US3876305A - Demountable sputtering cathode for atomic absorption spectroscopy - Google Patents
Demountable sputtering cathode for atomic absorption spectroscopy Download PDFInfo
- Publication number
- US3876305A US3876305A US389088A US38908873A US3876305A US 3876305 A US3876305 A US 3876305A US 389088 A US389088 A US 389088A US 38908873 A US38908873 A US 38908873A US 3876305 A US3876305 A US 3876305A
- Authority
- US
- United States
- Prior art keywords
- sample
- gas
- vacuum chamber
- discharge
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004544 sputter deposition Methods 0.000 title claims abstract description 41
- 238000001479 atomic absorption spectroscopy Methods 0.000 title description 4
- 238000004458 analytical method Methods 0.000 claims abstract description 30
- 230000003595 spectral effect Effects 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 6
- 238000002835 absorbance Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 9
- 239000007787 solid Substances 0.000 abstract description 8
- 238000010521 absorption reaction Methods 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 5
- 239000002184 metal Substances 0.000 abstract description 4
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000000377 silicon dioxide Substances 0.000 abstract description 2
- 239000000523 sample Substances 0.000 description 79
- 239000007789 gas Substances 0.000 description 33
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 14
- 229910052786 argon Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- 238000011109 contamination Methods 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000005048 flame photometry Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 235000009917 Crataegus X brevipes Nutrition 0.000 description 1
- 235000013204 Crataegus X haemacarpa Nutrition 0.000 description 1
- 235000009685 Crataegus X maligna Nutrition 0.000 description 1
- 235000009444 Crataegus X rubrocarnea Nutrition 0.000 description 1
- 235000009486 Crataegus bullatus Nutrition 0.000 description 1
- 235000017181 Crataegus chrysocarpa Nutrition 0.000 description 1
- 235000009682 Crataegus limnophila Nutrition 0.000 description 1
- 235000004423 Crataegus monogyna Nutrition 0.000 description 1
- 240000000171 Crataegus monogyna Species 0.000 description 1
- 235000002313 Crataegus paludosa Nutrition 0.000 description 1
- 235000009840 Crataegus x incaedua Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000012921 fluorescence analysis Methods 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H3/00—Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
- H05H3/02—Molecular or atomic-beam generation, e.g. resonant beam generation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/66—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
- G01N21/67—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
- G01N21/74—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces
Definitions
- ABSTRACT Techniques and apparatus for measuring the concentration of elements in a solid metal sample by atomic absorption and fluorescence are described.
- a silica disc with an annular dischargcsuppressing gap surrounding the sample area and an O-ring seal are used to locate a surface of the sample for sputtering. and gas passages in the disc allow sputtered atoms to be swept into the body of a vacuum chamber for convenient analysis.
- the flame method also suffers to a greater or lesser extent from other disadvantages, including pressure broadening of absorption lines, quenching of fluorescence radiation, compound formation in the flame, and opacity of the flame gases to vacuum-ultraviolet light.
- the sputtered atoms rapidly come to thermal equilibrium with the gas, and sputtering and diffusion rates are such that relatively large steady-state concentrations accumulate in the region around the cathode.
- the negative glow is relatively well confined, and the anode glow and positive column can be virtually eliminated by positioning the anode at the edge of the negative glow.
- large concentrations of relatively emissionfree sputtered vapours, in thermal equilibrium with the gas, are available in the region just beyond the negative glow.
- the invention provides a method and apparatus whereby samples for spectrochemical analysis by sputtering may be interchanged rapidly.
- the invention avoids the contamination difficulties associated with the introduction of the whole sample into the vacuum chamber by allowing the bulk of the sample, if it is a solid block, to remain outside the chamber.
- the sample may be in the form of a solid piece of metal, for example a disc of about 4 cm diameter, or may be formed on the surface of a similar solid block of holding material.
- sample body the area on the surface from which sample atoms are sputtered will be referred to as the "sample area.”
- sample area the area on the surface from which sample atoms are sputtered.
- the sample area, and a small part of the surrounding surface, are the only portions of the sample body subjected to the vacuum; the remainder being left in contact with the surrounding air.
- vacuum as used in this specification is intended to cover a partial vacuum, and pressures inside the vacuum chamber are typically of the order of 1-10 torr.
- the vacuum chamber is provided with an aperture in one of its walls.
- the sample area can then form the cathode of a sputtering discharge between itself and an anode located inside the vacuum chamber.
