New! View global litigation for patent families

US3875945A - Electrosurgery instrument - Google Patents

Electrosurgery instrument Download PDF

Info

Publication number
US3875945A
US3875945A US41229273A US3875945A US 3875945 A US3875945 A US 3875945A US 41229273 A US41229273 A US 41229273A US 3875945 A US3875945 A US 3875945A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
output
voltage
power
tip
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Joshua Friedman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Demetron Research Corp
Original Assignee
Demetron Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/1253Generators therefor characterised by the output polarity monopolar

Abstract

An electrosurgery instrument having a radio frequency oscillator energized from a power supply controlled by a switching arrangement to produce either dc, full wave rectified ac, or half-wave rectified ac at its output, depending upon whether it is desired to operate in the cut, coagulate, or fulgurate modes, respectively. The level of output voltage of the power supply may be set to any value within a range and thereafter increased by a fixed percentage upon the operation of a remote control switch. The level of output voltage in any mode of operation, once set, is regulated by a feedback control circuit to minimize sparking at the electrode tip. The oscillator output is coupled to an operating probe through an impedance transformer and coaxial cable designed to deliver maximum radio frequency power to the patient without the use of a ground plate. An indicating lamp is connected to points of different potential in the cable and within the probe in order to give a positive indication of the presence of radio frequency power at the probe tip.

Description

United States Patent n 1 Friedman 1 Apr. 8, 1975 [73] Assignee: Demetron Corporation, Ridgefield.

Conn.

221 Filed: Nov. 2, 1973 [21] Appl. No.: 412.292

[521 US. Cl l28/303.l4; 128/303.l7 [51] Int. Cl. A6lh l7/36;A61n 3/02 [58] Field of Search..... l28/303.l4. 303.13, 303.17,

Primary E.\'aminerRichard A. Gaudet Assistant liraminer-Lee S. Cohen [57] ABSTRACT An electrosurgery instrument having a radio frequency oscillator energized from a power supply controlled by a switching arrangement to produce either dc, full wave rectified ac. or half-wave rectified ac at its output. depending upon whether it is desired to operate in the cut. coagulate, or fulgurate modes, respectively. The level of output voltage of the power supply may be set to any value within a range and thereafter increased by a fixed percentage upon the operation of a remote control switch. The level of output voltage in any mode of operation, once set, is regulated by a feedback control circuit to minimize sparking at the electrode tip. The oscillator output is coupled to an operating probe through an impedance transformer and coaxial cable designed to deliver maximum radio frequency power to the patient without the use of a ground plate. An indicating lamp is connected to points of different potential in the cable and within the probe in order to give a positive indication of the presence of radio frequency power at the probe tip.

7 Claims, 1 Drawing Figure PATENTEDAPR 8191s ONLI ELECTROSURGERY INSTRUMENT The present invention relates to electrosurgery instruments and. more particularly. to an electrosurgery instrument capable of efficiently delivering an adjust able quantity of radio frequency power for use in a selected one of three modes of operation.

For many years various types of surgical tool's using electrical energy have been used to carry out various medical and dental operations. Early instruments uti lized spark gap current to burn tissue and. while this was satisfactory for operations where the purpose was destruction of tissue, it was unsatisfactory where it was used to make an incision or for hemostasis with a minimum of necrosis and other undesirable histological changes in adjacent tissue.

Improved instruments, utilizing radio frequency electromagnetic or diathermy energy. overcome some of these limitations but nevertheless suffer from certain disadvantages which have limited their utility. For example. a number ofevisting radio frequency electrosurgical devices utilize vacuum tubes with their concomitant bulk. delay for warm up time. excessive heat generation and poor reliability Other such units are hazardous to the patient and operator in that they require ground plates to minimize the patient to ground impedance and to complete the radio frequency circuit, or they lack effective means for accurately indicating a hot" electrode tip. lllustratively, units requiring a ground plate may not only hinder the operator and present a psychological deterrent to an already apprehensive patient. but they also suffer the disadvantage of subjecting the patient to the possibility of raio frequency burn where non uniform contact is made between the ground plate and the patient's skin, or where, by reason of an unsuspected intermittent break in the plate-connecting wire, the operator finds it necessary to increase the output power level only to find that the output increases still further when the break is reconnected. Still other radio frequency electro-surgery units lack effective means for giving a true indication that the tip is energized and thus give rise to the possibility of severe burns if the "hot" tip is inadvertently touched or wiped to remove tissue therefrom. Another significant disadvantage in existing electrosurgery units is the lack of versatility where there are but two output wave forms to choose from. for it is often desireable to have available an intermediate operational mode for coagulation as well as a cutting mode. designed for incision with a minimum of tissue destruction. and a fulguration mode. designed primarily for tissue destruction. Other such instruments fail to provide the operator with means enabling him to switch from one operational mode to another without taking his eyes from the site of surgery.

Accordingly. it is an object of my invention to provide a compact, efficient. reliable and versatile electrosurgery unit which utilizes radio frequency power and overcomes the shortcomings of the prior art.

It is still another object of my invention to provide a radio frequency electrosurgery instrument which operates efficiently without the need for a ground plate.

It is another object of my invention to provide a radio frequency electrosurgery instrument which affords the operator an opportunity to select from amongst three modes of operation designed primarily for cutting. coagulation. and fulguration. respectively.

lt is still another object of my invention to provide a radio frequency electrosurgery instrument in which the operator may quickly switch from one mode of opera tion to another without diverting his attention from the site of surgery. or removing his hands from the electrode handpiece.

It is yet another object of my invention to provide an electrosurgery instrument in which there is a positive indication of a "hot" tip to prevent inadvertent injury to the patient. operator. or operators assistant.

In most existing radio frequency electrosurgery instruments the operating voltage at the cutting tip varies markedly as contact is made and broken between the cutting tip and the tissue being cut. When this occurs sparking takes place, causing undesireable damage to the tissue.

Accordingly, it is another object of my invention to provide an electrosurgery instrument in which the radio frequency voltage applied to the cutting tip is kept constant, independent of the probe tip to ground impedance.

In accordance with the foregoing and other objects and features of the invention, l have provided an electro-surgery instrument in which a power supply connected to a radio frequency oscillator delivers power over a coaxial cable to a probe containing a surgical tip held in place by a spring loaded or other chuck. The instrument is designed to permit the operator to select from amongst three modes of operation by means of a switching arrangement that causes the power supply to deliver either a dc voltage, a full wave rectified ac. or a half-wave rectified ac as the supply voltage to an r.f. oscillator. The electrode tip coupled to the output of the oscillators is thus energized with a radio frequency voltage which is either unmodulated for operation in the cut mode, or modulated with a cps signal for operation in the coagulate mode. or modulated with a l20cps signal for operation in the fulgurate mode.

After the unit is turned on, the particular mode of operation is selected by first actuating a corresponding switch on a console control panel and thereafter en abling the first stage of a two position control switch remotely located from the console in the area of the pa tient. This switch may be foot operated or be mounted within the hand probe proximate to the cutting tip. The operator may. by increasing the pressure on the control switch, enable the second stage of the switch to in crease the level of output voltage from the power supply and consequently the peak level of radio frequency output power. And when the instrument is being operated in the cut mode, engagement of the second stage of the control switch also causes operation to switch into the coagulation mode.

The instrument also incorporates an impedance transformer, for matching the oscillator low output impedance to the higher patient to ground impedance for the efficient transmission of power without the need of a ground plate, and an indicating lamp, connected within the probe to give positive, reliable indications of a hot tip.

These and other objectives and features of my invention will be better understood if reference is had to the following detailed description and accompanying draw' ing depicting a schematic circuit and probe construction used in my invention.

Referring now to the drawing, the electrosurgery instrument includes a power supply 10 driving an oscillator 20 which is coupled by means of an impedance tranformer 30 to a coaxial cable 40 terminated in a sur gical probe 50 containing a cutting tip 60.

The basic components of power supply include a step down transformer, a bridge rectifier and filter and a voltage regulator circuit. Also connected to control the power supply is a remote control two stage switch 108 and 108.

Step down transformer 1 is arranged so that its primary winding is connected through a normally open switch 2 and a fuse 3 to the 110 volt source of power. The secondary of transformer l is connected to a full wave bridge rectifier comprising diodes 4, 5, 6 and 7. A filter circuit. consisting of resistor 8 and electrolytic capacitor 9, is connected between the positive output terminal of the bridge circuit and ground. An output voltage regulating circuit 11 is connected between the positive output terminal of the bridge circuit and the output of the power supply.

