US3877806A - Photocopy machine with photoconductor belt and cartridge for photocopying - Google Patents

Photocopy machine with photoconductor belt and cartridge for photocopying Download PDF

Info

Publication number
US3877806A
US3877806A US449033A US44903374A US3877806A US 3877806 A US3877806 A US 3877806A US 449033 A US449033 A US 449033A US 44903374 A US44903374 A US 44903374A US 3877806 A US3877806 A US 3877806A
Authority
US
United States
Prior art keywords
belt
photoconductor
cartridge
path
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US449033A
Other languages
English (en)
Inventor
Ernst Schrempp
Jr Henry S Hazelton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pitney Bowes Inc
Original Assignee
Pitney Bowes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pitney Bowes Inc filed Critical Pitney Bowes Inc
Priority to US449033A priority Critical patent/US3877806A/en
Priority to US05/521,115 priority patent/US3984241A/en
Priority to CA75219636A priority patent/CA1048591A/en
Priority to GB7227/75A priority patent/GB1486106A/en
Priority to AU78788/75A priority patent/AU488827B2/en
Priority to JP50026104A priority patent/JPS50138839A/ja
Priority to DE19752510081 priority patent/DE2510081A1/de
Priority to NL7502720A priority patent/NL7502720A/xx
Application granted granted Critical
Publication of US3877806A publication Critical patent/US3877806A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/75Details relating to xerographic drum, band or plate, e.g. replacing, testing
    • G03G15/754Details relating to xerographic drum, band or plate, e.g. replacing, testing relating to band, e.g. tensioning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/26Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is obtained by projection of the entire image, i.e. whole-frame projection
    • G03G15/263Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is obtained by projection of the entire image, i.e. whole-frame projection using a reusable recording medium in form of a band

