammonium bromide 15. 4-(p-nitrophenoxycarbonyl)butylhexadecyl ammonium bromide 16. 2-naphthyloxycarbonylmethyldimethyltetradecyl ammonium bromide 17. l-naphthyloxy carbonylmethyldimethyldodecyl ammonium bromide.
The halides, such as the fluorides, the sulfates and methosulfates, and analogous compounds, may also be employed herein as effective antibactericides.
[t has been observed that the compounds generally described by the foregoing formula are particularly effective against gram positive organisms such as Staphylococcus aureus, Streptococcus mitis, Bacillus subtilis and Corynebacterium acnes.
The anti-microbial nature of the instant novel compounds was shown by a standard test tube serial dilution test in which an appropriate number of test tubes of broth containing decreasing concentrations of the test agent was innoculated with the test organism. The test agent was initially at a 10% concentration in ethanol which was progressively diluted, first tenfold, and then twofold, each time with broth. The broth employed contained 17 gm of trypticase peptone, 3 gm of phytone peptone, 5 gm of sodium chloride, 2.5 gm of dipotassium phosphate, 2.5 gm of dextrose and water to 1 liter. After a suitable period of incubation, the tubes were examined for the presence or absence of growth. The activity of the test agent was the lowest concentration which inhibited the growth of the organism and is expressed as the minimal inhibitory concentration in ug/ml.
These dilution tests evidence the bacteriostatic effectiveness of compounds of this invention against gram positive bacteria.
When used against bacteria, compounds of the instant invention may be applied directly to the surface to be protected or may be dissolved in a pharmaceutical carrier. Typically, an effective amount, e.g., 0.1 to about 10% by weight of the compound, is included in an inert carrier and a dispersing or surface-active agent. Alternatively, an effective amount, e.g., 0.1 to about 10% by weight, may be incorporated into a solid carrier which may be inert, such as talc, clay, diatomaceous earth, flour, etc.
The quaternary ammonium aryl esters of instant invention are particularly effective in inhibiting the development of dental calculus as shown by the results of tests on litter-mated albino rats, in groups of 15 males and 15 females, who were fed a Zipkin-McClure calculus producing diet. For 6 weeks, the teeth of each animal were swabbed for 30 seconds each day with a 0.1% concentration test solution or water for the control group. The animals were then sacrificed, defleshed, and scored by Baers method for calculus. The results were analyzed by Students 1" test and in the results quoted were 99% significant.
TABLE ll Compound No. Calculus Reduction The results set forth above indicate the significant effectiveness of the quaternary compounds of the invention in inhibiting formation of oral calculus in concentrations as low as 0.1%.
A theoretical explanation for this effectiveness resides in the possible reactivity of the aryl esters with the amino or other group in the protein molecule of plaque to chemically modify plaque and inhibit calculus. The presence of the quaternary ammonium group in aforesaid esters provides substantivity before reaction occurs. More specifically, plaque-reactive compounds have a quaternary ammonium group to provide a temporary binding to the organic constituents of plaque and a reactive site for permanent attachment, whereby the compound is held until the reactive group, namely the aryl ester, has formed a more permanent bond with some atom or group in the protein or carbohydrate of the plaque. Laboratory tests have shown that instant quaternary esters react rapidly with amine groups (i.e., in protein) to form amides, the rate of reaction, however, varying with the particular ester utilized. In addition to the protein breakdown via the amide bond, the quaternary ammonium group may increase the solubility of the plaque, thereby rendering the plaque more dispersible and consequently easily removable from the teeth.
Instant quaternary compounds are also effective in reducing caries, as shown by the results of tests on litter-mated caries-susceptible hamsters, in groups of 15 males and 15 females, who were fed a Mitchell cariogenic diet and received constant deionized water. For 6 weeks, the teeth of each animal were swabbed for 30 seconds each day with a 0.1% concentration test solution or water for the control group. The animals were then sacrificed, defleshed, and scored by a modified version of the Keyes scoring method. Mean averages and percentage changes from the control were determined and tested statistically to determine the significance.
These results are indicative of the significant effectiveness of instant quaternary compounds in the reduction of caries in concentrations as low as 0.1%.
When compounds of the instant invention are intended for use in compositions which reduce formation of caries and inhibit formation of oral calculus, they are typically incorporated in oral preparation in effective amounts up to about by weight, preferably 0. l-l%, and most preferably 0.250.5% by weight of the oral preparation. Typically, the oral preparation is a dentifrice, such as a dental cream, tablet or powder, containing as a vehicle about 20-95% by weight of a waterinsoluble polishing material, preferably including water-insoluble phosphate such as dicalcium phosphate, tricalcium phosphate, trimagnesium phosphate. The dentifrice may also include water; binders such as glycerine, sorbitol, propylene glycol, and polyethylene glycol 400; detergents; gelling agents such as Irish moss and sodium carboxymethyl cellulose; additional antibacterial agents; coloring or whitening agents; preservatives; silicones; chlorophyl compounds; additional ammoniated materials; flavoring or sweetening materials; and compounds which provide fluorine-containing ion such as sodium fluoride, stannous fluoride and sodium monofluorophosphate.
