US3877515A - Temperature-control system with rotary heat exchangers - Google Patents

Temperature-control system with rotary heat exchangers Download PDF

Info

Publication number
US3877515A
US3877515A US286569A US28656972A US3877515A US 3877515 A US3877515 A US 3877515A US 286569 A US286569 A US 286569A US 28656972 A US28656972 A US 28656972A US 3877515 A US3877515 A US 3877515A
Authority
US
United States
Prior art keywords
heat
fluid
heat exchangers
temperature
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US286569A
Inventor
Nikolaus Laing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US286569A priority Critical patent/US3877515A/en
Priority to US05/548,673 priority patent/US3973622A/en
Priority to US05/548,674 priority patent/US4000778A/en
Application granted granted Critical
Publication of US3877515A publication Critical patent/US3877515A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B3/00Self-contained rotary compression machines, i.e. with compressor, condenser and evaporator rotating as a single unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D11/00Heat-exchange apparatus employing moving conduits
    • F28D11/02Heat-exchange apparatus employing moving conduits the movement being rotary, e.g. performed by a drum or roller
    • F28D11/04Heat-exchange apparatus employing moving conduits the movement being rotary, e.g. performed by a drum or roller performed by a tube or a bundle of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • F24F12/003Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid using a heat pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • ABSTRACT An independently heated or cooled room is linked [52] 165/86 62/499 0 with an environment of different temperature through a fluid-circulation system including a closed path trag 'g g versed by a heat-carrier medium.
  • the medium travels I 1 1e 0 earc between two heat exchangers, respectively located in 56 R f d the warmer and in the colder air, under a pressure dif- 1 e erences ferential low enough to maintain a coherent flow at UNITED STATES PATENTS substantially uniform speed in one or more pairs of 2,609,672 9/1952 Wales 62/499 channels extending between the two heat exchangers.
  • PATENTEBAPR 1 5197s SHEET 1'10F 15 mzm PATENTEEAPR 1 5125 3.877. 515
  • PATENTEDAPR 1 5197s SHEET lSDF 15 FIG.2
  • My present invention relates to a system for controlling the temperature of a space subjected to extraneous heating or cooling.
  • a system has utility, for example, in a heated room into which colder outside air is admitted continuously or intermittently for ventilating purposes or, conversely, in the cooling of the interior of a housing for electronic equipment or the like generating excess heat which must be dissipated.
  • the general object of my invention is to provide simple and effective means for maintaining a desired thermal equilibrium between two bodies of air or other fluids of different temperature, i.e., a first fluid in the space to be thermally controlled and a second fluid in an adjoining environment.
  • a more particular object is to provide means for increasing the efficiency of existing heating or airconditioning equipment in a room or building by using available excess heating or cooling power to preheat or precool fresh air entering from the outside instead of wastefully discharging a like quantity of heated or cooled internal air directly into the atmosphere.
  • a first heat exchanger exposed to the fluid in the controlled space and a second heat exchanger exposed to the fluid in the adjoining environment the two heat exchangers being interlinked by sealed conduit means forming a closed path for a heat-carrier medium (referred to hereinafter simply as carrier) abstracting heat from the warmer fluid and giving off heat to the colder one.
  • carrier a heat-carrier medium
  • the carrier in a system according to my invention is subjected to a pressure differential only sufficient to drive it through the circuit with a coherent flow and at substantially constant speed in each of the stretches extending between the two heat exchangers.
  • These stretches may be constituted by tubes or other channels of more or less constant cross-section, e.g., axial passages in a shaft supporting a pair of rotors respectively forming part of the two coaxially mounted heat exchangers.
  • the invention can be realized with a carrier which remains either gaseous or liquid (preferably the latter) throughout its path or which is alternately vaporized and condensed by the absorption and release of heat at the two terminal points of the circuit.
  • the carrier could be ethyl or methyl alcohol, or freon; at elevated temperatures, sodium or a eutectic mixture of sodium and potassium is preferred.
  • the circulation of the carrier along its closed path may be effected by various means, e.g., by relative rotation of a set of vanes and a surrounding duct in one of the heat exchangers.
  • the vanes may be entrained (or arrested with reference to the rotating duct) by magnetic force, e.g., as disclosed in commonly owned U.S. application Ser. No. 42,018 filed June 1, 1970, now U.S. Pat. No. 3,696,634.
  • an electrically conductive carrier it is also possible to induce the desired relative motion by eddy currents.
  • thermosiphon effect may be utilized by letting the carrier circulate in two heat-exchanger rotors of different effective diameters through radial extensions of the axial channels, with the colder and therefore specifically heavier portion of the carrier moving outwardly over a larger radius than the warmer portion.
  • each heat exchanger (or at least one of them) may be subdivided into a plurality of cascaded heat-exchange stages successively traversed by the carrier in counterflow to the external fluid, i.e., with a variation in carrier temperature generally paralleling the change in the temperature of that fluid.
  • the cascaded stages are advantageously constituted by a plurality of interconnected branch channels in the heat-exchanger rotor communicating with respective channel pairs in the shaft, these channel pairs being formed by peripherally offset sectoral passages.
  • the motive power for driving the rotors of the heat exchangers may be obtained either from a separate motor or from one of the fluids involved in the exchange, the latter in particular where the system is used for abstracting heat from high-pressure gases or vapors issuing from a combustion chamber or a boiler.
  • an especially efficient heat transfer is achieved if the carrier passes through axially extending tubes forming part of the rotor body, these tubes being provided with transverse fins which are sufficiently closely spaced to develop a shear force which entrains the surrounding fluid in a generally radial direction so as to create an outward flow at a rate determined by the rotor speed.
  • the tubes in such a case are preferably round but could also have an elongate cross-section extending in the direction of the spiral; the tubes may be internally partitioned to let the carrier of an associated channel pair pass therethrough in opposite directions.
  • FIG. I is a block diagram of a ventilating and heatrecuperating system embodying my invention.
  • FIG. 2 is a schematic view of the temperature pattern in the system of FIG. 1 for heating and cooling operation;
  • FIG. 3 is an axial sectional view of an apparatus, taken in the direction of arrows as seen from the line lII--III of FIG. 4, to be used in the system of FIG. 1;
  • FIG. 4 is a perspective view (parts broken away) of the apparatus shown in FIG. 3;
  • FIG. 5 is a sectional view similar to FIG. 3, showing a modification
  • FIG. 6 is a cross-sectional view taken on the line VIVI of FIG. 5;
  • FIG. 7 is a schematic view similar to FIG. 2, showing the temperature pattern in a system using cascaded heat-exchanging stages;
  • FIG. 8 is a block diagram of an apparatus according to the invention with cascaded heat-exchange stages operating with a temperature pattern as shown in FIG. 7;