- Interference may be produced because the material then sputtered may be left over from previous samples, and even if the samples are the same, the relative distribution of atoms in the atomic vapour may be quite different to that in the samples because there is no compensation for different sputtering rates; and furthermore, different current densities characteristic of a new discharge path may result in different discharge conditions. Even more extreme interference can result with a heavy build-up of sputtered material on the walls because eventually a conductive path can form between the anode and cathode. short-circuiting the discharge.
- the invention comprises apparatus for providing an atomic vapour for spectrochemical analysis from a sample area on the surface of a sample body.
- the sample area in use forming the cathode of a sputtering discharge.
- a vacuum chamber having an apertured wall. an anode lying in side the chamber. and apertured sample locating means around the wall aperture comprising an outer annular portion adapted in use to abut the surface of the sample body and an inner annular portion electrically insulated from said outer portion and said anode adapted in use to lie opposite the surface of the sample body but spaced therefrom a short distance to form an annular gap surrounding the sample area.
- the gapwidth being large enough to electrically isolate the opposed sur faces thereof but smaller than the width of the cathode dark space for the sputtering discharge.
- inner and outer annular portions should be understood as being electrically insulated from each other if one or both are made from electrically insulating material. including the case where they are formed integrally from eleetri cally insulating material.
- the vacuum chamber is purged with clean inert gas while maintaining the vacuum level appropriate to the glow discharge so that impurity atoms are swept from the volume.
- the invention provides gas passages within the disc so that purge gas is directed into the area of the discharge in such a way that atoms sputtered from the sample area are carried away from the discharge region towards the body of the vacuum chamber to facilitate spectrochemical analysis.
- the sample 10- eating means is in the form of a separate flat disc with a central aperture and an inwardly stepped inner annular portion on one face.
- FIG. I is a diagrammatic representation of apparatus for spectrochemical analysis according to the invention'.
- FIG. 2 shows a cross section of a sample holding arrangement of the invention
- FIG. 3 shows in plan view a disc used in the sample holding arrangement
- FIGS. 4A and 4B show exploded plan views of a disc according to a further embodiment of the invention.
- FIGS. 5A and 5B show section views through the disc shown in FIGS. 4A and 48;
- FIG. 6 shows a section view of a further sample holding arrangement according to the invention.
- FIG. 7 shows a typical warm-up trace of fluorescence radiation intensity obtained from a surface with no prior sputtering treatment.
- the sample body 1 is located against an aperture (not shown) in vacuum chamber 2.
- the sample body is electrically conductive and is connected to a negative supply voltage line 3, and a discharge is struck between it and an anode inside the chamber connected to positive voltage line 4.
- a spectral lamp 5, operated to emit a pulsed highintensity spectral line characteristic of the element being estimated. is located so that it illuminates the atomic vapour created inside chamber 2. If fluorescence radiation is being examined.
- a photodetector 6 is arranged to receive light emitted by the sample vapour in a direction at right angles to the incident radia tion. If atomic absorption is being examined.
- a photodetector of monochromator 7 is arranged in line with the incident radiation.
- lenses may be ar ranged to focus incoming and outgoing light relative to the vacuum chamber.
- light baffles may be used to mini mize the interference due to stray light reflections, and filters may be interposed in the light paths to select appropriate regions of the spectrum.
- the detectors 6 and/or 7 are preferably arranged in synchromous demodulation circuits. so that light pulses originating from lamp 5 are selectively detected.
- a fuller description ofcircuit and optical arrangements may be found in our Australian patent specification No. 163,586 in relation to atomic absorption and in the specification of the aforementioned Australian patent application No. 37.1254/68 in relation to fluorescence.
- FIG. 2 a preferred sample holding means of the invention is shown in more detail. Portions of the wall of the chamber 2 of FIG. 1 are shown at 8.8. with an aperture at 9.
- Anode 10 is located inside the chamber at a point about 1 cm below the cathode formed by sample area 11, the distance of 1 cm corresponding roughly to the edge of the negative glow in order to eliminate as far as possible background interference from an anode glow and positive column.
- the discharge causes sputtering of sample atoms from the cathode to form an atomic vapour. and the preferred location at which this vapour is examined spectroscopically is about 2 cm below the cathode. thus minimizing the contribution of the negative glow to interfering background radiation.
- the sample area 11 is located on the surface 12 of the sample body 13.
- Surface 12 is preferably ground flat and is pressed against the wall 8.8 by a retaining member 14 assisted by outside air pressure when the chamber 2 is evacuated.
- a sample locating means 15 and a resilient sealing member 16.
- Sample locating means 15, shown in plan view in FIG. 3, in one embodiment. takes the form of a solid disc of insulating. heat-resisting material such as quartz. with a central aperture 17. In use. this aperture is aligned with aperture 9 in wall 8,8 of the vacuum chamber.