Power supply 10, oscillator and impedance transformer 30 may all be included within a console containing on-off switch 2 and mode switches 105, 105'. 106, 107 and 107' as well as indicating lamps 117, 119 and 121. Switches 105 and 105' are mechanically coupled as are 107 and 107'. and switches 105, 106 and 107 are mechanically interlocked so that only one may be actuated at a time. A two stage spring loaded control switch 108 and 108', remotely situated from the console in the area of the patient. also forms part of the circuit for the electrosurgical instrument.

The drawing depicts the circuit as it exists when line power is applied to the instrument, the cut mode of op eration is selected at the console and the first stage only of the control switch is actuated. Under these circumstances on-off switch 2 is closed, cut switch contacts 105' are closed to deliver ac power from the secondary of transformer 1 through limiting resistor 116 to lamp 117 located under the cut mode switch button, the normally open contacts 108 in the first stage of the control switch are closed and the single pole double throw contacts of switch 108' are as shown to connect resistor 111 through the closed contacts of switches 108, 108' and 105 to the positive terminal of capacitor 9. At the same time resistor 8 is shorted through switches 108' and 105.

When the pressure on the control switch is increased sufficiently to actuate the second stage of the control switch. contacts 108 remain closed and the position of contacts 108 are changed to remove the short across resistor 8 and connect the emitter of transistor 104 through resistor 110 to the positive output terminal of the bridge rectifier circuit. Now resistor 8 is connected in series between the positive terminal of the bridge rectifier and capacitor 9. Resistor 111 remains connected to the positive terminal of the bridge rectifier.

When normally open switch 105 is actuated for the cut mode of operation. the contacts of coagulate mode switch 106 are open and the contacts of the fulgurate mode switch 107 and 107' are as shown with ground connected to the negative output terminal of the bridge circuit. With the first stage of the control switch actuated as shown. a full wave rectified ac voltage is pro duced at the output terminals of the bridge circuit and thereafter filtered to deliver dc power to the input of the oscillator which in turn produces an unmodulated radio frequency signal at its output. The filter circuit consists of capacitor 9 connected directly across the output terminals of the bridge circuit inasmuch as resistor 8 is shorted through the contacts of switches and 108. Capacitor 9 must be large enough to provide a relatively smooth, ripple free dc voltage across its terminals.

A feedback circuit is provided to regulate the voltage at the cutting tip in order to keep it constant at a selected value in the face of varying load impedance. A portion of the radio frequency voltage at the output of oscillator 20 e.g., the voltage drop between the input and first tap in inductance 32 of impedance tranformer 30 is rectified by diode 114 and thereafter filtered by capacitor 115 connected in parallel with potentiometer 109. A portion of this rectified and filtered voltage is picked off by the wiper of potentiometer 109 and impressed upon the base of transistor 104 which is connected as an inverting amplifier. Transistors 102 and 101 connected as Darlington emitter followers are connected between the collector-output of transistor 104 and the output of power supply 10. The emitter voltage of transistor 101 follows the base voltage of transistor 102. Since the collector of transistor 104 is connected to the base of transistor 102, the emitter voltage of transistor 101, which is the dc supply voltage for oscillator 20, follows the collector voltage of transistor 104.

Thus, if the wiper of potentiometer 109 is set closer to its grounded end, a smaller voltage is applied to the base of transistor 104 causing its collector voltage to increase. This. in turn, causes the emitter voltage at transistor 101, and thus the output voltage of power supply 10, to increase. Since the output voltage of rf oscillator 20 is proportional to its dc input voltage. it is controlled by the dc voltage at the emitter of transistor 101. Accordingly. the rf output voltage at the tip of probe 60 is adjusted by moving the wiper of potentiometer 109 the closer the wiper is to ground, the higher the output rf voltage applied to cutting tip 60.

As is well known in the art. the tip to ground impedance varies considerably during operation. Thus. for example, tip to ground impedance when the tip is not in contact with the patients tissue is substantially greater than when contact is made. Unless this variation in impedance is compensated for, the rf voltage at the probe tip will vary during operation, producing a high voltage when the tip is separated from the tissue being cut and a much lower voltage when the tip is in contact with the tissue. And when the voltage increases as described, sparking occurs between the tip and the tissue being cut. causing undesireable tissue damage. It is a prevent this, as well as to make the output independent of power line variations. that I have provided the voltage regulating circuit 11.

By means of the negative feedback arrangement described, any rf voltage increase at the tip of the probe above the level set by potentiometer 109, is detected by diode 114. After passing through the wiper of potentiometer 109 and transistor inverting amplifier 104, the probe tip voltage increase causes a voltage decrease at the collector of transistor 104. This, in turn, causes the dc supply voltage to the oscillator to decrease and thus produces a decrease in the oscillator output voltage ap plied to the cutting tip. In this fashion the rf voltage at cutting tip 60, selected by the position of the slide on potentiometer 109, is maintained at a relatively constant level despite variations in load impedance seen by the cutting tip.

Also shown in the drawing are three lamp circuits connected in parallel across the secondary of transformer I to provide an indication of the mode of operation selected. As described above. when switch I05 is actuated for operation in the cut mode. normally open switch contacts 105' are closed to deliver ac power from the secondary of transformer I through limiting resistor 116 to lamp II7 located under the cut mode switch button. Similar arrangements are provided for the coagulate mode and the fulgurate mode in the form of switches 106 and 107'. respectively.

If. while in the cut mode of operation. the operator desires to switch to the coagulate mode. he will increase his pressure on the control switch and thereby actuate the second stage contacts I08 to simultaneously remove the short across resistor 8 and connect resistor 110 between the emitter of transistor I04 and the output of the bridge circuit. This puts resistor 8 in series with capacitor 9, and since resistor 8 is substantially larger than the bridge circuit impedance. a substantially unfiltered full wave rectified ac appears across the positive output terminal of the bridge circuit and thus across resistor 110 in series with resistor 103. Resistor H0 and resistor 103 form a voltage divider with the portion of the unfiltered full wave ac voltage across resistor I03 applied to emitter of transistor 104 to increase its collector voltage by a fixed amount. This. of course, also increases the rf output voltage of the oscillator by a fixed amount. The voltage regulating circuit II continues to function as before, only now a full wave rectified ac voltage is produced at the output of power supply 10 and connected to oscillator as a modulating signal. It can be shown histologically that by selecting a value for resistor 110 which permits an increase of approximately 50 percent in the ratio of peak to average output voltage, more effective in vivo operation in the coagulate mode results.

It can be seen that the two stage switch circuit arrangement produces certain desirable advantages. Often. during operation in the cut mode. the operator wishes to quickly and effectively coagulate blood without removing his eyes from the surgical site. He may do this by actuating the second stage of the control switch. If. thereafter. he reduces his pressure on the control switch. the second stage will disengage and operation in the cut mode is resumed. When this is done switch contacts 108 return to their original state to again short out resistor 8 and disconnect resistor 110 from the emitter of transistor I04.

When the operator selects the coagulate mode of operation by actuating switch 106 at the console, switch 105 opens to remove the short from across resistor 8 which is then connected in series between the positive output terminal of the bridge circuit and capacitor 9. When the first stage of the control switch is actuated, contacts 108 are closed and the resistor III is connected to the positive output terminal of the bridge rectifier circuit to energize transistor 104. As before a full wave rectified ac voltage is produced at the output of power supply I0. If. now, the operator wishes to momentarily actuate the second stage of the control switch i.e.. contacts I08 resistor 110 is connected to the emitter of transistor 104 to increase the peak to average output voltage as before.

If it is desired to operate the instrument in the fulgurate mode. the operator actuates switch 107, which, by reason of its mechanical interconnection. causes switches I05 and I06 to open. When this occurs the ground is removed from the negative terminal of the bridge circuit and applied instead to one side of the secondary winding of transformer 1. Of course. switch I05 is opened and the short is removed from across resistor 8. The effect of this is to convert the full-wave bridge rectifier circuit into a half-wave rectifier circuit. utilizing only rectifier 5 to produce a half-wave rectified ac voltage at the positive terminal of the bridge circuit. And since resistor 8 is now connected in series with capacitor 9, the half wave output voltage. in substantially unfiltered form, is applied to the collector of transistor 104 through resistor Ill and the terminals of contacts 108 of the first stage of the foot switch. As before. the unfiltered voltage appears at the output of power supply 10. Once again. if the operator desires to momentarily increase the output power, he will engage the second stage of the control switch and actuate contacts 108' to connect resistor 110 between the emitter of transistor 104 and the positive terminal of the rectifier circuit to deliver an increased peak to average voltage at the output of power supply 10.