  • FIG. 9 is a partly elevational and partly sectional view of an apparatus representing a further embodiment
  • FIGS. 10, ll, 12 and 13 are cross-sectional views respectively taken on the lines XX, XIXI, XIIXII and XllI-XIII of FIG. 9;
  • FIG. 14 is a block diagram similar to FIG. 1, representing a modified system
  • FIG. I5 is an overall plan view of an apparatus according to my invention, shown installed in the corner of a room;
  • FIG. 16 is an end view of the apparatus shown in FIG.
  • FIG. 17 is a sectional top view of yet a further embodiment
  • FIG. 18 is a cross-sectional view taken on the line XVllI-XVIII of FIG. 17;
  • FIG. 19 is a partly elevational and partly sectional view of an apparatus representing still another embodiment
  • FIG. 20 is an end view (partly in section) of the apparatus shown in FIG. 19;
  • FIG. 21 is an axial sectional view of a gas turbine embodying a system according to my invention.
  • FIG. 1 I have schematically illustrated a ventilating and heat-recuperating system 1 serving to transfer heat from or to a stream of used air, which is being withdrawn from a body of spent air in a room, to or from a stream of fresh air which enters the room and is being withdrawn from a body of atmospheric air, i.e., from the external environment.
  • the system comprises a prime mover, here shown as an electric motor M, which drives two air-circulating blowers 2, 3 and a pump 4 for displacing a liquid or gaseous heat-carrier medium.
  • the blower 2 drives used air from the room (arrow 8) to the outside while the blower 3 draws fresh air from the outside into the room (arrow 7).
  • Used air passes through a heat exchanger 6 and thermally interacts with the carrier which is circulated by the pump 4 to flow in a closed circuit including ducts 9 and 10.
  • the stream of fresh air thermally interacts with the same carrier in another heat exchanger 5.
  • the carrier is cooled in the heat exchanger 5 if, as assumed for the present, the outside temperature is below room temperature, i.e., if the room is independently heated.
  • the thus-cooled carrier flows through the duct 9 and abstracts heat from warmer air in the heat exchanger 6 whereupon it reenters the duct 10. It will be seen that the cooler stream (arrow 7) cannot be contaminated by the warmer stream (arrow 8), or vice versa, and that the two streams cannot contaminate, or be contaminated by, the carrier.
  • the inflowing air is cooled in the heat exchanger 5 by the carrier which transfers its heat to the outflowing air in the heat exchanger 6.
  • Elements 4, 5, 6, 9 and 10 together form a sealed circuit for the carrier.
  • FIG. 2 illustrates the temperature pattern for the heat exchangers 5, 6 of the apparatus shown in FIG. 1 when the room temperature is lower (curves I, II) or higher (curves III, IV) than the outside temperature.
  • the temperature to be maintained in the room is marked I
  • Curves II and III show the temperature pattern in the heat exchanger 6 during the cooling phase and the heating phase, respectively.
  • Curves I and IV show the temperature pattern in the heat exchanger 5 for the cooling and heating phases, respectively.
  • the carrier in the heat exchanger 5 absorbs heat from the fresh-air stream represented by the arrows 7 so that incoming air is cooled from the outside temperature L, to an intermediate temperature t -l-Ar.
  • the carrier which has a mean temperature t,,-, is transported by the pump 4 from the heat exchanger 5 to the heat exchanger 6 where it transfers heat to the outgoing air stream, represented by arrows 8, whose temperature pattern is given by curve II; thus, the temperature of this outgoing air stream is raised from room level I to an intermediate level t Ar slightly below the temperature of air stream 7.
  • the abscissa segment between points r and in FIG. 2 shows the temperature rise or drop along the flow path of the individual heat exchangers.
  • FIGS. 3 and 4 show the structure of a ventilating and heat-recuperating apparatus included in the system of FIG. 1.
  • the apparatus comprises rotary heat exchangers 5 and 6 of the type hereinabove referred to as crossflow blowers, with hollow blades 12 traversed by a liquid heat carrier, such as an alcohol, in the direction indicated in FIG. 3 by arrows 13.
  • the heat exchangers 5 and 6 are coaxial and are directly interconnected by the hollow blades 12.
  • the air is guided through the heat exchangers 5 and 6 by a housing including a first shell 14 for the heat exchanger 5 and a second shell 15 for the heat exchanger 6.
  • the fresh-air stream flowing through the rotary heat exchanger 5 is aspirated through a grill l6 and an inlet port 18 in the direction of arrows 7 and transported through an outlet port 19 to a distributing manifold 20 whence it is conducted to the room or rooms to be ventilated.
  • the used-air stream is aspirated in the direction of arrows 8 through an inlet port of heat exchanger 6 and discharged through an outlet port 21 by way of the same grill 16.
  • the physically interconnected rotary heat exchangers 5 and 6 form a single rotor body mounted at its ends in ball bearings 22 and 23, the bearing 22 being for instance of the self-aligning tapering type whereas the bearing 23 is a simple journal bearing for a stub shaft 23a rigidly fixed to the rotor body.
  • the latter is driven by a motor 24 with shaft 25 via reduction gearing not shown.
  • the carrier-circulating pump 4 here shown to be of the radial type, feeds the carrier to every other blade and draws it from the intervening blades so that adjacent rotor blades are tranversed by the carrier in opposite directions. As more fully illustrated in subsequent Figures, the blades are surrounded by annular cooling fins 12a to enhance the heat transfer.
  • the pump 4 has an impeller with radial vanes 4' and a casing with return guide vanes 26. These return guide vanes are rigidly fixed to a ferromagnetic ring 27 which is held in place by a similar outer ring 31 separated therefrom by a thin metal sheet 28 hermetically sealing the carrier circuit (communicating with the interior of the rotor blades 12) against the outside. At least one of the rings 27, 31 is permanently magnetized.
  • the casing with vanes 26 is immobilized while the rotating impeller vanes entrain the carrier to drive it along its closed path.
  • the temperature level of the heat carrier in the hollow blades 12 adjusts itself automatically, so that the temperature of the heated or cooled air stream is likewise adjusted.
  • the air volume is easily controlled by butterfly valves (not shown) located in the suction and- /or pressure channels, or by changes in rotor speed.
  • the channels defined by blades 12 represent the stretches 9 and 10 of FIG. I along which the carrier flows at substantially uniform speed between the two heat exchangers 5, 6.
  • the return guide vanes 26 need not be completely stationary but, with their mounting ring 27, could also rotate at a speed different from that of the impeller 4'. Thus, the magnetic field linking the rings 27 and 31 need only exert a retarding effect upon the pump casmg.
  • FIGS. 5 and 6 show an embodiment of my invention wherein, in contradistinction to the embodiments of FIGS. 3 and 4, the two rotary heat-exchanger units are traversed by an axially entering and radially exiting flow.
  • a motor M is centrally mounted on brackets and 51 which are rigidly connected to a housing 52 containing the stator 53 and the armature 54 of the motor.
  • Armature 54 includes a set of coils would on a hollow shaft 55 consisting of two coaxial cylinders 56 and 57 defining a cylindrical inner passage 9 and an annular outer passage 10 which represent the two stretches referred to above (cf. FIG. 1).
  • the shaft 55 is mounted in bearings 58 and 59 with both of its extremities protruding from the motor housing 52. These extremities carry the two rotary heat exchangers 5 and 6, again constituted by rotary blowers, traversed by air streams flowing in the direction of arrows 7 and 8, fresh air being axially aspirated from the outside through an inlet port provided with a grill 60 and passing through a scroll-type outlet channel 61 of the blower 5 into the room. Similarly, the stream of used air is axially aspirated by the blower 6 through an inlet port 62 and fed to a scroll-type outlet channel 63 (see FIG. 6) leading to the outer atmosphere.