Definitions

  • An apparatus for making photocopies is disclosed with a photoconductor belt adapted to move around a roller assembly with a cartridge which contains belt replacement segments.
  • the roller assembly meshes with the cartridge to enable rapid continuous movement of the photoconductor which passes a fiat region where the belt receives a flash exposure of an object.
  • a mechanism and method for continually replacing the photoconductor belt with incremental fresh segments from the cartridge is described to provide gradual replacement thereof with a long effective usable lifetime for the photoconductor belt and cartridge assembly.
  • This invention relates to a photocopy machine. More specifically, this invention relates to a photocopy machine using a photoconductor belt.
  • a photoconductive material is mounted on a drum or on an endless belt to hold a latent electrostatic charge image prior to development and transfer to a plain paper copy.
  • a photoconductor drum In one type of photocopy machine a photoconductor drum is employed. While the drum is rotated it is exposed to a line image of an object by the relative movement between a slit and an illuminated object.
  • the drum In another type of photocopy machine the drum is replaced with a photoconductor belt which may be endless for continuous motion along a belt path.
  • the belt path is defined by a plurality of roller elements which are spaced to provide a belt path section where the belt is flat while being exposed to a planar image of the object instead of through a moving line image.
  • the flat photoconductor belt section may be flash exposed.
  • the exposure time may be so short that blurring of the latent image on a continuously moving photoconductor belt is prevented.
  • the short flash exposure of the entire object enables a high speed photocopying operation.
  • a copy drum is described utilizing an organic photoconductor stored as a flexible strip on a supply reel located within the interior of the drum.
  • the photoconductor is fed around the external periphery of the drum and returned to a take-up reel located inside the drum.
  • the entire photoconductor strip used on the drum is periodically automatically replaced with a fresh unused photoconductor on the supply reel after a certain preselected number of copies have been made.
  • a photoconductor is formed into an endless loop.
  • the loop forms a removable cassette having a supply roll and a take-up roll.
  • the loop is passed around rollers and a copy platform around which an exposure area and a printing stage are closely grouped.
  • the cassette moves back and forth along a straight path during the copying process.
  • the desirability of using a flash exposure of a flat photoconductor segment may be appreciated.
  • the moving slit mechanism to expose a drum-type photocopier with a line segment is deleted and a relatively convenient and economical optical exposure system can be used.
  • This advantage of the belt photocopier may be appreciated from the large number of belt photocopiers described in the art such as in the patents to Gardner et al. U.S. Pat. No. 3,521,950, Hewes et al. U.S. Pat. No. 3,661,452 and Swanke U.S. Pat. No. 3,619,050.
  • the photoconductor drum structure disclosed in the Berlier patent effectively provides a long life by virtue of the storage of a replacement section within the drum, the Berlier apparatus still operates with a line segment exposure by virtue of its drum mounting and does not lend itself to the photoconductor belt photocopy machine.
  • a photoconductor asssembly is formed of a photoconductor belt and a cartridge for storing a fresh supply of photoconductor material.
  • the photoconductor belt and cartridge are moved around a belt path formed for a roller assembly.
  • the rollers in the roller assembly are each provided with a cartridge receiving recess sized to enable the cartridge to mesh with a roller'as the-belt and cartridge pass over a roler. In this manner the photoconductor belt assembly moves in a continuous manner and in a uniform direction around the belt path.
  • An advantageous feature of this invention involves a belt advance mechanism which automatically continually and incrementally replaces the photoconductor belt with fresh segments.
  • the incremental advance results in a gradual replacement of the photoconductor belt as copies are being made with-an advantageously consistent level of copy quality throughout the useful life of the belt.
  • the incremental replacement further advantageously distributes physical stresse over the length of the photoconductor belt thus reducing the likelihood of physical damage to any one segment.
  • the incremental advance of the photoconductor belt involves a Geneva drive whose rotational output is reduced to rotate a belt take-up reel located in the cartridge.
  • the Geneva drive may be actuated once during each full'copy cycle of the photoconductor belt.