- the disc is relatively flat on the side which is placed against wall 8,8 of the chamber. and on its other side has two annular portions, the inner portion 18 being stepped inwardly relative to the outer portion 19.
- the ratio of the thickness of the disc to that of sealing member 16, preferably an O-ring, is set so that when the sample body is forced against the disc. the O-ring is sufficiently compressed to form a vacuum-tight seal between the surface I2 and the wall 8,8.
- the annular gap 20, formed between the surface 12 and the inner annular portion 18, is approximately 0.2 mm wide, and extends approximately 5 mm parallel to surface I2.
- the sample body 13 may be cooled to predetermined temperature by means of a water jacket 21, and gas, preferably argon may be passed through chamber 2 via gas inlet and outlet connections (not shown).
- gas preferably argon
- the gas connections are preferably arranged on opposite sides of the chamber relative to the sample area so that a flow of pure argon across the cathode surface may be maintained to sweep impurity molecules away from the viewing area.
- disc 15 instead of being solid may be provided with internal gas flow passages to direct gas into the area ofthe discharge in such a way that sputtered atoms are swept into the body of the vacuum chamber 2 to facilitate spectrochemical analysis.
- FIGS. 4 6 of the accompanying drawings depict such an arrangement.
- FIGS. 4A and 48 a disc 15 having internal gas passages is shown in two halves prior to assembly.
- FIG. 5A represents a cross-section through the halves of disc I5 shown in FIGS. 4A and 48 along the lines AA, with the halves arranged in opposing relation.
- FIG. 5B is a similar view along lines BB in FIGS. 4A and 4B.
- a circular groove of rectangular crosssection is shown on the upper face of the lower half of the disc.
- a corresponding groove 2I' can be seen on the lower face of the upper half of the disc.
- grooves 21 and 21' when aligned opposite each other form a gas circulation passage within the composite disc 15.
- a gas inlet port 22 can be seen in FIGS. 4A and 58 leading into gas circulation passages 21,21.
- the disc 15 is arranged as shown in FIG. 6 with a gas inlet tube inserted partially into hole 22 so that argon. at a suitably low flow rate is directed into the region of the sputtering discharge through gas outlet ducts 24 (shown in FIG. 5A). It has been found unnec essary in practice for a leak free connection to be made between gas inlet tube 25 and inlet port 22, as adequate sweeping of atoms, and molecules, out ofthe discharge region has been attained with quite loose connections.
- the argon preferably in a purified form, passes from the discharge region to a vacuum pump, shown schematically in FIG. I, which is kept running while the sputtering discharge is operating.
- the gas circulation passage 21,21 may be connected to a series of duets leading into the region of the annular gap 20 shown in FIG. 2, so that gas then passes out from this region, through aperture I7 in sample locating means 15 and into the body of the vacuum chamber 2, and thence to the vacuum pump.
- the chamber is brought up to atmospheric pressure with dry argon before being opened, and a fresh sample is placed on the disc 15 over the aperture 9.
- the chamber is pumped down to a vacuum of approximately 5 microns over about 1 minute to clear as much contamination from the sample and chamber as possible.
- the pressure of argon is then let up to about 5 torr, and a steady flow of argon of about 0.2
- FIG. 4 shows a typical warm-up trace of the intensity of fluorescence radiation emitted from an atomic vapour derived from the surface which had received no prior sputtering treatment. As can be seen, the signal reaches a peak value after only about 5 seconds, and then approaches a final equilibrium value after 1 minute or so.
- the annular gap 20 has been found to contain the discharge to the aperture 17 without any fringing into the gap, and material sputtered on the disc and wall surfaces outside the annular gap has not become electrically connected to the cathode.
- Apparatus for providing an atomic vapour for spectrochemical analysis from a sample area on the surface of a sample body, the sample area in use forming the cathode ofa sputtering discharge, comprising a vacuum chamber having an apertured wall, an anode lying inside the chamber and below the wall aperture.
- sample locating means lying outside the chamber around the wall aperture and comprising an outer annular portion adapted in use to abut the surface of the sample body and an inner annular portion electrically insulated from the outer portion and the anode, adapted in use to lie opposite the surface of the sample body but spaced therefrom a short distance to form an annular gap surrounding the sample area, the gapwidth being large enough to electrically isolate the opposed surfaces thereof but smaller than the width of the cathode dark space for the sputtering discharge.
- the vacuum chamber includes means whereby a stream of gas may be introduced into the vacuum chamber while vacuum is maintained by a vacuum pump, such that impurity atoms and molecules may be swept out of the chamber while the sputtering discharge is operating.