  • each of these rotors comprises an array of hollow blades 64 (illustrated only in part), the interior of each blade being longitudinally subdivided into two passages 65 and 66 by an axially extending partition 67.
  • each hollow blade 64 may consist of two discrete tubes which form the two passages 65, 66.
  • the hollow end plates supporting the blades of the rotors 5 and 6 and facing the motor M are subdivided by radial partitions 68 and 69 to define inner chambers 70, 71 and outer chambers 72, 73, respectively.
  • the passages 66 which are nearer to the tips of the hollow blades 64 of each of the two rotors, respectively lead to the outer chambers 72, 73, communicating with each other via the annular outer channel 10 of the hollow shaft 55.
  • the passages 65 nearer to the centers of the two rotors respectively communicate with the inner chambers 70, 71 which, in turn, open into the cylindrical inner channel 9 of shaft 55.
  • the carrier in the circuit of FIGS. 5 and 6 is moved by a radial pump 4 having return guide vanes 74 on a ferromagnetic ring 83 which, in the manner described above, is held against rotation by a system of magnets on an outer ring which is fixed to the housing of the rotor 6 by a central rod 81 and spider legs 82.
  • FIG. 7 shows the temperature pattern of an arrangement in which the carrier circuit is divided into several (here five) cascaded subcircuits, each of the subcircuits comprising a heat-exchange stage with two branches wherein heat is respectively absorbed and given up by the carrier.
  • Curve I of FIG. 7 shows at A B the temperature drop of the carrier in a heat-exchange unit of a subcircuit in the cooling phase.
  • the carrier moving in this subcircuit (arrows 7) cools the air to a temperature t +Ar and transfers the absorbed heat in the other heatexchange unit to the air stream (arrows 8) which has been drawn from the room to be ventilated.
  • the temperature pattern in this latter unit is shown by the section C-D of curve II.
  • the air flows then to the corresponding heat-exchange unit of the next subcircuit where its temperature is raised to 1 At,according to section D-E of curve II.
  • the individual subcircuits are cascaded in both directions of flow.
  • the lower curves III and IV of the temperture pattern represent the heating phase, with the air temperature rising in one subcircuit between points of A and B (curve III) while the carrier temperature drops between points C' and D (curve IV).
  • the heat to be replaced in this instance as defined by the temperature difference I represents the necessary energy input.
  • FIG. 8 is a flow diagram of a cascaded temperaturecontrol system whose mode of operation follows the temperature pattern depicted in FIG. 7.
  • the reference numerals used in FIG. 8 are analogous to those employed in the basic block diagram of FIG. 1 for a single carrier circuit.
  • the heat exchanger for the incoming stream 7 circulated by the blower 3 has been replaced by the heat-exchanger stages 5a to 5e of the individual subcircuits.
  • the individual subcircuits are analogous to those employed in the basic block diagram of FIG. 1 for a single carrier circuit.
  • stage 6a distinguished by the postscripts a to e, are so arranged that the stages 5a to 5e are traversed by the air flow in a direction opposite that of stages 6a to 6e.
  • the fresh-air stream is cooled along section A-B of curve I in stage 5c and the heat so extracted is transferred to the used-air stream in the same subcircuit along the portion C-D of the curve II in the stage 60.
  • the residual temperature differential 1 I or I r is reduced in proportion to the number of stages. The cascaded system, therefore, combines the higher thermodynamic efficiency of the countercurrent circuit with the high heat-transfer coefficients of rotary heat exchangers.
  • FIGS. 9 13 l have shown an adaptation of the apparatus of FIGS. 5 and 6 to the cascaded system described with reference to FIGS. 7 and 8. Similar reference numerals have been used, with the addition of postscripts a e where necessary to distinguish the several subcircuits. Pumps 4a 4e have been symbolized in FIG. 9 only by their radial vanes.
  • Rotors 5 and 6 have respective sets of blades 102 and 100 extending along segments of archimedean spirals, each blade 100 being composed of five tubes 102a 102e and 1000 100e which (as illustrated for blades 100) are subdivided by longitudinal partitions 67a 67e into paired passages 65a 652 and 66a 66e.
  • Passages 65a 65e communicate with generally frustoconical manifolds 72a 722 in rotor 6 and 73a, 73b etc., in rotor 5; passages 66a 66e communicate with similar manifolds a 702 in rotor 6 and 710 etc., in rotor 5.
  • the manifolds are connected to the axially extending blade passages at junctions 103a l03e as illustrated in FIG. 9 for the rotor 6.
  • the tubes of each rotor form several (here five) concentric tiers, the tubes of each tier being served by a common manifold.
  • the two nested cylinders 56 and 57 of shaft 55 have been replaced, as illustrated in FIGS. 10 and 11, by a central shaft 106 and a sleeve 107 spacedly surrounding same.
  • Shaft 106 is formed with ten sectoral channels 9a 9e and 10a 10e, communicating with respective manifolds of each rotor, conducting the heat carrier in opposite directions; the annular space between shaft 106 and sleeve 107 is axially subdivided for this purpose into transverse compartments 104a 104a and 117a 117e within rotor 6 and into similar compartments a, 1051; etc., and 116a 116b etc., within rotor 5.
  • Shaft 106 traverses an end wall of rotor 6 and terminates in an end cap 109.
  • the pitch of the archimedean spirals defined by blades 100 and 102 is so correlated with the rotor speed that the blades exert substantially no reaction upon the surrounding air flow.
  • FIG. 14 shows the flow diagram of FIG. 1 expanded to include an external source of thermal energy, specifically a heat pump, in direct heat-exchanging relationship with the air streams 7 and 8.
  • This heat pump which may be of the construction described in my prior US. Pat. No. 3,347,059, is reversible so as to provide either heating or cooling.
  • the pump circuit includes a pair of additional heat exchangers and 141 traversed by the incoming and outgoing air streams 7 and 8, respectively, these heat exchangers lying in circuit with a compressor 143 driven by a motor M and an expansion valve 142.
  • a four-way valve 146 allows the selective circulation of a heating/cooling fluid in either of two directions as indicated by arrows 147 (for heating of the room) and 148 (for cooling).
  • Heat-pump motor M K is advantageously mounted on a common shaft with the motor M of the temperaturecontrol system 1.
  • FIGS. 15 and 16 I have shown an apparatus according to my invention installed in an upper corner of a room to be cooled or heated.
  • Incoming air (arrow 7) enters the heat exchanger 5 from above, either through a distributing manifold or directly through the roof, whereas outgoing air (arrow 8) is aspirated upwardly into heat exchanger 6 and then discharged laterally into the atmosphere.
  • FIGS. 17 and 18 illustrate a temperature-control apparatus according to my invention mounted in a housing 173 for electronic equipment (not-shown) whose operation generates waste heat.
  • the interior of housing 173 is sealed against the outside with the aid of an end cap 180 forming an outwardly open well 174 for an externally mounted rotary heat exchanger of the centrifugal-blower type.
  • a similar second heat exchanger 161 is linked with rotor 160 by a hollow shaft 166 journaled by a bearing 181 in cap 180.
  • the rotors 160, 161 respectively comprise hollow blades 162, 164 and 163, I65 arranged in pairs as shown in FIG. 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