  • the resultant incremental rotation of the take-up reel produces a corresponding incremental replacement of the photoconductor belt.
  • the photoconductor belt segment which was used to make copies has been replaced with a corresponding fresh segment from the cartridge.
  • the cartridge is sized to retain a sufficient supply of photoconductor belt material for a satisfactory lifetime or number of copies. Yet the cartridge is sufficiently light in weight to enable the photoconductor belt to support the cartridge throughout a copy cycle.
  • the cartridge receiving recesses in the rollers are provided with covers whose opening and closing of the recesses are timed with the respective arrival and departure of the cartridge at and from a recess.
  • the covers are curved to provide a continuous cylindrical peripheral roller surface when the cartridge is between the rollers. When the cartridge enters a recess the covers are opened and the cartridge permitted to make a smooth entry into the recess for a correspondingly smooth passage past a roller. In this manner a continuous photoconductor belt motion is accommodated with a traveling belt-replacing cartridge.
  • an object of the invention to provide a photocopy machine of the belt type with an effectively long cycle life for the photoconductor. It is still further an object of the invention to'provide a roller assembly for use in a belt type photocopy machine to enable a photoconductor belt carrying a replacement segment to be continuously moved. It is still another object of the invention to provide a mechanism for the gradual automatic replacement of a photoconductor belt used in photocopy machines. It is still further an object of the invention to provide a convenient method and apparatus for extending the lifetime of a photoconductor belt in a photocopy machine.
  • FIG. 1 is a side schematic and partial section view of a photocopy machine of the photoconductor belt type in accordance with the invention
  • FIG. 4 is a section view of a roller and its recess with i a cartridge of a photoconductor belt located in the recess for sequential rotational positions of the roller;
  • FIG. 5 is a partial section view of a roller taken along the line 5-5 in FIG. 3;
  • FIG. 6 is a top plan view of a portion of the photoconductor belt and cartridge shown in FIG. 2;
  • FIG. 7 is an end view in elevation of the photoconductor belt and cartridge shown in FIG. 6;
  • FIG. 8 is a side view of the photoconductor belt and cartridge as shown in FIG. 7;
  • FIG. 9 is a section view of the photoconductor belt cartridge as taken along the line 99 in FIG. 7;
  • FIG. 10 is an enlarged section view of the photoconductor belt cartridge taken along the line 10-10 in FIG. 8.
  • a photocopy machine 20 is illustrated with a photoconductor belt 22 mounted for movement along the direction of arrow 23 around a roller assembly 24 which defines a belt path 26.
  • Photocopy machine 20 employs various well-known operating components which are schematically illustrated.
  • a photoconductor charging device 28 located just ahead of a generally flat photconductor exposure section 30 where an optical lens system 33 forms a latent image of an object (not shown).
  • Exposure of the flat photoconductor section 30 is obtained with illumination from a high intensity flash source (not shown). Flash sources and their associated flash initiating circuitry are generally well-known in the art and, therefore, not illustrated.
  • a latent image of the object is formed and developed by the application of toner particles from a supply 32 with a magnetic brush 34.
  • the toner particles then are transferred to a sheet of paper 36 at a transfer station 37.
  • a paper feed station 38 provides sheets 36 one at a time from a stack 40 for contact with the toner particle covered photoconductor 22.
  • the photoconductor belt 22 After transfer of the toner image onto a sheet of paper 36, the latter is separated from the photoconductor belt 22 and advanced past a heat source 42 which fuses the toner particles into the sheet of paper.
  • a charge eliminator 44 in the form of a light source is provided to expose the entire photoconductor belt 22 and facilitate subsequent toner removal with a brush 46 and vacuum toner remover 48.
  • the photoconductor belt 22 After passing of the belt cleaner 46, the photoconductor belt 22 may be again used for making a copy of an object.
  • the actuation of the various components are properly timed with suitable switches operated in a sequence needed to complete a copy cycle.
  • the circuitry and switches for such timing are also known in the art.
  • a motor and drive mechanism for moving the photoconductor belt 22 around the roller assembly 24 are also known and, therefore, have'been deleted for clarity of the drawings.
  • the roller assembly 24 is shown formed of three rollers 50.1, 50.2 and 50.3 arranged in a generally triangular fashion although different roller arrangements may be accommodated depending upon the type of photocopying machine being built.