In each mode of operation the power supply pro duces the direct current power to operate and modulate oscillator 20. While a common emitter feedback type oscillator circuit is shown, it has been found that any oscillator producing a radio frequency in the range of l to 4 megacycles will enable the instrument to perform satisfactorily.

Typically, the collector impedance of transistor power oscillators such as oscillator 20 is small compared to the impedance between the cutting tip and ground e. g.. the power oscillator collector impedance is resistive and on the order of 5 ohms. while the tip to ground impedance, consisting of the patient body resistance in series with the patient to ground capacitance, can be as high as 1,500 ohms. In conventional electrosurgery instruments this mismatch is compensated for by reducing the tip to ground impedance with a ground plate with its concomitant disadvantage.

In my invention, l have eliminated the need for a ground plate and simultaneously avoided the problems of radiation interference and the possibility of radio frequency burns (where insulation becomes defective) associated with the common usage of an insulated conductor connecting the oscillator to the probe.

In my invention, coaxial cable is connected between the probe and an impedance transformer 30 to match the load impedance to the oscillator output impedance for efficient and safe power transfer. By choosing a length for cable 40 which is less than one quarter wavelength. the impedance seen looking into the cable at the junction with impedance transformer 30 is approximately the capacitance of cable 40 in parallel with the patient-body impedance. As will be understood by those versed in the art, the cable capacitance adds to the capacitance of capacitor 31 in impedance tranformer 30, and this augmented capacitance is connected in a 1r network, including capacitor 33 and the portion of inductor 32 between capacitor 3i and capacitor 33, to transform the high patient impedance into a lower impedance approximating the output impedance of oscillator 20.

An inductance 56 may be connected between the end of the cable 40 and a terminal post that is electrically connected to a chuck fitted within the hollow of probe 50, which may be fashioned from cylindrically shaped insulation material. The inductance will then be in series with the patient to ground circuit. This inductance 56 is selected to have a value so that its positive rcactance equals the negative reactance of an average patient to ground capacitance to further increase the effective rf power delivered to the cutting site.

The shield of coaxial cable 40 is grounded at a jack terminal at the impedance transformer within the console. Insulation is stripped away from a portion of cable within probe some distance from terminal post to expose a shield segment 5!. A series circuit consisting of resistor 54 and lamp 53 is connected between the end of the center conductor of cable 40 and the exposed shield segment 51 to provide a means for indicating when radio frequency power is present at the cutting tip 60. Probe 50 is constructed with a translucent circumferential band forming a window 57 that permits the light from lamp 53 to be seen over a 360 viewing angle.

A series circuit consisting of resistor 41 and a lamp 42 may be connected at the console between the output of impedance transformer 30 and ground to indi cate when oscillator 20 is energized. Lamps 53 and 42 may be neon bulbs or any other indicators that can be energized directly by rf voltage.

Finally. the chuck may be any of a variety of convenient devices which enable cutting tip 60 to be inserted and removed with facility. Thus. for example. the chuck may be a friction device or. as shown in the drawing and as more fully described in US. Pat. No. 2,80l .613. a device having 3 or 4 normally open jaws 71 made from spring brass or other conductive metal which are closed by a spring loaded collar 72. Cap 73 is press fitted over a retainer bushing 74 fitted over collar 72, which in turn acts against spring 75. laws 71 are fitted within collar 72 so that their shaft extends through spring 75 into a tapped portion of terminal post 55 so an electrical connection is made therebetween. When cap 73 is pushed to compress spring 75, the jaws of the chuck extend from collar 72 to expand and permit the insertion or removal of cutting tip 60. This extension of jaws 71 takes place entirely within cap 73. which has a small opening 76 at its end to admit tip 60. With this arrangement, the chuck is made to accept various diameter cutting tips.

It is to be understood that the above-described arrangements are illustrative of the application of the principles of the invention. Numerous other arrangements may be devised by those skilled in the art without departing from the spirit and scope of the invention.

What I claim is;

1. An electrosurgery instrument connected to a source of ac power comprising a power supply including a switching means for selectively producing a full wave rectified output voltage, a half wave rectified output voltage and a substantially ripple-free dc output voltage from said source of ac power; and ac oscillator having input terminals and output terminals; an operating probe containing a cutting tip, means for coupling said oscillator output terminals to said cutting tip; and regulator means for connecting a selected one of said output voltages to said oscillator input terminals including feedback means connected to said coupling means for maintaining a substantially constant voltage at said oscillator output terminals independent of variations in load impedance and power line voltage.

2. An clectrosurgery instrument in accordance with claim I wherein said regulator means includes means for selectively adjusting the magnitude of output voltage from said power supply independent from said switching means.

3. An electrosurgery instrument in accordance with claim 2 wherein said regulator means further includes a feedback circuit comprising a rectifier connected to a portion of said oscillator output voltage. a filter network including a potentiometer connected to said rectifier. an inverting amplifier connected to the slide of said potentiometer and amplifier means controlled by said inverting amplifier for connecting a selected one of said power supply output voltages to said oscillator input terminals.

4. An electrosurgery instrument in accordance with claim 1 wherein said switching means includes a primary switch for selecthely producing one of said out put voltages at the output of said power supply and a remotely situated control switch having a first stage for energizing said oscillator input terminals with a selected one of said power supply output voltages and a second stage for simultaneously increasing the magnitude of said selected output voltage and for overriding said primary switch to produce said full wave rectified voltage at said output of said power supply when said primary switching means is arranged to select said ripple-free dc output voltage for application to said output of said power supply.

5. An clectrosurgery instrument in accordance with claim 4 wherein said oscillator produces a voltage having a frequency in the range of l to 4 megacycles.

6. An electrosurgery instrument in accordance with claim 1 wherein said means for coupling said oscillator to said cutting tip includes an impedance transformer to effect a substantial match between the operating impedance seen by said cutting tip and the output impedance of said oscillator, a coaxial cable having a length less than one-quarter the wave length of said oscillator voltage connected between said cutting tip and said impedance transformer and an inductance having a magnitude in the range of 10-40 microhenrys serially connected between the terminal of said cable within said probe and said cutting tip.

7. An electrosurgery instrument in accordance with claim 1 wherein said operating probe comprises a hollow tubular housing fabricated from an electrical insulator material having a translucent band running circumferentially over a portion of its length and an interior lamp adjacent to said band having two terminals connected to points of different potential on said cable. t l i I

Claims (7)

1. An electrosurgery instrument connected to a source of ac power comprising a power supply including a switching means for selectively producing a full wave rectified output voltage, a half wave rectified output voltage and a substantially ripplefree dc output voltage from said source of ac power; and ac oscillator having input terminals and output terminals; an operating probe containing a cutting tip, means for coupling said oscillator output terminals to said cutting tip; and regulator means for connecting a selected one of said output voltages to said oscillator input terminals including feedback means connected to said coupling means for maintaining a substantially constant voltage at said oscillator output terminals independent of variations in load impedance and power line voltage.
2. An electrosurgery instrument in accordance with claim 1 wherein said regulator means includes means for selectively adjusting the magnitude of output voltage from said power supply independent from said switching means.
3. An electrosurgery instrument in accordance with claim 2 wherein said regulator means further includes a feedback circuit comprising a rectifier connected to a portion of said oscillator output voltage, a filter network including a potentiometer connected to said rectifier, an inverting amplifier connected to the slide of said potentiometer and amplifier means controlled by said inverting amplifier for connecting a selected one of said power supply output voltages to said oscillator input terminals.
4. An electrosurgery instrument in accordance with claim 1 wherein said switching means includes a primary switch for selectively producing one of said output voltages at the output of said power supply and a remotely situated control switch having a first stage for energizing said oscillator input terminals with a selected one of said power supply output voltages and a second stage for simultaneously increasing the magnitude of said selected output voltage and for overriding said primary switch to produce said full wave rectified voltage at said output of said power supply when said primary switching means is arranged to select said ripple-free dc output voltage for application to said output of said power supply.
5. An electrosurgery instrument in accordance with claim 4 wherein said oscillator produces a voltage having a frequency in the range of 1 to 4 megacycles.
6. An electrosurgery instrument in accordance with claim 1 wherein said means for coupling said oscillator to said cutting tip includes an impedance transformer to effect a substantial match between the operating impedance seen by said cutting tip and the output impedance of said oscillator, a coaxial cable having a length less than one-quarter the wave length of said oscillator voltage connected between said cutting tip and said impedance transformer and an inductance having a magnitude in the range of 10-40 microhenrys serially connected between the terminal of said cable within said probe and said cutting tip.
7. An electrosurgery instrument in accordance with claim 1 wherein said operating probe comprises a hollow tubular housing fabricated from an electrical insulator material having a translucent band running circumferentially over a portion of its length and an interior lamp adjacent to said band having two terminals connected to points of different potential on said cable.
US3875945A 1973-11-02 1973-11-02 Electrosurgery instrument Expired - Lifetime US3875945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US3875945A US3875945A (en) 1973-11-02 1973-11-02 Electrosurgery instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3875945A US3875945A (en) 1973-11-02 1973-11-02 Electrosurgery instrument