An independently heated or cooled room is linked with an environment of different temperature through a fluid-circulation system including a closed path traversed by a heat-carrier medium. The medium travels between two heat exchangers, respectively located in the warmer and in the colder air, under a pressure differential low enough to maintain a coherent flow at substantially uniform speed in one or more pairs of channels extending between the two heat exchangers.

Description

United States Patent Laing Apr. 15, 1975 [54] TEMPERATURE-CONTROL SYSTEM WITH 3,025,684 3/1962 McLain et al. 62/499 ROTARY HEAT EXCHANGERS 3,189,262 6/1965 Hanson et a1 62/499 3,347,059 10/1967 Lamg 62/325 Inventor: Nikolaus g, Hofener g 3,371,504 3/1968 Brindley 62/333 35-37, 7141 Aldingen, Germany 22 Filed; S 5 1972 Primary ExaminerCharles J. Myhre Assistant ExaminerTheophil W. Streule [2]] Appl' 2861569 Attorney, Agent, or FirmKarl F. Ross; Herbert Related US. Application Data Dubno [63] Continuation-impart of Ser. No. 847,771, June 17,
1969, abandoned. [57] ABSTRACT An independently heated or cooled room is linked [52] 165/86 62/499 0 with an environment of different temperature through a fluid-circulation system including a closed path trag 'g g versed by a heat-carrier medium. The medium travels I 1 1e 0 earc between two heat exchangers, respectively located in 56 R f d the warmer and in the colder air, under a pressure dif- 1 e erences ferential low enough to maintain a coherent flow at UNITED STATES PATENTS substantially uniform speed in one or more pairs of 2,609,672 9/1952 Wales 62/499 channels extending between the two heat exchangers. 2,811,841 11/1957 Grimshaw 63/499 2,991,982 7/1961 Johnson 165/125 9 Clalms, 21 Drawmg Figures IOOe IOOd IOOc lOOb Tem perafu re PATENTEUAPR 1 5197s SHEET [310F15 FIG FIG.2
T TEEAPR I SISYS SHEET E'EUF 15 mm mm mm 2529i a j E:
l m 4% AW 2 W E z m RH PfJENTEUAPRISiHTS 3.877.515
sum sum 15 PATENTEDAPR 1 51975 TEMP.
room
PATENTEDAFR 'i 51875 SHEET GSUF 15 FIG.I2
PATENYEDAFR 1 5 SHEET 10B? 15 FIG.|3
PATENTEBAPR 1 5197s SHEET 1'10F 15 mzm PATENTEEAPR 1 5125 3.877. 515
SHEET 12 [IF 15 FIG.|6
FATENTEBAPmiars 3.877. 515
SHEET 13 3F 15 F l G l7 Ml]: m
FIG.|8
PATENTEDAPR 1 5197s SHEET lSDF 15 FIG.2|
TEMPERATURE-CONTROL SYSTEM WITH ROTARY HEAT EXCHANGERS This application is a continuation-in-part of my copending application Ser. No. 847,771 filed June 17, 1969 and now abandoned. The latter application partly discloses subject matter of other applications filed by me earlier and now abandoned, i.e.: Ser. No. 105,056 filed April 24, 1961, included in Ser. No. 452,622 filed May 1965, included in turn in Ser. No. 562,880 filed July 5, 1966 and its continuation Ser. No. 802,704 filed Dec. 11, 1968; and Ser. No. 427,323 filed Jan. 22, 1965, with continuation Ser. No. 566,088 filed July 18, 1966 (now U.S. Pat. No. 3,347,059) and further continuation Ser. No. 585,819 filed Oct. 11, 1966, also since abandoned. This application also includes subject matter disclosed in my pending application Ser. No. 84,097 filed Oct. 26, 1970 now U.S. Pat. No. 3,81 1,495 granted May 21, 1974.
My present invention relates to a system for controlling the temperature of a space subjected to extraneous heating or cooling. Such a system has utility, for example, in a heated room into which colder outside air is admitted continuously or intermittently for ventilating purposes or, conversely, in the cooling of the interior of a housing for electronic equipment or the like generating excess heat which must be dissipated.
The general object of my invention is to provide simple and effective means for maintaining a desired thermal equilibrium between two bodies of air or other fluids of different temperature, i.e., a first fluid in the space to be thermally controlled and a second fluid in an adjoining environment.
A more particular object is to provide means for increasing the efficiency of existing heating or airconditioning equipment in a room or building by using available excess heating or cooling power to preheat or precool fresh air entering from the outside instead of wastefully discharging a like quantity of heated or cooled internal air directly into the atmosphere.
These objects are realized, in accordance with my present invention, by the provision of a first heat exchanger exposed to the fluid in the controlled space and a second heat exchanger exposed to the fluid in the adjoining environment, the two heat exchangers being interlinked by sealed conduit means forming a closed path for a heat-carrier medium (referred to hereinafter simply as carrier) abstracting heat from the warmer fluid and giving off heat to the colder one. In contradistinction to conventional refrigeration systems in which the circulating medium is alternately compressed and expanded while moving back and forth between a heat sink and a heat source, the carrier in a system according to my invention is subjected to a pressure differential only sufficient to drive it through the circuit with a coherent flow and at substantially constant speed in each of the stretches extending between the two heat exchangers. These stretches, therefore, may be constituted by tubes or other channels of more or less constant cross-section, e.g., axial passages in a shaft supporting a pair of rotors respectively forming part of the two coaxially mounted heat exchangers.
This substantial constancy of the flow rate in each stretch is maintained even if the carrier undergoes a change of its state of aggregation on passing through the heat exchangers. Thus, the invention can be realized with a carrier which remains either gaseous or liquid (preferably the latter) throughout its path or which is alternately vaporized and condensed by the absorption and release of heat at the two terminal points of the circuit.
For use at substantially ambient temperatures, the carrier could be ethyl or methyl alcohol, or freon; at elevated temperatures, sodium or a eutectic mixture of sodium and potassium is preferred.
The circulation of the carrier along its closed path may be effected by various means, e.g., by relative rotation of a set of vanes and a surrounding duct in one of the heat exchangers. In order to insure absolute fluidtightness, the vanes may be entrained (or arrested with reference to the rotating duct) by magnetic force, e.g., as disclosed in commonly owned U.S. application Ser. No. 42,018 filed June 1, 1970, now U.S. Pat. No. 3,696,634. In the case of an electrically conductive carrier it is also possible to induce the desired relative motion by eddy currents. Finally, a thermosiphon effect may be utilized by letting the carrier circulate in two heat-exchanger rotors of different effective diameters through radial extensions of the axial channels, with the colder and therefore specifically heavier portion of the carrier moving outwardly over a larger radius than the warmer portion.
According to a further feature of my invention, each heat exchanger (or at least one of them) may be subdivided into a plurality of cascaded heat-exchange stages successively traversed by the carrier in counterflow to the external fluid, i.e., with a variation in carrier temperature generally paralleling the change in the temperature of that fluid. Thus, in a heating cycle, the hottest portion of the carrier traverses the stage last encountered by the external flow which has therefore already been preheated by the .other units to nearly the same temperature; in a cooling cycle, of course, the relationship is reversed. In either case, the cascaded stages are advantageously constituted by a plurality of interconnected branch channels in the heat-exchanger rotor communicating with respective channel pairs in the shaft, these channel pairs being formed by peripherally offset sectoral passages.
The motive power for driving the rotors of the heat exchangers may be obtained either from a separate motor or from one of the fluids involved in the exchange, the latter in particular where the system is used for abstracting heat from high-pressure gases or vapors issuing from a combustion chamber or a boiler.
According to another feature of my invention, an especially efficient heat transfer is achieved if the carrier passes through axially extending tubes forming part of the rotor body, these tubes being provided with transverse fins which are sufficiently closely spaced to develop a shear force which entrains the surrounding fluid in a generally radial direction so as to create an outward flow at a rate determined by the rotor speed. I have found that it is highly advantageous to dispose the tubes substantially along segments of an archimedean spiral whose pitch should be so correlated with the rotor speed, or more generally with the flow rate, that the spiral array of tubes exerts substantially no reaction (in either an accelerating or a retarding sense) upon the flow, i.e., that this array does not act as either an impeller blade or a turbine blade. The tubes in such a case are preferably round but could also have an elongate cross-section extending in the direction of the spiral; the tubes may be internally partitioned to let the carrier of an associated channel pair pass therethrough in opposite directions.
The above and other features of my invention will be described in detail hereinafter with reference to the accompanying drawing in which:
FIG. I is a block diagram of a ventilating and heatrecuperating system embodying my invention;
FIG. 2 is a schematic view of the temperature pattern in the system of FIG. 1 for heating and cooling operation;
FIG. 3 is an axial sectional view of an apparatus, taken in the direction of arrows as seen from the line lII--III of FIG. 4, to be used in the system of FIG. 1;