  • the roller assembly 24 is supported by a suitable frame which was deleted for clarity of the drawings.
  • Each roller 50 rotates about an axis and shaft 52 which are parallel for all rollers 50.
  • Roller 50.3 is shown spring loaded by a spring 53 to maintain tension on photoconductor belt 22 and impart some resiliency to the roller assembly.
  • the photoconductor belt 22 carries a replacement segment located in a cartridge 54 which moves with belt 22 around rollers 50 and thus the entire belt path 26.
  • One end of the photoconductor belt 22 is connected to a supply reel 56 in cartridge 54.
  • Supply reel 56 carries a rolled up replacement segment 58 (see FIG. 9) of the photoconductor belt 22.
  • the other end of the photoconductor belt is connected to a take-up reel 60 in cartridge 54.
  • the take-up reel 60 serves to store used segments of photoconductor material.
  • the fresh and used segments of the photoconductor belt are passed through appropriate slits 62, 64 (see also FIG. 9) in the cartridge 54.
  • a slit closure element 66 (see also FIG. 9) is provided to inhibit toner particles from entering the inside of cartridge 54.
  • the cartridge 54 is formed of a generally light-weight material, such as plastic, so that the photoconductor belt 22 may support the cartridge 54 and its contents without undue or operationally significant physical distortions of the photoconductor produced by excessive tensions, bends or flexure problems.
  • the photoconductor belt 22 and its attached cartridge 54 form a unified assembly which is replaced in its entirety when the photoconductor belt has been used.
  • the cartridge 54 Since the cartridge 54 is located on the inside of the photoconductor belt path 26, the passage of the cartridge over the rollers 50 is accomplished with a cartridge receiving recess 70 in each of the rollers 50.
  • the cartridge position along belt path 26 is selected in such manner that as the cartridge 54 approaches a roller 50, a synchronized meshing with the roller receiving recess 70 for entry thereof is established. In this manner the photoconductor belt 22 may be continuously moved around the path 26 while the belt is kept sufficiently taut.
  • Each recess 70 is normally covered with a pair of doors 72-72 that may be locked into a closed position with a locking mechanism 73 located at each axial end of a roller 50.
  • the covers 72 are curved to provide a continuous peripheral surface with the cylindrical surfaces 75 of rollers 50.
  • the mounting of the photoconductor belt and cartridge assembly is established with precise synchronization relative to the roller recesses 70 so that the cartridge 54 will properly enter a recess 70 during belt motion.
  • the rotations of the rollers 50 are synchronized with eachother with a pair of axially end located timing belts 74--74 spanning the belt path 26.
  • Timingbelts 74 couple to axially end locatedtiming ring gears 76-76 on each roller 50.
  • Themounting of the photoconductor belt 22 and cartridge 54 with timing-belts 74-74 on'the roller assembly 24 may include a collapsible assembly as shown, for example, in the art, US. Pat. to Gardner et al. No. 3,521,950 and those see tions thereof dealing with a roller assembly module as shown in FIG. 18.
  • a roller 50 may be moved inwardly to enable one to fit the photoconductor belt around the belt path.
  • the photoconductor belt 22 and cartridge 54 are located between the timing belts 74 as can beseen in the views of FIGS. 2 and 6.
  • the cartridge 54 is attached to the belts 74 with an extension bracket 78.
  • Bracket 78 may be attached to timing belts 74 at different loca tions by adjusting wing clamps 80.
  • Such lengthwise adjustment thus enables precise registration and proper synchronous arrival of the cartridge 54 relative to recesses 70.
  • Appropriate alignment indications are pro vided on belts 74 to aid the desired registration of cartridge 54 relative to rollers 50 and their recesses 70.
  • a desirable feature of the photoconductor belt assembly in accordance with the invention resides in the ability to replace deteriorated photoconductor belt segments in an automatic continual manner.
  • a belt replacement drive 82 (see FIGS. 6, 7 and 8) is mounted on the cartridge 54 and coupled to the take-up reel 60 to cause an incremental rotation thereof with each complete cycle of the photoconductor belt 22 about path 26.
  • the drive 82 is formed with a stationary pin 84 mounted to a frame (not shown) near the path along which the cartridge 54 travels.
  • the stationary pin 84 engages a Geneva mechanism 86 on cartridge 54 formed of a maltese cross shaped actuator 88 having four corner located slots 90 arranged to engage pin 84.
  • the actuator 88 is connected to a pinion 92 which is coupled through reduction gearing formed of a spiral gear 94 to the shaft of take-up reel 60.
  • pin 84 is caused to engage a slot 90, thus causing a one-quarter turn of the actuator 88 and its connected pinion 92.