The oral preparation may also be a liquid such as mouth rinse, which typically contains 2099% by weight of an aqueous alcohol such as ethanol, mpropyl, or isopropyl alcohol and being present in amount of about 530% by weight of the oral preparation.
Such oral preparations are typically applied by brushing the teeth or rinsing the oral cavity for 30-90 seconds at least once daily. Typical oral preparations of the invention which can be applied in this manner are set forth below.
EXAMPLE l Dental Cream 3-( p-cresoxycarbonyl )propyldimethyltetradecylammonium bromide 0.50 Nonionic detergent L00 Glycerine 22.00 Sodium pyrophosphate 0.25 Carboxymethyl cellulose 0.85 Sodium saccharin 0.20 Sodium benzoate 050 Calcium carbonate (precipitated) 5.00 Dicalcium phosphate dihydrate 46.75 Flavor 0.80 Water 22.15
'Tween Polyoxyethylene (20 moles ethylene oxide) sorbitan monooleate.
EXAMPLE 2 Mouthwash Compound No. l 0.25 Nonionic detergent (Pluronic F-63) I00 Ethyl alcohol (containing flavor) 15.00 Glycerine I000 Saccharin 0.02 Water 73.73
' Block polymer of 80% polyoxyethylene and 20% polyoxypropylene.
In lieu of Compound No. 1, any of the listed 17 quaternary compounds and analagous compounds may be incorporated into above or similar dentifrice or mouth rinse formulations to provide protection against plaque formation, calculus and/or caries.
Instant quaternary ammonium arylesters can be prepared by a two-step process of reacting essentially equimolar quantities of a phenol or naphthol with a haloalkanoic acid, or salt of a phenol or naphthol with a halo-alkanoyl halide to form an aryl halo-alkanoate; followed by reacting with essentially an equimolar amount of a tertiary amine to form the quaternary ammonium salt, as illustrated by the following equations:
[ ca OCO(CH2)3N(CH3)2C1 11 COOH 5 3. CHEQO T]. Cl(CH COCl 1 01-1 0c (CH2) 01 T101 The phenol salt may be obtained by the reaction illustrated by the following equation:
Other phenolic salts may be used in lieu of thallous phenolate, inclusive of the alkali metal phenolic salts, etc. as the reactant with a halo-alkanoyl halide in accordance with Equation 3. The preferred process utilizes the phenol or naphthol reactant as illustrated by Equation l.
The following examples illustrate the manner in which compounds of this invention are prepared.
EXAMPLE 3 Preparation of phenoxycarbonylmethyltetradecyldimethyl ammonium bromide:
Compound 2. OOOCH N( 1 To a solution of 37.6 g (0.40 mol) phenol in 600 ml of ether was added with stirring l00 g (0.40 mol) of thallous ethoxide. The white precipitate of 120 g thallous phenoxide was removed by filtration and dried in vacuum. To a solution of 80.9 g (0.40 mol) bromoacetyl bromide in 1 liter of ether was added portionwise with stirring 120 g (0.40 mol) of thallous phenoxide. After standing overnight, the reaction mixture was filtered from thallous bromide, washed with water until neutral, and then dried over Drierite. After removal of the ether, the phenyl bromoacetate was distilled through a short Vigreux column and product was collected from 80-86 (1.3 T).
A mixture of 55 g (0.26 mol) phenyl bromoacetate and 62 g (0.26 mol) of tetradecyldimethylamine was allowed to stand at room temperature for 3 days. The resultant crystalline mass was washed well with ether and dried to 114 g. Recrystallized from ethyl acetate and vacuum dried, the compound melted at 879l.5.
Analysis: Calculated for C H BrNO,: C, 63.14; H, 9.27; Br, V7.50. Found: C, 62.88; H, 9.l4; Br, 17.6l.
EXAMPLE 4 Other compounds prepared in accordance with the procedure of Example 3 include:
EXAMPLE 5 Preparation of 3-(p-cresoxycarbonyl)propyltetradecyldimethyl ammonium chloride:
C ompound CH 5 the acid with 6 g of sodium bicarbonate, the reaction mixture was filtered, and the solvent removed by vacuum evaporation. The residue was distilled through a inch Vigreux column to yield l06 g of colorless oil boiling at 144 (4T), and confirmed by infrared and nmr spectra as p-cresyl 4-chlorobutyrate.
A mixture of 89.5 g (0.42 mol) p-cresyl 4- chlorobutyrate and 102.0 g (0.42 mol) tetradecyldimethylamine was prepared in a 500 ml Erlenmeyer flask, stoppered and placed in an oven at l00 for 3 days.
After cooling to room temperature, the crystalline mass was slurried with ether, filtered, and dried to 145 g. The product was recrystallized from ethyl acetate; mp. l l01 14 to a liquid crystal, 166-167 to a clear liquid.
Analysis: Calculated for CZTHMCINOQ: C, 71.41; H, l0.65',Cl,7,81. Found: C. 71.43, H, 10.78; Cl, 7.83.
Although this invention has been described with reference to specific examples, it will be apparent to one 40 skilled in the art that various modifications may be made thereto which fall within its scope.
What is claimed:
1. A chemical compound having the structural for mula:
l 2 II 5 R N(CH COAr X 14.1. Calcd. Found wherein R is a long chain alkyl group of 12-18 carbon atoms, R and R are methyl or ethyl groups; n is an integer from 1-6; Ar is a substituted aryl radical selected from the group consisting of phenyl and naphthyl, said substituted moiety being selected from the group consisting of tri-haloand mono-nitro-radicals; and X is an anion selected from the class consisting of halides, sulfates and methosulfates.
2. A chemical compound as set forth in claim 1, wherein n is 3.
3. A chemical compound as set forth in claim 2 wherein Ar is a tri-chloro-substituted aryl radical wherein said aryl radical is selected from the group 6. 3-( p-nitrophenoxycarbonyl )-propyldimethyldodecylammonium bromide.