FIG. 4 is a perspective view (parts broken away) of the apparatus shown in FIG. 3;
FIG. 5 is a sectional view similar to FIG. 3, showing a modification;
FIG. 6 is a cross-sectional view taken on the line VIVI of FIG. 5;
FIG. 7 is a schematic view similar to FIG. 2, showing the temperature pattern in a system using cascaded heat-exchanging stages;
FIG. 8 is a block diagram of an apparatus according to the invention with cascaded heat-exchange stages operating with a temperature pattern as shown in FIG. 7;
FIG. 9 is a partly elevational and partly sectional view of an apparatus representing a further embodiment;
FIGS. 10, ll, 12 and 13 are cross-sectional views respectively taken on the lines XX, XIXI, XIIXII and XllI-XIII of FIG. 9;
' FIG. 14 is a block diagram similar to FIG. 1, representing a modified system;
FIG. I5 is an overall plan view of an apparatus according to my invention, shown installed in the corner of a room;
FIG. 16 is an end view of the apparatus shown in FIG.
FIG. 17 is a sectional top view of yet a further embodiment;
FIG. 18 is a cross-sectional view taken on the line XVllI-XVIII of FIG. 17;
FIG. 19 is a partly elevational and partly sectional view of an apparatus representing still another embodiment;
FIG. 20 is an end view (partly in section) of the apparatus shown in FIG. 19; and
FIG. 21 is an axial sectional view of a gas turbine embodying a system according to my invention.
In FIG. 1 I have schematically illustrated a ventilating and heat-recuperating system 1 serving to transfer heat from or to a stream of used air, which is being withdrawn from a body of spent air in a room, to or from a stream of fresh air which enters the room and is being withdrawn from a body of atmospheric air, i.e., from the external environment. The system comprises a prime mover, here shown as an electric motor M, which drives two air-circulating blowers 2, 3 and a pump 4 for displacing a liquid or gaseous heat-carrier medium. The blower 2 drives used air from the room (arrow 8) to the outside while the blower 3 draws fresh air from the outside into the room (arrow 7). Used air passes through a heat exchanger 6 and thermally interacts with the carrier which is circulated by the pump 4 to flow in a closed circuit including ducts 9 and 10. The stream of fresh air thermally interacts with the same carrier in another heat exchanger 5. After passing through the duct 10 the carrier is cooled in the heat exchanger 5 if, as assumed for the present, the outside temperature is below room temperature, i.e., if the room is independently heated. The thus-cooled carrier flows through the duct 9 and abstracts heat from warmer air in the heat exchanger 6 whereupon it reenters the duct 10. It will be seen that the cooler stream (arrow 7) cannot be contaminated by the warmer stream (arrow 8), or vice versa, and that the two streams cannot contaminate, or be contaminated by, the carrier.
If the temperature of the air stream which leaves the room (arrow 8) is lower than the temperature of the inflowing air stream (arrow 7), i.e., if the room is independently cooled, the inflowing air is cooled in the heat exchanger 5 by the carrier which transfers its heat to the outflowing air in the heat exchanger 6. Elements 4, 5, 6, 9 and 10 together form a sealed circuit for the carrier.
FIG. 2 illustrates the temperature pattern for the heat exchangers 5, 6 of the apparatus shown in FIG. 1 when the room temperature is lower (curves I, II) or higher (curves III, IV) than the outside temperature. The temperature to be maintained in the room is marked I Curves II and III show the temperature pattern in the heat exchanger 6 during the cooling phase and the heating phase, respectively. Curves I and IV show the temperature pattern in the heat exchanger 5 for the cooling and heating phases, respectively.
In summer, as shown by the curve I, the carrier in the heat exchanger 5 absorbs heat from the fresh-air stream represented by the arrows 7 so that incoming air is cooled from the outside temperature L, to an intermediate temperature t -l-Ar. The carrier, which has a mean temperature t,,-, is transported by the pump 4 from the heat exchanger 5 to the heat exchanger 6 where it transfers heat to the outgoing air stream, represented by arrows 8, whose temperature pattern is given by curve II; thus, the temperature of this outgoing air stream is raised from room level I to an intermediate level t Ar slightly below the temperature of air stream 7.
In winter, as shown by curves IV and III, the operation is analogous with maintenance of a mean carrier temperature t As can be readily seen from the temperature diagram of FIG. 2, the heat-recuperating system according to my invention is able to recover 50percent of the heat otherwise lost, this representing an ideal case with At 0 (i.e., with the heat-exchange surface assumed to be infinite). Thus, the temperature difference I t exists in the heating phase and the temperature difference t t exists in the cooling phase; these differences have to be balanced by a supplemental heating or cooling system not shown. Naturally, the outside temperatures t, and t' (and thus also the intermediate temperatures 1,,- and I are subject to temperature fluctuations of the ambient atmosphere.
It is also evident from FIGS. 1 and 2 that a continuous transition from heating to cooling operation and vice versa can be effected without changing the direction of air flow and without reversing the carrier flow in the sealed circuit. In switching between heating and cooling operation, the heat exchangers 5 and 6 merely change functions. I
The abscissa segment between points r and in FIG. 2 shows the temperature rise or drop along the flow path of the individual heat exchangers.
FIGS. 3 and 4 show the structure of a ventilating and heat-recuperating apparatus included in the system of FIG. 1. The apparatus comprises rotary heat exchangers 5 and 6 of the type hereinabove referred to as crossflow blowers, with hollow blades 12 traversed by a liquid heat carrier, such as an alcohol, in the direction indicated in FIG. 3 by arrows 13. The heat exchangers 5 and 6 are coaxial and are directly interconnected by the hollow blades 12. The air is guided through the heat exchangers 5 and 6 by a housing including a first shell 14 for the heat exchanger 5 and a second shell 15 for the heat exchanger 6. The fresh-air stream flowing through the rotary heat exchanger 5 is aspirated through a grill l6 and an inlet port 18 in the direction of arrows 7 and transported through an outlet port 19 to a distributing manifold 20 whence it is conducted to the room or rooms to be ventilated. The used-air stream is aspirated in the direction of arrows 8 through an inlet port of heat exchanger 6 and discharged through an outlet port 21 by way of the same grill 16.
The physically interconnected rotary heat exchangers 5 and 6 form a single rotor body mounted at its ends in ball bearings 22 and 23, the bearing 22 being for instance of the self-aligning tapering type whereas the bearing 23 is a simple journal bearing for a stub shaft 23a rigidly fixed to the rotor body. The latter is driven by a motor 24 with shaft 25 via reduction gearing not shown. The carrier-circulating pump 4, here shown to be of the radial type, feeds the carrier to every other blade and draws it from the intervening blades so that adjacent rotor blades are tranversed by the carrier in opposite directions. As more fully illustrated in subsequent Figures, the blades are surrounded by annular cooling fins 12a to enhance the heat transfer.
The pump 4 has an impeller with radial vanes 4' and a casing with return guide vanes 26. These return guide vanes are rigidly fixed to a ferromagnetic ring 27 which is held in place by a similar outer ring 31 separated therefrom by a thin metal sheet 28 hermetically sealing the carrier circuit (communicating with the interior of the rotor blades 12) against the outside. At least one of the rings 27, 31 is permanently magnetized. Thus the casing with vanes 26 is immobilized while the rotating impeller vanes entrain the carrier to drive it along its closed path. As explained in connection with FIGS. 1 and 2, the temperature level of the heat carrier in the hollow blades 12 adjusts itself automatically, so that the temperature of the heated or cooled air stream is likewise adjusted. The air volume is easily controlled by butterfly valves (not shown) located in the suction and- /or pressure channels, or by changes in rotor speed. The channels defined by blades 12 represent the stretches 9 and 10 of FIG. I along which the carrier flows at substantially uniform speed between the two heat exchangers 5, 6.
The return guide vanes 26 need not be completely stationary but, with their mounting ring 27, could also rotate at a speed different from that of the impeller 4'. Thus, the magnetic field linking the rings 27 and 31 need only exert a retarding effect upon the pump casmg.
FIGS. 5 and 6 show an embodiment of my invention wherein, in contradistinction to the embodiments of FIGS. 3 and 4, the two rotary heat-exchanger units are traversed by an axially entering and radially exiting flow.
As shown in FIG. 5, a motor M is centrally mounted on brackets and 51 which are rigidly connected to a housing 52 containing the stator 53 and the armature 54 of the motor.