Publications (1)

Publication Number Publication Date
US3875945A true US3875945A (en) 1975-04-08

Family

ID=23632415

Family Applications (1)

Application Number Title Priority Date Filing Date
US3875945A Expired - Lifetime US3875945A (en) 1973-11-02 1973-11-02 Electrosurgery instrument

Country Status (1)

Country Link
US (1) US3875945A (en)

Cited By (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952748A (en) * 1974-07-18 1976-04-27 Minnesota Mining And Manufacturing Company Electrosurgical system providing a fulguration current
US3964487A (en) * 1974-12-09 1976-06-22 The Birtcher Corporation Uncomplicated load-adapting electrosurgical cutting generator
US3999552A (en) * 1975-05-20 1976-12-28 Universal Technology, Inc. Epilator
US4034761A (en) * 1975-12-15 1977-07-12 The Birtcher Corporation Disposable electrosurgical switching assembly
US4057063A (en) * 1975-04-11 1977-11-08 U.S. Philips Corporation Device for sterilization by transuterine tube coagulation
US4092986A (en) * 1976-06-14 1978-06-06 Ipco Hospital Supply Corporation (Whaledent International Division) Constant output electrosurgical unit
US4114623A (en) * 1975-02-01 1978-09-19 Karl Storz Endoscopy-America, Inc. Cutting and coagulation apparatus for surgery
US4196734A (en) * 1978-02-16 1980-04-08 Valleylab, Inc. Combined electrosurgery/cautery system and method
US4301801A (en) * 1979-02-16 1981-11-24 Ipco Hospital Supply Corporation (Whaledent International Division) Electrosurge failsafe system
US4372315A (en) * 1980-07-03 1983-02-08 Hair Free Centers Impedance sensing epilator
US4492231A (en) * 1982-09-17 1985-01-08 Auth David C Non-sticking electrocautery system and forceps
US4498475A (en) * 1982-08-27 1985-02-12 Ipco Corporation Electrosurgical unit
US4566454A (en) * 1981-06-16 1986-01-28 Thomas L. Mehl Selected frequency hair removal device and method
US4569345A (en) * 1984-02-29 1986-02-11 Aspen Laboratories, Inc. High output electrosurgical unit
US4574801A (en) * 1984-02-29 1986-03-11 Aspen Laboratories, Inc. Electrosurgical unit with regulated output
US4580562A (en) * 1981-01-02 1986-04-08 Goof Sven Karl Lennart Electrosurgical apparatus
US4800878A (en) * 1987-08-26 1989-01-31 Becton, Dickinson And Company Electrosurgical knife with visual alarm
US4818954A (en) * 1986-02-15 1989-04-04 Karl Storz Endoscopy-America, Inc. High-frequency generator with automatic power-control for high-frequency surgery
US4932952A (en) * 1988-12-20 1990-06-12 Alto Development Corporation Antishock, anticlog suction coagulator
US5312327A (en) * 1992-10-09 1994-05-17 Symbiosis Corporation Cautery override safety systems endoscopic electrosurgical suction-irrigation instrument
US5458598A (en) * 1993-12-02 1995-10-17 Cabot Technology Corporation Cutting and coagulating forceps
US5472443A (en) * 1991-06-07 1995-12-05 Hemostatic Surgery Corporation Electrosurgical apparatus employing constant voltage and methods of use
WO1996039087A1 (en) * 1995-06-06 1996-12-12 Valleylab Inc. Exit spark control for an electrosurgical generator
US5633578A (en) * 1991-06-07 1997-05-27 Hemostatic Surgery Corporation Electrosurgical generator adaptors
US5647869A (en) * 1994-06-29 1997-07-15 Gyrus Medical Limited Electrosurgical apparatus
US5693045A (en) * 1995-06-07 1997-12-02 Hemostatic Surgery Corporation Electrosurgical generator cable
WO1998040022A1 (en) * 1997-03-10 1998-09-17 The University Of Iowa Research Foundation Remote controlled coagulator system and methods
US5817091A (en) * 1997-05-20 1998-10-06 Medical Scientific, Inc. Electrosurgical device having a visible indicator
US5984918A (en) * 1997-12-22 1999-11-16 Garito; Jon C. Electrosurgical handpiece with multiple electrode collet
US6039734A (en) * 1995-10-24 2000-03-21 Gyrus Medical Limited Electrosurgical hand-held battery-operated instrument
EP1034747A1 (en) * 1999-03-05 2000-09-13 Gyrus Medical Limited Electrosurgery system and instrument
US6228080B1 (en) 1997-04-09 2001-05-08 Sherwood Services Ag Electrosurgical generator with adaptive power control
EP1197184A1 (en) * 1997-07-02 2002-04-17 Kabushikikaisha Nihon M.D.M Apparatus for biological tissue treatment utilizing high frequency
WO2002054967A1 (en) * 2001-01-15 2002-07-18 Silhouet-Tone Ltée Probe assembly, device and system for rf epilation
US20030139742A1 (en) * 2002-01-23 2003-07-24 Wampler Scott D. Feedback light apparatus and method for use with an electrosurgical instrument
US20040206138A1 (en) * 1992-01-24 2004-10-21 Kensington Microware Limited Computer physical security device
US20040230262A1 (en) * 2003-02-20 2004-11-18 Sartor Joe D. Motion detector for controlling electrosurgical output
US20050113823A1 (en) * 2003-11-20 2005-05-26 Reschke Arlan J. Electrosurgical pencil with improved controls
US20050113824A1 (en) * 2003-11-20 2005-05-26 Sartor Joe D. Electrosurgical pencil with improved controls
WO2005060849A1 (en) * 2003-11-20 2005-07-07 Sherwood Services Ag Electrosurgical pencil with plurality of controls
US20050150263A1 (en) * 1993-10-15 2005-07-14 Acco Brands, Inc. Computer physical security device
US20050215995A1 (en) * 2001-03-30 2005-09-29 Japan Medical Dynamic Marketing, Inc. Electromagnetic field surgical device and method
US20060041257A1 (en) * 2003-11-20 2006-02-23 Sartor Joe D Electrosurgical pencil with improved controls
US20060058783A1 (en) * 2002-07-25 2006-03-16 Sherwood Services Ag Electrosurgical pencil with drag sensing capability
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US20060112740A1 (en) * 2004-11-29 2006-06-01 Acco Brands, Inc. Security device including engagement member
US20060178667A1 (en) * 2003-11-20 2006-08-10 Sartor Joe D Electrosurgical pencil with advanced es controls
US20060235378A1 (en) * 2005-04-18 2006-10-19 Sherwood Services Ag Slider control for ablation handset
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US20060293655A1 (en) * 2005-06-28 2006-12-28 Sherwood Services Ag Electrode with rotatably deployable sheath
US7241294B2 (en) 2003-11-19 2007-07-10 Sherwood Services Ag Pistol grip electrosurgical pencil with manual aspirator/irrigator and methods of using the same
US7244257B2 (en) 2002-11-05 2007-07-17 Sherwood Services Ag Electrosurgical pencil having a single button variable control
US20070174947A1 (en) * 2006-01-19 2007-08-02 Andrew Schneider Surgical glove system
US7255694B2 (en) 2002-12-10 2007-08-14 Sherwood Services Ag Variable output crest factor electrosurgical generator
US7300435B2 (en) 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US7303557B2 (en) 1998-10-23 2007-12-04 Sherwood Services Ag Vessel sealing system
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
GB2450679A (en) * 2007-06-19 2009-01-07 Gyrus Medical Ltd Electrosurgical System with status indicators on instruments
EP1707145A3 (en) * 2005-03-31 2009-03-25 Covidien AG Electrosurgical pencil with advanced es controls
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US20090157067A1 (en) * 2007-12-17 2009-06-18 Thermage, Inc. Method and apparatus for digital signal processing for radio frequency surgery measurements
US20090248010A1 (en) * 2008-03-31 2009-10-01 Monte Fry Electrosurgical Pencil Including Improved Controls
US20090248017A1 (en) * 2008-03-31 2009-10-01 Tyco Healthcare Group Lp Electrosurgical Pencil Including Improved Controls
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US7637907B2 (en) 2006-09-19 2009-12-29 Covidien Ag System and method for return electrode monitoring
US20090322034A1 (en) * 2008-06-27 2009-12-31 Cunningham James S High Volume Fluid Seal for Electrosurgical Handpiece
US20100004669A1 (en) * 2007-12-03 2010-01-07 Smith Kevin W Cordless Hand-Held Ultrasonic Cautery Cutting Device and Method
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US20100094288A1 (en) * 2008-10-10 2010-04-15 Tyco Healthcare Group Lp System and Method for Delivering High Current to Electrosurgical Device
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US7749217B2 (en) 2002-05-06 2010-07-06 Covidien Ag Method and system for optically detecting blood and controlling a generator during electrosurgery
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US20100204696A1 (en) * 2009-02-10 2010-08-12 Tyco Healthcare Group Lp Extension Cutting Blade
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7789878B2 (en) * 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US20100280513A1 (en) * 2009-04-14 2010-11-04 Old Dominion University Research Foundation System and method for applying plasma sparks to tissue
US7828794B2 (en) 2005-08-25 2010-11-09 Covidien Ag Handheld electrosurgical apparatus for controlling operating room equipment
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
WO2011025857A1 (en) * 2009-08-26 2011-03-03 Syntheon, Llc Two -stage switch for cordless hand-held ultrasonic cautery cutting device
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US20110071520A1 (en) * 2009-09-23 2011-03-24 Tyco Healthcare Group Lp Methods and Apparatus for Smart Handset Design in Surgical Instruments
US20110077631A1 (en) * 2009-09-28 2011-03-31 Tyco Healthcare Group Lp Electrosurgical Generator User Interface