Claims (6)

1. A CHEMICAL COMPOUND HAVING THE STRUCTURAL FORMULA:
2. A chemical compound as set forth in claim 1, wherein n is 3.
3. A chemical compound as set forth in claim 2 wherein Ar is a tri-chloro-substituted aryl radical wherein said aryl radical is selected from the group consisting of phenyl and naphthyl.
4. A chemical compound as set forth in claim 1, wherein X is a halide.
5. A chemical compound as set forth in claim 1, having the structural formula:
6. 3-(p-nitrophenoxycarbonyl)-propyldimethyldodecylammonium bromide.
US242750A 1972-04-10 1972-04-10 Antimicrobial quaternary ammonium compounds Expired - Lifetime US3882166A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US242750A US3882166A (en) 1972-04-10 1972-04-10 Antimicrobial quaternary ammonium compounds
US453359A US3928618A (en) 1972-04-10 1974-03-21 Oral compositions
US05/551,372 US3953605A (en) 1972-04-10 1975-02-20 Antimicrobial quaternary ammonium compounds compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US242750A US3882166A (en) 1972-04-10 1972-04-10 Antimicrobial quaternary ammonium compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/551,372 Division US3953605A (en) 1972-04-10 1975-02-20 Antimicrobial quaternary ammonium compounds compositions