Armature 54 includes a set of coils would on a hollow shaft 55 consisting of two coaxial cylinders 56 and 57 defining a cylindrical inner passage 9 and an annular outer passage 10 which represent the two stretches referred to above (cf. FIG. 1). The shaft 55 is mounted in bearings 58 and 59 with both of its extremities protruding from the motor housing 52. These extremities carry the two rotary heat exchangers 5 and 6, again constituted by rotary blowers, traversed by air streams flowing in the direction of arrows 7 and 8, fresh air being axially aspirated from the outside through an inlet port provided with a grill 60 and passing through a scroll-type outlet channel 61 of the blower 5 into the room. Similarly, the stream of used air is axially aspirated by the blower 6 through an inlet port 62 and fed to a scroll-type outlet channel 63 (see FIG. 6) leading to the outer atmosphere.
As best seen in FIG. 6 for the rotor 6, each of these rotors comprises an array of hollow blades 64 (illustrated only in part), the interior of each blade being longitudinally subdivided into two passages 65 and 66 by an axially extending partition 67. If desired, each hollow blade 64 may consist of two discrete tubes which form the two passages 65, 66. The hollow end plates supporting the blades of the rotors 5 and 6 and facing the motor M (FIG. 5) are subdivided by radial partitions 68 and 69 to define inner chambers 70, 71 and outer chambers 72, 73, respectively. The passages 66, which are nearer to the tips of the hollow blades 64 of each of the two rotors, respectively lead to the outer chambers 72, 73, communicating with each other via the annular outer channel 10 of the hollow shaft 55. Similarly, the passages 65 nearer to the centers of the two rotors respectively communicate with the inner chambers 70, 71 which, in turn, open into the cylindrical inner channel 9 of shaft 55. As the passages 65 and 66 are interconnected at the suction-side ends of the rotors, the result is a hermetically sealed circuit in which the carrier moves in the directions indicated by arrows in FIG. 5.
As in the embodiment shown in FIGS. 3 and 4, the carrier in the circuit of FIGS. 5 and 6 is moved by a radial pump 4 having return guide vanes 74 on a ferromagnetic ring 83 which, in the manner described above, is held against rotation by a system of magnets on an outer ring which is fixed to the housing of the rotor 6 by a central rod 81 and spider legs 82.
FIG. 7 shows the temperature pattern of an arrangement in which the carrier circuit is divided into several (here five) cascaded subcircuits, each of the subcircuits comprising a heat-exchange stage with two branches wherein heat is respectively absorbed and given up by the carrier. The heat exchange between the two air streams 7 and 8 and the blower rotors, traversed by the carrier in countercurrent thereto, results in higher thermodynamic efficiency.
Curve I of FIG. 7 shows at A B the temperature drop of the carrier in a heat-exchange unit of a subcircuit in the cooling phase. The carrier moving in this subcircuit (arrows 7) cools the air to a temperature t +Ar and transfers the absorbed heat in the other heatexchange unit to the air stream (arrows 8) which has been drawn from the room to be ventilated. The temperature pattern in this latter unit is shown by the section C-D of curve II. The air flows then to the corresponding heat-exchange unit of the next subcircuit where its temperature is raised to 1 At,according to section D-E of curve II. The individual subcircuits are cascaded in both directions of flow.
The lower curves III and IV of the temperture pattern represent the heating phase, with the air temperature rising in one subcircuit between points of A and B (curve III) while the carrier temperature drops between points C' and D (curve IV). The heat to be replaced in this instance as defined by the temperature difference I represents the necessary energy input. These temperature differences are much smaller than the corresponding temperature differences in the single-stage systems of FIGS. 1 to 6; thus, the cascading as per FIG. 7 affords better heat recuperation.
FIG. 8 is a flow diagram of a cascaded temperaturecontrol system whose mode of operation follows the temperature pattern depicted in FIG. 7. The reference numerals used in FIG. 8 are analogous to those employed in the basic block diagram of FIG. 1 for a single carrier circuit. Thus, the heat exchanger for the incoming stream 7 circulated by the blower 3 has been replaced by the heat-exchanger stages 5a to 5e of the individual subcircuits. The same applies to pumps 4a to 4e, heat-exchange units 6a to 6e for the outgoing air stream 8 circulated by blower 2. and associated conduits 9a to 9e and 10a to 100. The individual subcircuits. distinguished by the postscripts a to e, are so arranged that the stages 5a to 5e are traversed by the air flow in a direction opposite that of stages 6a to 6e. The carrier passing through stage 6a, closest to blower 2 and therefore cooled (or heated) to a level near the room temperature, passes immediately thereafter through stage 5a, farthest from blower 3, so as to provide final cooling (or heating) for the incoming air already precooled (or preheated) by the four preceding stages.
Thus, the fresh-air stream is cooled along section A-B of curve I in stage 5c and the heat so extracted is transferred to the used-air stream in the same subcircuit along the portion C-D of the curve II in the stage 60. With the total temperature difference between room temperature and outside temperature t in the cooling phase and t in the heating phase subdivided into several steps, the residual temperature differential 1 I or I r is reduced in proportion to the number of stages. The cascaded system, therefore, combines the higher thermodynamic efficiency of the countercurrent circuit with the high heat-transfer coefficients of rotary heat exchangers.
In FIGS. 9 13 l have shown an adaptation of the apparatus of FIGS. 5 and 6 to the cascaded system described with reference to FIGS. 7 and 8. Similar reference numerals have been used, with the addition of postscripts a e where necessary to distinguish the several subcircuits. Pumps 4a 4e have been symbolized in FIG. 9 only by their radial vanes.
Rotors 5 and 6 have respective sets of blades 102 and 100 extending along segments of archimedean spirals, each blade 100 being composed of five tubes 102a 102e and 1000 100e which (as illustrated for blades 100) are subdivided by longitudinal partitions 67a 67e into paired passages 65a 652 and 66a 66e. Passages 65a 65e communicate with generally frustoconical manifolds 72a 722 in rotor 6 and 73a, 73b etc., in rotor 5; passages 66a 66e communicate with similar manifolds a 702 in rotor 6 and 710 etc., in rotor 5. The manifolds are connected to the axially extending blade passages at junctions 103a l03e as illustrated in FIG. 9 for the rotor 6. Thus, the tubes of each rotor form several (here five) concentric tiers, the tubes of each tier being served by a common manifold.
The two nested cylinders 56 and 57 of shaft 55 (FIG. 5) have been replaced, as illustrated in FIGS. 10 and 11, by a central shaft 106 and a sleeve 107 spacedly surrounding same. Shaft 106 is formed with ten sectoral channels 9a 9e and 10a 10e, communicating with respective manifolds of each rotor, conducting the heat carrier in opposite directions; the annular space between shaft 106 and sleeve 107 is axially subdivided for this purpose into transverse compartments 104a 104a and 117a 117e within rotor 6 and into similar compartments a, 1051; etc., and 116a 116b etc., within rotor 5. These compartments, in turn, open into respective channels 9a 9e, 10a We as illustrated in FIGS. 10 and 11 for the channel 9b and compartments 117b, 105b. Shaft 106 traverses an end wall of rotor 6 and terminates in an end cap 109.
Advantageously, as explained above, the pitch of the archimedean spirals defined by blades 100 and 102 is so correlated with the rotor speed that the blades exert substantially no reaction upon the surrounding air flow.
FIG. 14 shows the flow diagram of FIG. 1 expanded to include an external source of thermal energy, specifically a heat pump, in direct heat-exchanging relationship with the air streams 7 and 8. This heat pump, which may be of the construction described in my prior US. Pat. No. 3,347,059, is reversible so as to provide either heating or cooling. The pump circuit includes a pair of additional heat exchangers and 141 traversed by the incoming and outgoing air streams 7 and 8, respectively, these heat exchangers lying in circuit with a compressor 143 driven by a motor M and an expansion valve 142. A four-way valve 146 allows the selective circulation of a heating/cooling fluid in either of two directions as indicated by arrows 147 (for heating of the room) and 148 (for cooling).
Heat-pump motor M K is advantageously mounted on a common shaft with the motor M of the temperaturecontrol system 1.
In FIGS. 15 and 16 I have shown an apparatus according to my invention installed in an upper corner of a room to be cooled or heated. Incoming air (arrow 7) enters the heat exchanger 5 from above, either through a distributing manifold or directly through the roof, whereas outgoing air (arrow 8) is aspirated upwardly into heat exchanger 6 and then discharged laterally into the atmosphere.
FIGS. 17 and 18 illustrate a temperature-control apparatus according to my invention mounted in a housing 173 for electronic equipment (not-shown) whose operation generates waste heat. The interior of housing 173 is sealed against the outside with the aid of an end cap 180 forming an outwardly open well 174 for an externally mounted rotary heat exchanger of the centrifugal-blower type. A similar second heat exchanger 161 is linked with rotor 160 by a hollow shaft 166 journaled by a bearing 181 in cap 180. The rotors 160, 161 respectively comprise hollow blades 162, 164 and 163, I65 arranged in pairs as shown in FIG. 18.