US7927328B2 (en) 2006-01-24 2011-04-19 Covidien Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US7951150B2 (en) 2005-01-14 2011-05-31 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US7972328B2 (en) 2006-01-24 2011-07-05 Covidien Ag System and method for tissue sealing
US20110172689A1 (en) * 2007-12-03 2011-07-14 Smith Kevin W Method of Maintaining Constant Movement of a Cutting Blade on an Ultrasonic Waveguide
US20110196368A1 (en) * 2005-01-14 2011-08-11 Covidien Ag Open Vessel Sealing Instrument
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US8061014B2 (en) 2007-12-03 2011-11-22 Covidien Ag Method of assembling a cordless hand-held ultrasonic cautery cutting device
US8104956B2 (en) 2003-10-23 2012-01-31 Covidien Ag Thermocouple measurement circuit
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US8197633B2 (en) 2005-09-30 2012-06-12 Covidien Ag Method for manufacturing an end effector assembly
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US8235987B2 (en) 2007-12-05 2012-08-07 Tyco Healthcare Group Lp Thermal penetration and arc length controllable electrosurgical pencil
US8257352B2 (en) 2003-11-17 2012-09-04 Covidien Ag Bipolar forceps having monopolar extension
US20120253339A1 (en) * 2011-03-31 2012-10-04 Tyco Healthcare Group Lp Radio frequency-based surgical implant fixation apparatus
US8361072B2 (en) 2005-09-30 2013-01-29 Covidien Ag Insulating boot for electrosurgical forceps
US8372099B2 (en) 2007-12-03 2013-02-12 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US8394095B2 (en) 2005-09-30 2013-03-12 Covidien Ag Insulating boot for electrosurgical forceps
US8394096B2 (en) 2003-11-19 2013-03-12 Covidien Ag Open vessel sealing instrument with cutting mechanism
US8403950B2 (en) 2007-12-03 2013-03-26 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US8435257B2 (en) 2007-12-03 2013-05-07 Covidien Ag Cordless hand-held ultrasonic cautery cutting device and method
US8454602B2 (en) 2009-05-07 2013-06-04 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8487199B2 (en) 2008-11-06 2013-07-16 Covidien Ag Method of switching a surgical device
US8486061B2 (en) 2009-01-12 2013-07-16 Covidien Lp Imaginary impedance process monitoring and intelligent shut-off
US8506565B2 (en) 2007-08-23 2013-08-13 Covidien Lp Electrosurgical device with LED adapter
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
US8523898B2 (en) 2009-07-08 2013-09-03 Covidien Lp Endoscopic electrosurgical jaws with offset knife
US8551091B2 (en) 2002-10-04 2013-10-08 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US8568444B2 (en) 2008-10-03 2013-10-29 Covidien Lp Method of transferring rotational motion in an articulating surgical instrument
US8597292B2 (en) 2008-03-31 2013-12-03 Covidien Lp Electrosurgical pencil including improved controls
US8641713B2 (en) 2005-09-30 2014-02-04 Covidien Ag Flexible endoscopic catheter with ligasure
US8663214B2 (en) 2006-01-24 2014-03-04 Covidien Ag Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US8663262B2 (en) 2007-12-03 2014-03-04 Covidien Ag Battery assembly for battery-powered surgical instruments
US8668689B2 (en) 2005-09-30 2014-03-11 Covidien Ag In-line vessel sealer and divider
US8668688B2 (en) 2006-05-05 2014-03-11 Covidien Ag Soft tissue RF transection and resection device
US8679114B2 (en) 2003-05-01 2014-03-25 Covidien Ag Incorporating rapid cooling in tissue fusion heating processes
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US8709010B2 (en) 2007-06-19 2014-04-29 Gyrus Medical Limited Electrosurgical system
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US8740901B2 (en) 2002-10-04 2014-06-03 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US8808161B2 (en) 2003-10-23 2014-08-19 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
US8852228B2 (en) 2009-01-13 2014-10-07 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8898888B2 (en) 2009-09-28 2014-12-02 Covidien Lp System for manufacturing electrosurgical seal plates
US20150001956A1 (en) * 2013-06-27 2015-01-01 Tdk Corporation Wireless power receiving device, and wireless power transmission device
US8945125B2 (en) 2002-11-14 2015-02-03 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US9017355B2 (en) 2007-12-03 2015-04-28 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US9028493B2 (en) 2009-09-18 2015-05-12 Covidien Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US9066747B2 (en) 2007-11-30 2015-06-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US9107690B2 (en) 2007-12-03 2015-08-18 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US9113898B2 (en) 2008-10-09 2015-08-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US9149337B2 (en) 2006-01-19 2015-10-06 Andrew I. Schneider Surgical glove systems and method of using the same
US9149323B2 (en) 2003-05-01 2015-10-06 Covidien Ag Method of fusing biomaterials with radiofrequency energy
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9220527B2 (en) 2007-07-27 2015-12-29 Ethicon Endo-Surgery, Llc Surgical instruments
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9232979B2 (en) 2012-02-10 2016-01-12 Ethicon Endo-Surgery, Inc. Robotically controlled surgical instrument
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9241764B2 (en) 2011-09-26 2016-01-26 Andrew I. Schneider Method of making polymeric gloves having embedded surgical support systems and discrete elements
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9314261B2 (en) 2007-12-03 2016-04-19 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9414853B2 (en) 2007-07-27 2016-08-16 Ethicon Endo-Surgery, Llc Ultrasonic end effectors with increased active length
US9427249B2 (en) 2010-02-11 2016-08-30 Ethicon Endo-Surgery, Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US9439669B2 (en) 2007-07-31 2016-09-13 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9445832B2 (en) 2007-07-31 2016-09-20 Ethicon Endo-Surgery, Llc Surgical instruments
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US9498245B2 (en) 2009-06-24 2016-11-22 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9504483B2 (en) 2007-03-22 2016-11-29 Ethicon Endo-Surgery, Llc Surgical instruments
US9504855B2 (en) 2008-08-06 2016-11-29 Ethicon Surgery, LLC Devices and techniques for cutting and coagulating tissue
US9510850B2 (en) 2010-02-11 2016-12-06 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9623237B2 (en) 2009-10-09 2017-04-18 Ethicon Endo-Surgery, Llc Surgical generator for ultrasonic and electrosurgical devices
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9636135B2 (en) 2007-07-27 2017-05-02 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9649126B2 (en) 2010-02-11 2017-05-16 Ethicon Endo-Surgery, Llc Seal arrangements for ultrasonically powered surgical instruments
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9707027B2 (en) 2010-05-21 2017-07-18 Ethicon Endo-Surgery, Llc Medical device
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9764164B2 (en) 2009-07-15 2017-09-19 Ethicon Llc Ultrasonic surgical instruments
US9782180B2 (en) 2007-12-03 2017-10-10 Covidien Ag Method of maintaining constant movement of a cutting blade of an ultrasonic waveguide
US9801648B2 (en) 2007-03-22 2017-10-31 Ethicon Llc Surgical instruments
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9848902B2 (en) 2007-10-05 2017-12-26 Ethicon Llc Ergonomic surgical instruments
US9848901B2 (en) 2010-02-11 2017-12-26 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US9861382B2 (en) 2007-12-03 2018-01-09 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9883884B2 (en) 2007-03-22 2018-02-06 Ethicon Llc Ultrasonic surgical instruments
US9931131B2 (en) 2015-05-11 2018-04-03 Covidien Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3089496A (en) * 1959-08-19 1963-05-14 Code Inc Control system for surgical apparatus
US3532095A (en) * 1968-06-21 1970-10-06 Weck & Co Inc Edward Electrosurgical instrument
US3675655A (en) * 1970-02-04 1972-07-11 Electro Medical Systems Inc Method and apparatus for high frequency electric surgery
US3699967A (en) * 1971-04-30 1972-10-24 Valleylab Inc Electrosurgical generator
US3707149A (en) * 1970-10-16 1972-12-26 Majesco Inc Electrosurgery unit and instrument
US3720896A (en) * 1970-06-23 1973-03-13 Siemens Ag Handle for high frequency electrodes
US3730188A (en) * 1971-03-24 1973-05-01 I Ellman Electrosurgical apparatus for dental use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3089496A (en) * 1959-08-19 1963-05-14 Code Inc Control system for surgical apparatus
US3532095A (en) * 1968-06-21 1970-10-06 Weck & Co Inc Edward Electrosurgical instrument
US3675655A (en) * 1970-02-04 1972-07-11 Electro Medical Systems Inc Method and apparatus for high frequency electric surgery
US3720896A (en) * 1970-06-23 1973-03-13 Siemens Ag Handle for high frequency electrodes
US3707149A (en) * 1970-10-16 1972-12-26 Majesco Inc Electrosurgery unit and instrument
US3730188A (en) * 1971-03-24 1973-05-01 I Ellman Electrosurgical apparatus for dental use
US3699967A (en) * 1971-04-30 1972-10-24 Valleylab Inc Electrosurgical generator