  • the speed reduction obtained between pinion 92 and spiral gear 94 reduces the rotational drive of the take-up reel 60 to a small fraction of an inch.
  • the incremental advance of photoconductor belt replacements by the take-up reel 60 is selected on the basis of the number of quality copies that can be made with any one segment of the photoconductor belt 22. For example, if one can make 5,000 quality copies which are 10 inches long, as measured along path 26, then after 5,000 cycles 10 inches of photoconductor material must have been replaced. This would require at least 0.002 inch (two thousandth s of an inch) effective take-up belt or replacement motion by take-up reel 60 for each cycle. If actuator 88 undergoes about onequarter inch rotational motion, a speed reduction of about :1 is needed to establish a precise 0.002 inch incremental belt replacement. When an advance or replacement of the order of 0.005 inch for each cycle is needed, the reduction ratio becomes of the order of 50:1.
  • the incremental replacement introduced by the actuation of the Geneva mechanism 86 will vary depending upon the effective radius of the take-up reel 60.
  • the incremental advance may be somewhat less than 0.002 inch while the advance will increase as more photoconductor belt is wound onto take-up reel 60.
  • the total amount Of photoconductor belt material that can be stored by cartridge 54 determines the effective lifetime of the entire belt assembly. Since replacement is carried out on a continual basis, i.e. by Small increments measured in fractions of an inch, the quality of the copies will be generally consistent.
  • the incremental advance may be varied depending upon the type-of photoconductor material and the acceptable level of quality.
  • the range of incremental advances may vary, by selecting the reduction ratio, or by altering the diameter of the take-up reel 60 or by producing an incremental advance for every two or several number of cycles or combinations thereof. Generally the incremental replacement is selected small in comparison with the length of the image or the length of the photoconductor belt path to enable the gradual photoconductor belt replacement.
  • the incremental advance or replacement of the photoconductor is particularly advantageous in distributing physical loading such as may be caused at bending points.
  • the entry and departure of the cartridge 54 relative to a roller recess 70 may involve shape changes whose damaging effects on the photoconductor te'nd'to be reduced by its continual replacement.
  • the incremental replacement of the photoconductor is preferably of such small amount that. the initial resulting increase in tension is negligible.
  • the small additional take-up tends to be distributed over the entire photoconductor belt 22 as the latter with its cartridge 54 is moved through a copying cycle over the various rollers 50.
  • the quantity of fresh photoconductor belt material on the supply reel 56 is selected to achieve a desired total copying capability for the belt and cartridge assembly.
  • the maximum storage of photoconductor belt material within the cartridge 54 must be limited to maintain the cartridge size to enable its passage past rollers 50.
  • the cartridge 54 includes a pair of output idlers 100, 100' which are located adjacent slits 62, 64 respectively. Idlers 100 facilitate the transfer of photoconductor belt 22 out of and into the cartridge recess 102.
  • the supply reel 56 is mounted with a friction disc 104 (see FIG. adjacent an axial end to inhibit free rotation of supply reel 56 and provide a minimum amount of tension in the photoconductor belt 22. Other restraining elements could be used such as a spring loading of supply reel 56.
  • the rotations of supply reel 56 and take-up reel 60 are in the directions indicated by arrows 106106.
  • the arrival of the cartridge 54 at any one of rollers 50 is accompanied by an opening of doors 72.
  • the respective mechanisms for accomplishing the insertion of the cartridgge 54 into a recess may be conveniently explained with reference to FIGS. 2, 3, 4 and 5.
  • the timing belts 74-74' are each provided with cams 110-110 respectively formed of outwardly projecting studs 112 sized to engage locking mechanisms 73.
  • Each locking mechanism 73 is formed of an annular lever segment 114 extending radially above the peripheral surface 75 of rollers 50 at axial ends thereof.
  • annular lever segments 114 are provided with an axial bolt extension 115 mounted to slide in the direction of double headed arrow 116 below both doors 72-72.
  • a spring 118 which has an end 119 anchored to an end wall 120 of rollers 50 urges each bolt extension into a door locking position as shown in solid lines in FIG. 5.
  • Both doors 72-72' are pivotally mounted at pivots 128 and urged in a closed position with springs 130-130 respectively to preserve the cylindrical shape of roller 50.