Claims (9)

1. A temperature-control system for a space provided with means for maintaining a first fluid therein at a temperature differing substantially from that of a second fluid in an adjoining environment, comprising: a first rotary heat exchanger centered on an axis and exposed to said first fluid in said space; a second rotary heat exchanger centered on said axis and exposed to said second fluid in said adjoining environment, each of said heat exchangers including a set of peripherally spaced tubes parallel to said axis, the tubes of each set being disposed along at least one segment of an archimedean spiral to define a hollow blade; drive means coupled with said heat exchangers for rotating same about said axis; sealed conduit means including said tubes forming a closed path for a heat-carrier medium abstracting heat from the warmer one of said fluids and giving off heat to the colder one of said fluids; and forced-circulation means in said path for driving said medium through said conduit means under a pressure maintaining a coherent flow of said medium at substantially uniform speed between said heat exchangers.
2. A system as defined in claim wherein the tubes of each heat exchanger are divided into a plurality of concentric tiers interconnected in cascade for successive traversal by said medium.
3. A system as defined in claim 1 wherein each of said tubes is longitudinally subdivided into two parallel conduits traversed by said medium in opposite directions.
4. A system as defined in claim 3 wherein said heat exchangers are axially spaced apart and provided with a common shaft, said conduit means including axially extending channels in said shaft and manifolds connecting the conduits of the tubes of each tier with a respective channel pair.
5. A system as defined in claim 4 wherein said channel pairs are formed by peripherally offset sectoral passages in said shaft.
6. A system as defined in claim 1 wherein said tubes are provided with closely spaced transerse fins entraining the surrounding fluid by shear force and imparting thereto a centrifugal acceleration proportional to the speed of said drive means.
7. A system as defined in claim 6 wherein the pitch of said archimedean spiral is correlated with the speed of said drive means to exert substantially no reaction upon the centrifugally accelerated fluid flow.
8. A system as defined in claim 6 wherein said fins are annular and common to all the tubes of a heat exchanger.
9. A temperature-control system for a space provided with means for maintaining a first fluid therein at a temperature differing substantially from that of a second fluid in an adjoining environment, comprising: a first rotaty heat exchanger centered on an axis and exposed to said first fluid in said space; a second rotary heat exchanger centered on said axis and exposed to said second fluid in said adjoining environment; drive means coupled with said heat exchangers for rotating same about said axis, each of said heat exchangers including a set of peripherally spaced hollow blades parallel to said axis and a multiplicity of closely spaced transverse fins entraining the surrounding fluid by shear force and imparting theReto a centrifugal acceleration proportional to the speed of said drive means; sealed conduit means including said hollow blades forming a closed path for a heat-carrier medium abstracting heat from the warmer one of said fluids and giving off heat to the colder one of said fluids, said blades defining at least one segment of an archimedean spiral whose pitch is correlated with the speed of said drive means to exert substantially no reaction upon the centrifugally accelerated fluid flow; and forced-circulation means in said path for driving said medium through said conduit means under a pressure maintaining a coherent flow of said medium at substantially uniform speed between said heat exchangers.
US286569A 1964-01-22 1972-09-05 Temperature-control system with rotary heat exchangers Expired - Lifetime US3877515A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US286569A US3877515A (en) 1969-06-17 1972-09-05 Temperature-control system with rotary heat exchangers
US05/548,673 US3973622A (en) 1964-01-22 1975-02-10 Temperature-control system with rotary heat exchangers
US05/548,674 US4000778A (en) 1972-09-05 1975-02-10 Temperature-control system with rotary heat exchangers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84777169A 1969-06-17 1969-06-17
US286569A US3877515A (en) 1969-06-17 1972-09-05 Temperature-control system with rotary heat exchangers

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US05/548,674 Division US4000778A (en) 1972-09-05 1975-02-10 Temperature-control system with rotary heat exchangers
US05/548,673 Division US3973622A (en) 1964-01-22 1975-02-10 Temperature-control system with rotary heat exchangers

Publications (1)

Publication Number Publication Date
US3877515A true US3877515A (en) 1975-04-15

Family

ID=26963913

Family Applications (1)

Application Number Title Priority Date Filing Date
US286569A Expired - Lifetime US3877515A (en) 1964-01-22 1972-09-05 Temperature-control system with rotary heat exchangers

Country Status (1)

Country Link
US (1) US3877515A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962874A (en) * 1972-02-22 1976-06-15 E. I. Du Pont De Nemours And Company Rotary heat engine powered single fluid cooling and heating apparatus
US3986852A (en) * 1975-04-07 1976-10-19 E. I. Du Pont De Nemours And Company Rotary cooling and heating apparatus
US4000778A (en) * 1972-09-05 1977-01-04 Nikolaus Laing Temperature-control system with rotary heat exchangers
FR2404185A1 (en) * 1977-09-22 1979-04-20 Ludwig Ludin ENERGY-SAVING HEAT PUMP
US4438636A (en) * 1982-06-21 1984-03-27 Thermo Electron Corporation Heat-actuated air conditioner/heat pump
EP0119777A2 (en) * 1983-03-22 1984-09-26 Imperial Chemical Industries Plc Centrifugal heat pump
USRE32169E (en) * 1976-07-23 1986-06-03 Etablissement Euroburner Thermal exchanger
US4733721A (en) * 1982-03-19 1988-03-29 Euroburner Establishment Apparatus and method for heating a fluid
US5878808A (en) * 1996-10-30 1999-03-09 Mcdonnell Douglas Rotating heat exchanger
WO2000004327A2 (en) * 1998-07-16 2000-01-27 Jon Ahn Air-conditioner with condenser/evaporator housed in fans
FR2792681A1 (en) * 1999-04-21 2000-10-27 Anghel Muscocea Anti-pollution device for vehicles and industrial chimneys, comprises electrical motors which drive turbines to blow gases into coils which cool gases
WO2008097381A2 (en) * 2006-10-11 2008-08-14 Holtec International, Inc. Apparatus and method for transporting and/or storing radioactive materials
US8995604B2 (en) 2009-11-05 2015-03-31 Holtec International, Inc. System, method and apparatus for providing additional radiation shielding to high level radioactive materials
US20170248347A1 (en) * 2016-02-29 2017-08-31 Nativus, Inc. Rotary heat exchanger
SE2050408A1 (en) * 2020-04-09 2021-10-10 Arne Moberg Heat recovery ventilation system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2609672A (en) * 1951-05-04 1952-09-09 Ind Patent Corp Unitized centrifugal refrigerating machine
US2811841A (en) * 1953-11-13 1957-11-05 Gen Electric Refrigerator apparatus
US2991982A (en) * 1957-09-12 1961-07-11 Sigurd O Johnson Centrifugal fluid moving device
US3025684A (en) * 1959-06-23 1962-03-20 Robert S Mclain Refrigerating machine
US3189262A (en) * 1961-04-10 1965-06-15 William H Anderson Space coolers
US3347059A (en) * 1964-01-22 1967-10-17 Laing Nikolaus Heat pump
US3371504A (en) * 1965-10-23 1968-03-05 Claude S. Brindley Heat exchanger for air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2609672A (en) * 1951-05-04 1952-09-09 Ind Patent Corp Unitized centrifugal refrigerating machine
US2811841A (en) * 1953-11-13 1957-11-05 Gen Electric Refrigerator apparatus
US2991982A (en) * 1957-09-12 1961-07-11 Sigurd O Johnson Centrifugal fluid moving device
US3025684A (en) * 1959-06-23 1962-03-20 Robert S Mclain Refrigerating machine
US3189262A (en) * 1961-04-10 1965-06-15 William H Anderson Space coolers
US3347059A (en) * 1964-01-22 1967-10-17 Laing Nikolaus Heat pump
US3371504A (en) * 1965-10-23 1968-03-05 Claude S. Brindley Heat exchanger for air conditioner