Cited By (324)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952748A (en) * 1974-07-18 1976-04-27 Minnesota Mining And Manufacturing Company Electrosurgical system providing a fulguration current
US3964487A (en) * 1974-12-09 1976-06-22 The Birtcher Corporation Uncomplicated load-adapting electrosurgical cutting generator
US4114623A (en) * 1975-02-01 1978-09-19 Karl Storz Endoscopy-America, Inc. Cutting and coagulation apparatus for surgery
US4209018A (en) * 1975-02-01 1980-06-24 Karl Fastenmeier Tissue coagulation apparatus and method
US4057063A (en) * 1975-04-11 1977-11-08 U.S. Philips Corporation Device for sterilization by transuterine tube coagulation
US3999552A (en) * 1975-05-20 1976-12-28 Universal Technology, Inc. Epilator
US4034761A (en) * 1975-12-15 1977-07-12 The Birtcher Corporation Disposable electrosurgical switching assembly
US4092986A (en) * 1976-06-14 1978-06-06 Ipco Hospital Supply Corporation (Whaledent International Division) Constant output electrosurgical unit
US4196734A (en) * 1978-02-16 1980-04-08 Valleylab, Inc. Combined electrosurgery/cautery system and method
US4301801A (en) * 1979-02-16 1981-11-24 Ipco Hospital Supply Corporation (Whaledent International Division) Electrosurge failsafe system
US4372315A (en) * 1980-07-03 1983-02-08 Hair Free Centers Impedance sensing epilator
US4580562A (en) * 1981-01-02 1986-04-08 Goof Sven Karl Lennart Electrosurgical apparatus
US4566454A (en) * 1981-06-16 1986-01-28 Thomas L. Mehl Selected frequency hair removal device and method
US4498475A (en) * 1982-08-27 1985-02-12 Ipco Corporation Electrosurgical unit
US4492231A (en) * 1982-09-17 1985-01-08 Auth David C Non-sticking electrocautery system and forceps
US4569345A (en) * 1984-02-29 1986-02-11 Aspen Laboratories, Inc. High output electrosurgical unit
US4574801A (en) * 1984-02-29 1986-03-11 Aspen Laboratories, Inc. Electrosurgical unit with regulated output
US4818954A (en) * 1986-02-15 1989-04-04 Karl Storz Endoscopy-America, Inc. High-frequency generator with automatic power-control for high-frequency surgery
US4800878A (en) * 1987-08-26 1989-01-31 Becton, Dickinson And Company Electrosurgical knife with visual alarm
US4932952A (en) * 1988-12-20 1990-06-12 Alto Development Corporation Antishock, anticlog suction coagulator
US5633578A (en) * 1991-06-07 1997-05-27 Hemostatic Surgery Corporation Electrosurgical generator adaptors
US5472443A (en) * 1991-06-07 1995-12-05 Hemostatic Surgery Corporation Electrosurgical apparatus employing constant voltage and methods of use
US20040206138A1 (en) * 1992-01-24 2004-10-21 Kensington Microware Limited Computer physical security device
US7100403B2 (en) 1992-01-24 2006-09-05 Acco Brands Usa Llc Computer physical security device
US5312327A (en) * 1992-10-09 1994-05-17 Symbiosis Corporation Cautery override safety systems endoscopic electrosurgical suction-irrigation instrument
US20050150262A1 (en) * 1993-10-15 2005-07-14 Acco Brands, Inc. Computer physical security device
US7100404B2 (en) 1993-10-15 2006-09-05 Acco Brands Usa Llc Computer physical security device
US20050150263A1 (en) * 1993-10-15 2005-07-14 Acco Brands, Inc. Computer physical security device
US7201029B2 (en) 1993-10-15 2007-04-10 Acco Brands Usa Llc Computer physical security device
US5458598A (en) * 1993-12-02 1995-10-17 Cabot Technology Corporation Cutting and coagulating forceps
US5647869A (en) * 1994-06-29 1997-07-15 Gyrus Medical Limited Electrosurgical apparatus
WO1996039087A1 (en) * 1995-06-06 1996-12-12 Valleylab Inc. Exit spark control for an electrosurgical generator
US5693045A (en) * 1995-06-07 1997-12-02 Hemostatic Surgery Corporation Electrosurgical generator cable
US6039734A (en) * 1995-10-24 2000-03-21 Gyrus Medical Limited Electrosurgical hand-held battery-operated instrument
WO1998040022A1 (en) * 1997-03-10 1998-09-17 The University Of Iowa Research Foundation Remote controlled coagulator system and methods
US5928227A (en) * 1997-03-10 1999-07-27 The University Of Iowa Research Remote controlled coagulator system and methods
US6228080B1 (en) 1997-04-09 2001-05-08 Sherwood Services Ag Electrosurgical generator with adaptive power control
USRE40388E1 (en) 1997-04-09 2008-06-17 Covidien Ag Electrosurgical generator with adaptive power control
US5817091A (en) * 1997-05-20 1998-10-06 Medical Scientific, Inc. Electrosurgical device having a visible indicator
EP1197184B1 (en) * 1997-07-02 2005-04-27 Kabushikikaisha Nihon M.D.M Apparatus for biological tissue treatment utilizing high frequency
EP1197184A1 (en) * 1997-07-02 2002-04-17 Kabushikikaisha Nihon M.D.M Apparatus for biological tissue treatment utilizing high frequency
US5984918A (en) * 1997-12-22 1999-11-16 Garito; Jon C. Electrosurgical handpiece with multiple electrode collet
US9375271B2 (en) 1998-10-23 2016-06-28 Covidien Ag Vessel sealing system
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US8105323B2 (en) 1998-10-23 2012-01-31 Covidien Ag Method and system for controlling output of RF medical generator
US9168089B2 (en) 1998-10-23 2015-10-27 Covidien Ag Method and system for controlling output of RF medical generator
US8287528B2 (en) 1998-10-23 2012-10-16 Covidien Ag Vessel sealing system
US9375270B2 (en) 1998-10-23 2016-06-28 Covidien Ag Vessel sealing system
US9113900B2 (en) 1998-10-23 2015-08-25 Covidien Ag Method and system for controlling output of RF medical generator
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US8591506B2 (en) 1998-10-23 2013-11-26 Covidien Ag Vessel sealing system
US7303557B2 (en) 1998-10-23 2007-12-04 Sherwood Services Ag Vessel sealing system
US9463067B2 (en) 1998-10-23 2016-10-11 Covidien Ag Vessel sealing system
EP1034747A1 (en) * 1999-03-05 2000-09-13 Gyrus Medical Limited Electrosurgery system and instrument
WO2002054967A1 (en) * 2001-01-15 2002-07-18 Silhouet-Tone Ltée Probe assembly, device and system for rf epilation
US20050215995A1 (en) * 2001-03-30 2005-09-29 Japan Medical Dynamic Marketing, Inc. Electromagnetic field surgical device and method
US20030139742A1 (en) * 2002-01-23 2003-07-24 Wampler Scott D. Feedback light apparatus and method for use with an electrosurgical instrument
US6676660B2 (en) * 2002-01-23 2004-01-13 Ethicon Endo-Surgery, Inc. Feedback light apparatus and method for use with an electrosurgical instrument
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7749217B2 (en) 2002-05-06 2010-07-06 Covidien Ag Method and system for optically detecting blood and controlling a generator during electrosurgery
US20060058783A1 (en) * 2002-07-25 2006-03-16 Sherwood Services Ag Electrosurgical pencil with drag sensing capability
US7393354B2 (en) 2002-07-25 2008-07-01 Sherwood Services Ag Electrosurgical pencil with drag sensing capability
US8016824B2 (en) 2002-07-25 2011-09-13 Covidien Ag Electrosurgical pencil with drag sensing capability
US7621909B2 (en) 2002-07-25 2009-11-24 Covidien Ag Electrosurgical pencil with drag sensing capability
US8740901B2 (en) 2002-10-04 2014-06-03 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US8551091B2 (en) 2002-10-04 2013-10-08 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US9585716B2 (en) 2002-10-04 2017-03-07 Covidien Ag Vessel sealing instrument with electrical cutting mechanism
US8128622B2 (en) 2002-11-05 2012-03-06 Covidien Ag Electrosurgical pencil having a single button variable control