  • a pair of studs 132 arrest further inward movement. Studs 132 are mounted on roller end walls 120-120 and extend axially into the cartridge recess 70 for a distance sufficient to seat the bottom wall of cartridge 74. Since, as shown in FIG. 4, doors 72 swing past studs 132, each door is provided with end located cut-outs 134. These cut-outs are sufficiently narrow, as shown in FIG. 5, to prevent affecting the photoconductor 22. Segments 136 of doors 72 are provided with axial extensions 138 which engage the outer wall of rollers 50 to firmly seat doors 72 in their closed position.
  • the annual extended shape of the lever segments 114 is provided to assure an unlocking or released position of the bolt segments 115 throughout the passage of the cartridge 54 past a roller 50.
  • the length of cam or number of studs 112 is selected to maintain cam contact from the time a cartridge enters a recess 70 until the time it has left a recess.
  • the bolt segment will remain open until the doors 72 have been reclosed and then slides in under pressure from springs 118 to lock the doors in their closed position.
  • the operation of the photocopying machine 20 includes suitable timing controls to preferably expose the photoconductor belt 22 at the most appropriate time.
  • belt 22 has a generally constant tension force and is free from disturbances to enable the formation of an unblurred latent image.
  • the transfer of the toner particles from the latent image onto a sheet of paper is timed -to occur.
  • the operation thus includes a continuous movement of the photoconductor belt around the belt path while it is being gradually replaced by the incremental takeup action of the take-up roller.
  • the incremental advance may vary in size, depending upon the number of rollers, the size of the take-up roller and the replacement rate of the photoconductor.
  • a belt photoconductor of a relatively low copy producing capability per unit length may be used with flash exposures, yet with a long over-all effective lifetime.
  • the gradual replacement of the photoconductor provides a convenient method to assure a high quality of copies.
  • a photoconductor belt assembly for a photocopy machine comprising a photoconductor belt shaped to fit around and defining a photoconductor belt path and mounted to move along said path in a photocopy machine, the photoconductor belt having a replacement segment to form a belt length in excess of the path length to facilitate replacement of used photoconductor belt segments;
  • a photoconductor belt cartridge connected to the photoconductor belt and mounted in the photocopy machine to move with the photoconductor belt along the belt path, said cartridge having a photoconductor supply element for storing the replacement segment of the photoconductor belt and having a photoconductor take-up element for storing used belt portions;
  • a roller assembly mounted in the photocopy machine to define a photoconductor belt path therein, the roller assembly comprising spaced rollers arranged to cause the photoconductor belt and a cartridge retaining the belt replacement segment to pass around the outer peripheries of the rollers, each roller being provided with means defining a cartridge receiving recess for receiving the cartridge during its passage around the belt path to enable smooth movement of the belt along the belt path.
  • each roller further is provided with means for closing the cartridge receiving recess to form a substantially continuous peripheral roller surface whereby the photoconductor belt along the belt path is maintained generally taut when the cartridge is located away from the cartridge receiving recess.
  • roller assembly for a photocopy machine as claimed in claim 5 and further including means for aligning the photoconductor cartridge with the roller recesses whereby the cartridge enter a recess in a roller during passage of the cartridge passage past the roller.
  • the aligning means includes a timing belt operatively coupled around the rollers'to secure synchronized rolling thereof, with the cartridge of the photoconductor belt being coupled to the timing belt at a predetermined location therealong for proper meshing of the cartridge with each roller recess during movement of the photoconductor belt along the belt path.
  • the closing means includes means for releasably radially locking the closing means to maintain the peripheral surface thereof in a continuous shape and means located on the timing belt at a preselected spacing from the cartridge for releasing the radial locking means during passage of the cartridge past a roller.
  • the closing means includes a door pivotally mounted for opening movement inwardly into the roller recess, said door having an outward shape forming a continuous cylindrical surface with the roller periphery upon closure of the door.
  • closing means further includes means for normally biasing the door into a recess closing position