- sample locating means is provided with at least one internal gas passage for directing at least part of the stream of gas into the region of the sputtering discharge so that sputtered atoms are thereby carried away from the discharge region towards the body of the vacuum chamber to facilitate spectrochemical analysis.
- the sample locating means has a gas circulation passage into which at least part of the stream of gas may be directed. and at least one gas outlet duct leading into the aper ture in the sample locating means.
- the sample locating means has a gas circulation passage into which at least part of the stream of gas may be directed, and at least one outlet duct leading into the annular gap between the sample locating means and the surface of the sample body.
- Apparatus for spectrochemical analysis of a sample by means of a sputtering discharge comprising in combination;
- a vacuum chamber having an apertured wall.
- a disc-shaped centrally apertured sample locating means disposed outside and around the wall aperture having a surface facing the sample with an outer annular portion abutting the surface of the sample and an inner annular portion electrically insulated from the outer annular portion and the anode. stepped away from the sample surface a distance large enough to electrically isolate the opposed surfaces of the gap so formed but smaller than the width of the cathode dark space for the sputtering discharge;
- a sealing member in the form of an O-ring disposed around the periphery of the sample locating means and between the sample and the vacuum chamber wall so as to effect a vacuum seal therebetween;
- a spectral lamp providing light containing at least one spectral line characteristic of an element under analysis
- photodetector means for providing an indication of the degree to which the characteristic spectral line is absorbed by atoms sputtered from the sample by the discharge.
- Apparatus for spectrochemical analysis of a sample as claimed in claim 7 in which the degree of absorbance is determined by measuring the fluorescent light re-emitted by the sputtered atoms.
- Apparatus for spectrochemical analysis as claimed in claim 7 including means whereby a stream of gas may be introduced into the vacuum chamber while vacuum is maintained by a vacuum pump such that impurity atoms and molecules may be swept out of the vacuum chamber while the sputtering discharge is operat ing.
- the sample locating means is provided with at least one internal gas passage for directing at least part of the stream of gas into the region of the sputtering discharge so that sputtered atoms are thereby carried away from the discharge region towards the body of the vacuum chamber to facilitate spectrochemical analysis.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AUPB014772 | 1972-08-18 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3876305A true US3876305A (en) | 1975-04-08 |
Family
ID=3765268
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US389088A Expired - Lifetime US3876305A (en) | 1972-08-18 | 1973-08-17 | Demountable sputtering cathode for atomic absorption spectroscopy |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US3876305A (cs) |
| JP (1) | JPS5713817B2 (cs) |
| CA (1) | CA1020905A (cs) |
| DE (1) | DE2341204A1 (cs) |
| GB (1) | GB1435597A (cs) |
| NL (1) | NL7311382A (cs) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4824249A (en) * | 1986-04-16 | 1989-04-25 | Chamber Ridge Pty. Ltd. | Systems for the direct analysis of solid samples by atomic emission spectroscopy |
| EP0407030A1 (en) * | 1989-05-31 | 1991-01-09 | Clemson University | Method and apparatus for analysing solid samples |
| US5064204A (en) * | 1988-06-22 | 1991-11-12 | Outokumpu Oy | Analyzer sealing member |
| US5325021A (en) * | 1992-04-09 | 1994-06-28 | Clemson University | Radio-frequency powered glow discharge device and method with high voltage interface |
| US20080280135A1 (en) * | 2007-05-10 | 2008-11-13 | Wook-Seong Lee | Dc plasma assisted chemical vapor deposition apparatus in the absence of positive column, method for depositing material in the absence of positive column, and diamond thin layer thereby |
| US9536725B2 (en) | 2013-02-05 | 2017-01-03 | Clemson University | Means of introducing an analyte into liquid sampling atmospheric pressure glow discharge |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4845041A (en) * | 1985-11-20 | 1989-07-04 | Analyte Corporation | Atomic-absorption sputtering chamber and system |
| DE3605911A1 (de) * | 1986-02-24 | 1987-08-27 | Ges Foerderung Spektrochemie | Glimmentladungslampe sowie ihre verwendung |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3644045A (en) * | 1968-05-01 | 1972-02-22 | Commw Scient Ind Res Org | Atomic absorption spectroscopy |