US7244257B2 (en) 2002-11-05 2007-07-17 Sherwood Services Ag Electrosurgical pencil having a single button variable control
US8945125B2 (en) 2002-11-14 2015-02-03 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US7824400B2 (en) 2002-12-10 2010-11-02 Covidien Ag Circuit for controlling arc energy from an electrosurgical generator
US8523855B2 (en) 2002-12-10 2013-09-03 Covidien Ag Circuit for controlling arc energy from an electrosurgical generator
US7255694B2 (en) 2002-12-10 2007-08-14 Sherwood Services Ag Variable output crest factor electrosurgical generator
US20040230262A1 (en) * 2003-02-20 2004-11-18 Sartor Joe D. Motion detector for controlling electrosurgical output
US7235072B2 (en) 2003-02-20 2007-06-26 Sherwood Services Ag Motion detector for controlling electrosurgical output
US7955327B2 (en) 2003-02-20 2011-06-07 Covidien Ag Motion detector for controlling electrosurgical output
US8267929B2 (en) 2003-05-01 2012-09-18 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8012150B2 (en) 2003-05-01 2011-09-06 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8080008B2 (en) 2003-05-01 2011-12-20 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8298223B2 (en) 2003-05-01 2012-10-30 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US9149323B2 (en) 2003-05-01 2015-10-06 Covidien Ag Method of fusing biomaterials with radiofrequency energy
US8679114B2 (en) 2003-05-01 2014-03-25 Covidien Ag Incorporating rapid cooling in tissue fusion heating processes
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8303580B2 (en) 2003-05-01 2012-11-06 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8647340B2 (en) 2003-10-23 2014-02-11 Covidien Ag Thermocouple measurement system
US8808161B2 (en) 2003-10-23 2014-08-19 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
US8104956B2 (en) 2003-10-23 2012-01-31 Covidien Ag Thermocouple measurement circuit
US8113057B2 (en) 2003-10-30 2012-02-14 Covidien Ag Switched resonant ultrasonic power amplifier system
US9768373B2 (en) 2003-10-30 2017-09-19 Covidien Ag Switched resonant ultrasonic power amplifier system
US8485993B2 (en) 2003-10-30 2013-07-16 Covidien Ag Switched resonant ultrasonic power amplifier system
US8096961B2 (en) 2003-10-30 2012-01-17 Covidien Ag Switched resonant ultrasonic power amplifier system
US8966981B2 (en) 2003-10-30 2015-03-03 Covidien Ag Switched resonant ultrasonic power amplifier system
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US8597296B2 (en) 2003-11-17 2013-12-03 Covidien Ag Bipolar forceps having monopolar extension
US8257352B2 (en) 2003-11-17 2012-09-04 Covidien Ag Bipolar forceps having monopolar extension
US7241294B2 (en) 2003-11-19 2007-07-10 Sherwood Services Ag Pistol grip electrosurgical pencil with manual aspirator/irrigator and methods of using the same
US8394096B2 (en) 2003-11-19 2013-03-12 Covidien Ag Open vessel sealing instrument with cutting mechanism
US20050113823A1 (en) * 2003-11-20 2005-05-26 Reschke Arlan J. Electrosurgical pencil with improved controls
US7959633B2 (en) 2003-11-20 2011-06-14 Covidien Ag Electrosurgical pencil with improved controls
US8449540B2 (en) 2003-11-20 2013-05-28 Covidien Ag Electrosurgical pencil with improved controls
US7503917B2 (en) * 2003-11-20 2009-03-17 Covidien Ag Electrosurgical pencil with improved controls
US7416437B2 (en) 2003-11-20 2008-08-26 Sherwood Services Ag Connector systems for electrosurgical generator
US7156842B2 (en) 2003-11-20 2007-01-02 Sherwood Services Ag Electrosurgical pencil with improved controls
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US20060041257A1 (en) * 2003-11-20 2006-02-23 Sartor Joe D Electrosurgical pencil with improved controls
US7879033B2 (en) * 2003-11-20 2011-02-01 Covidien Ag Electrosurgical pencil with advanced ES controls
US7766693B2 (en) 2003-11-20 2010-08-03 Covidien Ag Connector systems for electrosurgical generator
WO2005060849A1 (en) * 2003-11-20 2005-07-07 Sherwood Services Ag Electrosurgical pencil with plurality of controls
US20050113824A1 (en) * 2003-11-20 2005-05-26 Sartor Joe D. Electrosurgical pencil with improved controls
US7156844B2 (en) 2003-11-20 2007-01-02 Sherwood Services Ag Electrosurgical pencil with improved controls
US20060178667A1 (en) * 2003-11-20 2006-08-10 Sartor Joe D Electrosurgical pencil with advanced es controls
US7300435B2 (en) 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US8348948B2 (en) 2004-03-02 2013-01-08 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
EP1645233A1 (en) * 2004-10-06 2006-04-12 Sherwood Services AG Electrosurgical pencil with improved controls
EP2292171A3 (en) * 2004-10-06 2014-09-17 Covidien AG Electrosurgical pencil with improved controls
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US8025660B2 (en) 2004-10-13 2011-09-27 Covidien Ag Universal foot switch contact port
US20060112740A1 (en) * 2004-11-29 2006-06-01 Acco Brands, Inc. Security device including engagement member
US8147489B2 (en) 2005-01-14 2012-04-03 Covidien Ag Open vessel sealing instrument
US20110196368A1 (en) * 2005-01-14 2011-08-11 Covidien Ag Open Vessel Sealing Instrument
US7951150B2 (en) 2005-01-14 2011-05-31 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
EP1707145A3 (en) * 2005-03-31 2009-03-25 Covidien AG Electrosurgical pencil with advanced es controls
US20060235378A1 (en) * 2005-04-18 2006-10-19 Sherwood Services Ag Slider control for ablation handset
US20090138012A1 (en) * 2005-06-28 2009-05-28 Sherwood Services Ag Electrode with Rotatably Deployable Sheath
US20060293655A1 (en) * 2005-06-28 2006-12-28 Sherwood Services Ag Electrode with rotatably deployable sheath
US8100902B2 (en) 2005-06-28 2012-01-24 Covidien Ag Electrode with rotatably deployable sheath
US8460289B2 (en) 2005-06-28 2013-06-11 Covidien Ag Electrode with rotatably deployable sheath
US7500974B2 (en) 2005-06-28 2009-03-10 Covidien Ag Electrode with rotatably deployable sheath
US7828794B2 (en) 2005-08-25 2010-11-09 Covidien Ag Handheld electrosurgical apparatus for controlling operating room equipment
US8668689B2 (en) 2005-09-30 2014-03-11 Covidien Ag In-line vessel sealer and divider
US8394095B2 (en) 2005-09-30 2013-03-12 Covidien Ag Insulating boot for electrosurgical forceps
US7789878B2 (en) * 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
US8641713B2 (en) 2005-09-30 2014-02-04 Covidien Ag Flexible endoscopic catheter with ligasure
US9549775B2 (en) 2005-09-30 2017-01-24 Covidien Ag In-line vessel sealer and divider
US8197633B2 (en) 2005-09-30 2012-06-12 Covidien Ag Method for manufacturing an end effector assembly
US9579145B2 (en) 2005-09-30 2017-02-28 Covidien Ag Flexible endoscopic catheter with ligasure
US8361072B2 (en) 2005-09-30 2013-01-29 Covidien Ag Insulating boot for electrosurgical forceps
US9522032B2 (en) 2005-10-21 2016-12-20 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US8241278B2 (en) 2005-12-12 2012-08-14 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US8449541B2 (en) 2006-01-19 2013-05-28 Andrew I. Schneider Surgical glove system
US8182479B2 (en) 2006-01-19 2012-05-22 Schneider Andrew I Surgical glove system
US20070192931A1 (en) * 2006-01-19 2007-08-23 Schneider Andrew I Surgical glove system
US20070174947A1 (en) * 2006-01-19 2007-08-02 Andrew Schneider Surgical glove system
US7931648B2 (en) 2006-01-19 2011-04-26 Schneider Andrew I Surgical glove system
US20110191935A1 (en) * 2006-01-19 2011-08-11 Schneider Andrew I Surgical glove system