  • the means for releasably locking of the door further includes circumferentially extending segments mounted at axial ends of each of the rollers, with each segment having an axial bolt lever located to move axially towards and radially below the door, said segments being spring biased to lock the door and extending circumferentially for a distance sufficient to enable an opening of the door upon the arrival of the cartridge and a locking of the door upon departure of the cartridge from the recess.
  • a roller assembly arranged to define a photoconductor path along which a photoconductor belt is moved for producing a copy, the roller assembly being formed of a plurality of rollers arranged to rotate about parallel axes, each of said rollers having a cartridge receiving recess;
  • a photoconductor belt shaped to fit around the rollers along the path, the photoconductor belt being of a continuous length selected to include fresh belt replacement segments with the total photoconductor belt length being in excess of the path length to enable replacement of used photoconductor belt segments;
  • a photoconductor belt retaining cartridge operatively associated with the photoconductor belt and sized to retain the fresh photoconductor replacement segment and used photoconductor belt segments, said photoconductor belt and cartridge being located to enable the cartridge to be received by each roller recess during passage of the photoconductor belt and cartridge past a roller.
  • the incremental photoconductor replacing means further includes a Geneva mechanism mounted to the cartridge and coupled to wind up the take-up reel in the cartridge with said predetermined incremental movement;
  • an actuating lever located adjacent the photoconductor belt to engage the Geneva mechanism and impart a driving force thereto upon passage of the cartridge.
  • the incremental photoconductor replacing means further includes means for activating the take-up reel to wind up an incremental used photoconductor segment each time the photoconductor belt has traveled a predetermined number of cycles around the belt path.
  • a high speed photocopy machine comprising means for defining a non-circular photoconductor belt path having at least one section where a photoconductor belt advances in a flat condition to receive a flash exposure of an image of an object and along which path the image is developed and transferred to a sheet to form a copy of the object;
  • the means for defining a photoconductor belt path includes a plurality of rollers located to define the belt path, said rollers each having means defining a recess for receiving the photoconductor cartridge during its passage around the belt path.
  • a photoconductor assembly for a photocopy machine comprising means for defining a non-circular photoconductor belt path having at least one section where a photoconductor belt advances in a flat condition to receive a flash exposure of an image of an object and along which path the image of the object is developed and transferred to a sheet to form a copy of the object;
  • a cartridge sized to retain a fresh supply of photoconductor material in excess of the belt length needed to span the belt path, with said fresh supply of photoconductor material being coupled to the segment spanning the belt path for replacement thereof and extension ofthe time interval between replacement of the .entire belt, said cartridge being coupled to the photoconductor belt for movement therewith during passage of the belt along the belt path;
  • ther includes means periodically actuated in response to movement of the cartridge along the belt path to store a used incremental segment thereof upon each actuation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
US449033A 1974-03-07 1974-03-07 Photocopy machine with photoconductor belt and cartridge for photocopying Expired - Lifetime US3877806A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US449033A US3877806A (en) 1974-03-07 1974-03-07 Photocopy machine with photoconductor belt and cartridge for photocopying
US05/521,115 US3984241A (en) 1974-03-07 1974-11-05 Photocopying process in which photoconductor belt is incrementally replaced
CA75219636A CA1048591A (en) 1974-03-07 1975-02-07 Photocopy machine with photoconductor belt and cartridge for photocopying
GB7227/75A GB1486106A (en) 1974-03-07 1975-02-20 Photocopy machine with photoconductor belt and cartridge for photocopying
AU78788/75A AU488827B2 (en) 1974-03-07 1975-03-04 Photocopy machine with photoconductor belt and cartridge for photocopying
JP50026104A JPS50138839A (pl) 1974-03-07 1975-03-05
DE19752510081 DE2510081A1 (de) 1974-03-07 1975-03-07 Fotokopiermaschine mit fotoleiterband und patrone zum fotokopieren
NL7502720A NL7502720A (nl) 1974-03-07 1975-03-07 Fotokopieerinrichting met een fotogeleidende kopieerband en een verwisselbare houder voor deze kopieerband.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US449033A US3877806A (en) 1974-03-07 1974-03-07 Photocopy machine with photoconductor belt and cartridge for photocopying