-
1973
- 1973-08-16 DE DE19732341204 patent/DE2341204A1/de not_active Ceased
- 1973-08-17 JP JP9181173A patent/JPS5713817B2/ja not_active Expired
- 1973-08-17 GB GB3907773A patent/GB1435597A/en not_active Expired
- 1973-08-17 NL NL7311382A patent/NL7311382A/xx not_active Application Discontinuation
- 1973-08-17 CA CA179,024A patent/CA1020905A/en not_active Expired
- 1973-08-17 US US389088A patent/US3876305A/en not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3644045A (en) * | 1968-05-01 | 1972-02-22 | Commw Scient Ind Res Org | Atomic absorption spectroscopy |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4824249A (en) * | 1986-04-16 | 1989-04-25 | Chamber Ridge Pty. Ltd. | Systems for the direct analysis of solid samples by atomic emission spectroscopy |
| US5064204A (en) * | 1988-06-22 | 1991-11-12 | Outokumpu Oy | Analyzer sealing member |
| EP0407030A1 (en) * | 1989-05-31 | 1991-01-09 | Clemson University | Method and apparatus for analysing solid samples |
| US5325021A (en) * | 1992-04-09 | 1994-06-28 | Clemson University | Radio-frequency powered glow discharge device and method with high voltage interface |
| US20080280135A1 (en) * | 2007-05-10 | 2008-11-13 | Wook-Seong Lee | Dc plasma assisted chemical vapor deposition apparatus in the absence of positive column, method for depositing material in the absence of positive column, and diamond thin layer thereby |
| US8334027B2 (en) * | 2007-05-10 | 2012-12-18 | Korea Institute Of Science And Technology | Method for DC plasma assisted chemical vapor deposition in the absence of a positive column |
| US9536725B2 (en) | 2013-02-05 | 2017-01-03 | Clemson University | Means of introducing an analyte into liquid sampling atmospheric pressure glow discharge |
| US10269525B2 (en) | 2013-02-05 | 2019-04-23 | Clemson University Research Foundation | Means of introducing an analyte into liquid sampling atmospheric pressure glow discharge |
Also Published As
| Publication number | Publication date |
|---|---|
| JPS5713817B2 (cs) | 1982-03-19 |
| NL7311382A (cs) | 1974-02-20 |
| CA1020905A (en) | 1977-11-15 |
| GB1435597A (en) | 1976-05-12 |
| DE2341204A1 (de) | 1974-02-28 |
| JPS4987389A (cs) | 1974-08-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4830492A (en) | Glow-discharge lamp and its application | |
| Mavrodineanu | Hollow cathode discharges: Analytical applications | |
| Slevin et al. | The hollow cathode discharge as a spectrochemical emission source | |
| CN109755097B (zh) | 一种四极杆质谱仪及其使用方法 | |
| Gough et al. | The application of cathodic sputtering to the production of atomic vapours in atomic fluorescence spectroscopy | |
| US3876305A (en) | Demountable sputtering cathode for atomic absorption spectroscopy | |
| Houpt | Physical phenomena and analytical applications of helium microwave discharges | |
| Loving et al. | Simultaneous analysis of an abnormal glow discharge by atomic absorption spectrometry and mass spectrometry | |
| Jonkman et al. | Low-temperature secondary positive ion mass spectrometry of neat and argon-diluted organic solids | |
| US3218459A (en) | Fluid sample holders for x-ray spectrometers under vacuum | |
| US3591289A (en) | Atomic absorption sample cell | |
| US3521054A (en) | Analytical photoionization mass spectrometer with an argon gas filter between the light source and monochrometer | |
| Lazik et al. | Effect of directed (radial) gas flow on sputtering and emission characteristics in radio frequency powered glow discharge devices | |
| US3635561A (en) | Apparatus and method for determining the content of chemical elements in a solid sample | |
| US3809479A (en) | Sputtering method and apparatus for quantitative and qualitative analysis of materials | |
| Falk et al. | Furnace atomisation with non-thermal excitation—Experimental evaluation of detection based on a high-resolution échelle monochromator incorporating automatic background correction | |
| US3430041A (en) | Far ultraviolet non-dispersive analyzer utilizing resonant radiant energy from the periphery of the vapor cloud of the source | |
| Hannaford et al. | Sputtered atoms in absorption and fluorescence spectroscopy | |
| Van Gelder | New high-intensity spectral source with a narrow line profile | |
| Trivedi et al. | Physical properties of a planar magnetron glow discharge | |
| Broekaert et al. | Investigations of a jet-assisted glow discharge lamp for optical emission spectrometry | |
| US5153674A (en) | Semiconductor production control and/or measuring unit | |
| US3596127A (en) | Glow discharge lamps for use in spectroscopic analyzers | |
| Milazzo | Versatile Hollow-Cathode Light Source for Spectrochemical Analysis in the Vacuum Ultraviolet | |
| EP0729174B1 (en) | Atmospheric seal and method for glow discharge analytical instrument |