Publications (1)

Publication Number Publication Date
US3882166A true US3882166A (en) 1975-05-06

Family

ID=22916033

Family Applications (1)

Application Number Title Priority Date Filing Date
US242750A Expired - Lifetime US3882166A (en) 1972-04-10 1972-04-10 Antimicrobial quaternary ammonium compounds

Country Status (1)

Country Link
US (1) US3882166A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127671A (en) * 1976-04-22 1978-11-28 Societe Anonyme Dite: Hexachime P-acetamidophenyl diethylaminoacetate
US5059344A (en) * 1987-03-23 1991-10-22 Kao Corporation Bleaching composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2087565A (en) * 1931-06-24 1937-07-20 Gen Aniline Works Inc Quaternary ammonium compounds and a process of preparing them
US2367878A (en) * 1939-05-04 1945-01-23 Hoffmann La Roche Betaine esters

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2087565A (en) * 1931-06-24 1937-07-20 Gen Aniline Works Inc Quaternary ammonium compounds and a process of preparing them
US2367878A (en) * 1939-05-04 1945-01-23 Hoffmann La Roche Betaine esters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127671A (en) * 1976-04-22 1978-11-28 Societe Anonyme Dite: Hexachime P-acetamidophenyl diethylaminoacetate
US5059344A (en) * 1987-03-23 1991-10-22 Kao Corporation Bleaching composition

Similar Documents

Publication Publication Date Title
EP0038192B1 (en) 5-alkylsalicylanilides derivatives and method for inhibiting the growth of microorganisms
CA1154769A (en) Morpholino compounds
US4894221A (en) Method of treating plaque using morpholine compounds
EP0038191B1 (en) 5-acylsalicylanilides derivatives and method for inhibiting the growth of microorganisms
US4820507A (en) Oral and dental hygiene preparations
US3956479A (en) Pharmaceutical composition containing novel quaternary ammonium compounds
US3277118A (en) Quaternary ammonium fluorides
US3953605A (en) Antimicrobial quaternary ammonium compounds compositions
US3928618A (en) Oral compositions
CA1198738A (en) Oral compositions comprising n.sup.g-acyl derivatives of arginine
CA1100505A (en) Alkylated n-hydroxyalkyl piperidine derivatives
US3882166A (en) Antimicrobial quaternary ammonium compounds
EP0198366B1 (en) Novel 5-alkylsulfonylsalicylanlides and microbiocidal compositions for controlling the growth of microorganisms
US4046873A (en) Alicyclic amido-quaternary ammonium anti-bacterial agents
US3928411A (en) New quaternary compounds having anti-microbial activity
US4082756A (en) Quaternary quinuclidinium carbamates and thiocarbamates
EP0174632B1 (en) Anti-microbial n-(1-(alkyl or arylmethyl)-4(1h)-pyridinylidine)alkanamines and acid addition salts thereof and process for preparation, methods of use and compositions thereof
US3621048A (en) Quaternary ammonium compounds
US4007281A (en) Pharmaceutical compositions containing quaternary ammonium compounds
US3992431A (en) Quaternary compounds having anti-microbial activity
US3898284A (en) Ether-linked quaternary ammonium compounds
US4038303A (en) Quaternary ammonium carbamide compounds
US4102994A (en) Aliphatic amido-quaternary ammonium anti-microbial compounds
JPS5852985B2 (en) Amino alcohols and compositions
US4097600A (en) Pharmaceutical composition containing quaternary ammonium compounds