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/521,115 Division US3984241A (en) 1974-03-07 1974-11-05 Photocopying process in which photoconductor belt is incrementally replaced

Publications (1)

Publication Number Publication Date
US3877806A true US3877806A (en) 1975-04-15

Family

ID=23782604

Family Applications (1)

Application Number Title Priority Date Filing Date
US449033A Expired - Lifetime US3877806A (en) 1974-03-07 1974-03-07 Photocopy machine with photoconductor belt and cartridge for photocopying

Country Status (6)

Country Link
US (1) US3877806A (pl)
JP (1) JPS50138839A (pl)
CA (1) CA1048591A (pl)
DE (1) DE2510081A1 (pl)
GB (1) GB1486106A (pl)
NL (1) NL7502720A (pl)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2345748A1 (fr) * 1976-03-25 1977-10-21 Pitney Bowes Inc Machine de reprographie
US4057344A (en) * 1975-03-27 1977-11-08 Agfa-Gevaert Aktiengesellschaft Electro-photographic copier with strip-shaped latent-image carrier
US4155639A (en) * 1977-05-09 1979-05-22 A. B. Dick Company Flexible belt xerographic copier
EP0010848A1 (en) * 1978-09-27 1980-05-14 Xerox Corporation Electrophotographic apparatus having a replaceable photoconductive belt
US4215932A (en) * 1979-06-29 1980-08-05 Xerox Corporation Replenishable photoconductive system
US4396274A (en) * 1979-12-03 1983-08-02 International Business Machines Corporation Electrophotographic copier configuration
US5386273A (en) * 1993-02-05 1995-01-31 Xerox Corporation Belt photoreceptor on cylindrical mandrel
US5659850A (en) * 1995-06-30 1997-08-19 Minnesota Mining And Manufacturing Company Exchangeable photoreceptive sheet and method and system for using the same
US5708923A (en) * 1995-07-30 1998-01-13 Minnesota Mining And Manufacturing Company Photoreceptive sheet cartridge and method of using the same
US6014535A (en) * 1998-12-10 2000-01-11 Imation Corp. Soft cartridge package for a photoreceptor belt and method of manufacturing soft cartridge package including method of loading photoreceptor belt using soft cartridge package
US6049682A (en) * 1998-12-10 2000-04-11 Imation Corp. Hard cartridge package for an organic photoreceptor belt
US6097912A (en) * 1998-12-10 2000-08-01 Imation Corp. Protective cover package for an organic photoreceptor belt
US8787797B2 (en) 2011-10-30 2014-07-22 Hewlett-Packard Development Company, L.P. Photoconductive foil sheet applicator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248598A (en) * 1975-10-17 1977-04-18 Asahi Glass Co Ltd Method for producing alkali hydroxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3480361A (en) * 1966-02-03 1969-11-25 Konishiroku Photo Ind Photographic copying machine
US3563734A (en) * 1964-10-14 1971-02-16 Minnesota Mining & Mfg Electrographic process
US3588242A (en) * 1969-01-15 1971-06-28 Ibm Drum structure for a xerographic copying machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3563734A (en) * 1964-10-14 1971-02-16 Minnesota Mining & Mfg Electrographic process
US3480361A (en) * 1966-02-03 1969-11-25 Konishiroku Photo Ind Photographic copying machine
US3588242A (en) * 1969-01-15 1971-06-28 Ibm Drum structure for a xerographic copying machine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057344A (en) * 1975-03-27 1977-11-08 Agfa-Gevaert Aktiengesellschaft Electro-photographic copier with strip-shaped latent-image carrier
FR2345748A1 (fr) * 1976-03-25 1977-10-21 Pitney Bowes Inc Machine de reprographie
US4155639A (en) * 1977-05-09 1979-05-22 A. B. Dick Company Flexible belt xerographic copier
EP0010848A1 (en) * 1978-09-27 1980-05-14 Xerox Corporation Electrophotographic apparatus having a replaceable photoconductive belt
US4215932A (en) * 1979-06-29 1980-08-05 Xerox Corporation Replenishable photoconductive system
US4396274A (en) * 1979-12-03 1983-08-02 International Business Machines Corporation Electrophotographic copier configuration
US5386273A (en) * 1993-02-05 1995-01-31 Xerox Corporation Belt photoreceptor on cylindrical mandrel
US5659850A (en) * 1995-06-30 1997-08-19 Minnesota Mining And Manufacturing Company Exchangeable photoreceptive sheet and method and system for using the same
US5708923A (en) * 1995-07-30 1998-01-13 Minnesota Mining And Manufacturing Company Photoreceptive sheet cartridge and method of using the same
US6014535A (en) * 1998-12-10 2000-01-11 Imation Corp. Soft cartridge package for a photoreceptor belt and method of manufacturing soft cartridge package including method of loading photoreceptor belt using soft cartridge package
US6049682A (en) * 1998-12-10 2000-04-11 Imation Corp. Hard cartridge package for an organic photoreceptor belt
US6097912A (en) * 1998-12-10 2000-08-01 Imation Corp. Protective cover package for an organic photoreceptor belt
US8787797B2 (en) 2011-10-30 2014-07-22 Hewlett-Packard Development Company, L.P. Photoconductive foil sheet applicator

Also Published As

Publication number Publication date
AU7878875A (en) 1976-09-09
CA1048591A (en) 1979-02-13
JPS50138839A (pl) 1975-11-06
DE2510081A1 (de) 1975-09-11
GB1486106A (en) 1977-09-21
NL7502720A (nl) 1975-09-09

Similar Documents

Publication Publication Date Title
US3877806A (en) Photocopy machine with photoconductor belt and cartridge for photocopying
US3984241A (en) Photocopying process in which photoconductor belt is incrementally replaced
US3997262A (en) Electrophotographic copying apparatus
US3612677A (en) Electrostatic transfer apparatus
US3685896A (en) Duplicating method and apparatus
US3604797A (en) Photoelectrostatic duplicator
US3826570A (en) Photoconductor-carrying drum assembly
US3736053A (en) Electrostatic apparatus
US4110035A (en) Cleaning system for an electrophotographic printing machine
US3049968A (en) Xerographic reproduction apparatus
JPH0230016B2 (pl)
US4332458A (en) Table top copy machine
US4088403A (en) Replenishable photosensitive system
US4097138A (en) Photoconductive belt incrementing apparatus
CA1073514A (en) Photoconductor support drum from photocopy machine
US4076183A (en) Photoconductor incrementing apparatus
US3843252A (en) Electrophotographic copier of image transfer type
CA1137538A (en) Replenishable photoconductor system
US3981577A (en) Optical system for an electrophotographic printing machine
US4018523A (en) Reproducing apparatus and process for forming multiple copies of a document
US3196767A (en) Document copy mechanism
US3985435A (en) Color electrophotographic apparatus
US4102570A (en) Transfer type copier
US4068942A (en) Advanced photoreceptor
US3887278A (en) Multi-section drum assembly