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962874A (en) * 1972-02-22 1976-06-15 E. I. Du Pont De Nemours And Company Rotary heat engine powered single fluid cooling and heating apparatus
US4000778A (en) * 1972-09-05 1977-01-04 Nikolaus Laing Temperature-control system with rotary heat exchangers
US3986852A (en) * 1975-04-07 1976-10-19 E. I. Du Pont De Nemours And Company Rotary cooling and heating apparatus
USRE32169E (en) * 1976-07-23 1986-06-03 Etablissement Euroburner Thermal exchanger
FR2404185A1 (en) * 1977-09-22 1979-04-20 Ludwig Ludin ENERGY-SAVING HEAT PUMP
US4211092A (en) * 1977-09-22 1980-07-08 Karsten Laing Space heating installation
US4733721A (en) * 1982-03-19 1988-03-29 Euroburner Establishment Apparatus and method for heating a fluid
US4438636A (en) * 1982-06-21 1984-03-27 Thermo Electron Corporation Heat-actuated air conditioner/heat pump
EP0119777A2 (en) * 1983-03-22 1984-09-26 Imperial Chemical Industries Plc Centrifugal heat pump
US4793154A (en) * 1983-03-22 1988-12-27 Imperial Chemical Industries Plc Centrifugal heat pump
EP0119777A3 (en) * 1983-03-24 1985-08-07 Imperial Chemical Industries Plc Centrifugal heat pump
US5878808A (en) * 1996-10-30 1999-03-09 Mcdonnell Douglas Rotating heat exchanger
WO2000004327A2 (en) * 1998-07-16 2000-01-27 Jon Ahn Air-conditioner with condenser/evaporator housed in fans
WO2000004327A3 (en) * 1998-07-16 2000-06-22 Jon Ahn Air-conditioner with condenser/evaporator housed in fans
FR2792681A1 (en) * 1999-04-21 2000-10-27 Anghel Muscocea Anti-pollution device for vehicles and industrial chimneys, comprises electrical motors which drive turbines to blow gases into coils which cool gases
US8415521B2 (en) 2006-10-11 2013-04-09 Holtec International, Inc. Apparatus for providing additional radiation shielding to a container holding radioactive materials, and method of using the same to handle and/or process radioactive materials
WO2008097381A2 (en) * 2006-10-11 2008-08-14 Holtec International, Inc. Apparatus and method for transporting and/or storing radioactive materials
US20090069621A1 (en) * 2006-10-11 2009-03-12 Singh Krishna P Method of removing radioactive materials from a submerged state and/or preparing spent nuclear fuel for dry storage
US20090198092A1 (en) * 2006-10-11 2009-08-06 Singh Krishna P Method and apparatus for transporting and/or storing radioactive materials having a jacket adapted to facilitate thermosiphon fluid flow
US7994380B2 (en) 2006-10-11 2011-08-09 Holtec International, Inc. Apparatus for transporting and/or storing radioactive materials having a jacket adapted to facilitate thermosiphon fluid flow
US8067659B2 (en) 2006-10-11 2011-11-29 Holtec International, Inc. Method of removing radioactive materials from a submerged state and/or preparing spent nuclear fuel for dry storage
WO2008097381A3 (en) * 2006-10-11 2009-01-08 Holtec International Inc Apparatus and method for transporting and/or storing radioactive materials
US9208914B2 (en) 2009-11-05 2015-12-08 Holtec International System, method and apparatus for providing additional radiation shielding to high level radioactive materials
US8995604B2 (en) 2009-11-05 2015-03-31 Holtec International, Inc. System, method and apparatus for providing additional radiation shielding to high level radioactive materials
US20170248347A1 (en) * 2016-02-29 2017-08-31 Nativus, Inc. Rotary heat exchanger
WO2017151439A1 (en) * 2016-02-29 2017-09-08 Nativus, Inc. Rotary heat exchanger
CN109073338A (en) * 2016-02-29 2018-12-21 纳提福斯有限公司 rotary heat exchanger
US11397029B2 (en) * 2016-02-29 2022-07-26 Nativus, Inc. Rotary heat exchanger
SE2050408A1 (en) * 2020-04-09 2021-10-10 Arne Moberg Heat recovery ventilation system
SE544273C2 (en) * 2020-04-09 2022-03-22 Arne Moberg Heat recovery ventilation system

Similar Documents

Publication Publication Date Title
US3877515A (en) Temperature-control system with rotary heat exchangers
US4000778A (en) Temperature-control system with rotary heat exchangers
US3347059A (en) Heat pump
US10684044B2 (en) Magneto-caloric thermal diode assembly with a rotating heat exchanger
US4347714A (en) Heat pump systems for residential use
US4538426A (en) Air cooling system
US4281969A (en) Thermal pumping device
EP1736717A1 (en) Continuously rotary magnetic refrigerator and heat pump and process for magnetic heating and/or cooling with such a refrigerator or heat pump
KR20080056227A (en) Phase change material heat exchanger
KR20100099129A (en) Cryogenic refrigeration method and device
KR20160100304A (en) Magnetic refrigeration system with improved flow efficiency
US20240044527A1 (en) Isothermal-turbo-compressor-expander-condenser-evaporator device
JP2008215795A (en) Movable heat exchange system, and air conditioner, hot water storage device, electric fan, other heat exchanger and heat exchange system applying the system
US2008407A (en) Inverted-refrigeration plant
KR960031923A (en) Cooling heat pump air conditioner
US3791167A (en) Heating and cooling wheel with dual rotor
US10041701B1 (en) Heating and cooling devices, systems and related method
US3456718A (en) Heat exchanger
US6813894B2 (en) Heat pump and dehumidifier
WO2022057794A1 (en) Efficient multi-stage drying system
US6330809B1 (en) Application of a chiller in an apparatus for cooling a generator/motor
US3973622A (en) Temperature-control system with rotary heat exchangers
US3877244A (en) Modular dry-air evaporative cooler
CN111615312A (en) Heat exchange system
CN106016547B (en) Combined heat exchange system