US7951145B2 (en) * 2006-01-19 2011-05-31 Schneider Andrew I Surgical glove system
US9149337B2 (en) 2006-01-19 2015-10-06 Andrew I. Schneider Surgical glove systems and method of using the same
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
US8267928B2 (en) 2006-01-24 2012-09-18 Covidien Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US8187262B2 (en) 2006-01-24 2012-05-29 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US8663214B2 (en) 2006-01-24 2014-03-04 Covidien Ag Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US9642665B2 (en) 2006-01-24 2017-05-09 Covidien Ag Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US8475447B2 (en) 2006-01-24 2013-07-02 Covidien Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US7927328B2 (en) 2006-01-24 2011-04-19 Covidien Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US7972328B2 (en) 2006-01-24 2011-07-05 Covidien Ag System and method for tissue sealing
US8202271B2 (en) 2006-01-24 2012-06-19 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7972332B2 (en) 2006-03-03 2011-07-05 Covidien Ag System and method for controlling electrosurgical snares
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US8556890B2 (en) 2006-04-24 2013-10-15 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US9119624B2 (en) 2006-04-24 2015-09-01 Covidien Ag ARC based adaptive control system for an electrosurgical unit
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US8668688B2 (en) 2006-05-05 2014-03-11 Covidien Ag Soft tissue RF transection and resection device
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US7637907B2 (en) 2006-09-19 2009-12-29 Covidien Ag System and method for return electrode monitoring
US8231616B2 (en) 2006-09-28 2012-07-31 Covidien Ag Transformer for RF voltage sensing
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US9801648B2 (en) 2007-03-22 2017-10-31 Ethicon Llc Surgical instruments
US9504483B2 (en) 2007-03-22 2016-11-29 Ethicon Endo-Surgery, Llc Surgical instruments
US9883884B2 (en) 2007-03-22 2018-02-06 Ethicon Llc Ultrasonic surgical instruments
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US8709010B2 (en) 2007-06-19 2014-04-29 Gyrus Medical Limited Electrosurgical system
US20090012516A1 (en) * 2007-06-19 2009-01-08 Gyrus Medical Limited Electrosurgical system
GB2450679A (en) * 2007-06-19 2009-01-07 Gyrus Medical Ltd Electrosurgical System with status indicators on instruments
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US9642644B2 (en) 2007-07-27 2017-05-09 Ethicon Endo-Surgery, Llc Surgical instruments
US9220527B2 (en) 2007-07-27 2015-12-29 Ethicon Endo-Surgery, Llc Surgical instruments
US9414853B2 (en) 2007-07-27 2016-08-16 Ethicon Endo-Surgery, Llc Ultrasonic end effectors with increased active length
US9636135B2 (en) 2007-07-27 2017-05-02 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9707004B2 (en) 2007-07-27 2017-07-18 Ethicon Llc Surgical instruments
US9913656B2 (en) 2007-07-27 2018-03-13 Ethicon Llc Ultrasonic surgical instruments
US9445832B2 (en) 2007-07-31 2016-09-20 Ethicon Endo-Surgery, Llc Surgical instruments
US9439669B2 (en) 2007-07-31 2016-09-13 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US8506565B2 (en) 2007-08-23 2013-08-13 Covidien Lp Electrosurgical device with LED adapter
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8353905B2 (en) 2007-09-07 2013-01-15 Covidien Lp System and method for transmission of combined data stream
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
US9271790B2 (en) 2007-09-21 2016-03-01 Coviden Lp Real-time arc control in electrosurgical generators
US9848902B2 (en) 2007-10-05 2017-12-26 Ethicon Llc Ergonomic surgical instruments
US9339289B2 (en) 2007-11-30 2016-05-17 Ehticon Endo-Surgery, LLC Ultrasonic surgical instrument blades
US9066747B2 (en) 2007-11-30 2015-06-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8333778B2 (en) 2007-12-03 2012-12-18 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US8444662B2 (en) 2007-12-03 2013-05-21 Covidien Lp Cordless hand-held ultrasonic cautery cutting device
US8236020B2 (en) 2007-12-03 2012-08-07 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US9084625B2 (en) 2007-12-03 2015-07-21 Covidien Ag Battery assembly for battery-powered surgical instruments
US20110178542A1 (en) * 2007-12-03 2011-07-21 Smith Kevin W Cordless Hand-Held Ultrasonic Cautery Cutting Device
US8439939B2 (en) 2007-12-03 2013-05-14 Covidien Ag Method of powering a surgical instrument
US20100004669A1 (en) * 2007-12-03 2010-01-07 Smith Kevin W Cordless Hand-Held Ultrasonic Cautery Cutting Device and Method
US20110172689A1 (en) * 2007-12-03 2011-07-14 Smith Kevin W Method of Maintaining Constant Movement of a Cutting Blade on an Ultrasonic Waveguide
US8435257B2 (en) 2007-12-03 2013-05-07 Covidien Ag Cordless hand-held ultrasonic cautery cutting device and method
US9017355B2 (en) 2007-12-03 2015-04-28 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US8425545B2 (en) 2007-12-03 2013-04-23 Covidien Ag Cordless hand-held ultrasonic cautery cutting device and method
US8663262B2 (en) 2007-12-03 2014-03-04 Covidien Ag Battery assembly for battery-powered surgical instruments
US8992555B2 (en) 2007-12-03 2015-03-31 Covidien Ag Method of assembling a cordless hand-held ultrasonic cautery cutting device
US8418349B2 (en) 2007-12-03 2013-04-16 Covidien Ag Method of assembling a cordless hand-held ultrasonic cautery cutting device
US8419757B2 (en) 2007-12-03 2013-04-16 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US9872696B2 (en) 2007-12-03 2018-01-23 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US9782180B2 (en) 2007-12-03 2017-10-10 Covidien Ag Method of maintaining constant movement of a cutting blade of an ultrasonic waveguide
US8419758B2 (en) 2007-12-03 2013-04-16 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US8403950B2 (en) 2007-12-03 2013-03-26 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US8061014B2 (en) 2007-12-03 2011-11-22 Covidien Ag Method of assembling a cordless hand-held ultrasonic cautery cutting device
US8403948B2 (en) 2007-12-03 2013-03-26 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US9861382B2 (en) 2007-12-03 2018-01-09 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US9107690B2 (en) 2007-12-03 2015-08-18 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US8403949B2 (en) 2007-12-03 2013-03-26 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US8377085B2 (en) 2007-12-03 2013-02-19 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US8372101B2 (en) 2007-12-03 2013-02-12 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US8372099B2 (en) 2007-12-03 2013-02-12 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US9314261B2 (en) 2007-12-03 2016-04-19 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US8333779B2 (en) 2007-12-03 2012-12-18 Covidien Ag Method of maintaining constant movement of a cutting blade of an ultrasonic waveguide
US20110167619A1 (en) * 2007-12-03 2011-07-14 Smith Kevin W Cordless Hand-Held Ultrasonic Cautery Cutting Device
US8197502B2 (en) 2007-12-03 2012-06-12 Covidien Ag Method of maintaining constant movement of a cutting blade on an ultrasonic waveguide
US8945124B2 (en) 2007-12-05 2015-02-03 Covidien Lp Thermal penetration and arc length controllable electrosurgical pencil
US8235987B2 (en) 2007-12-05 2012-08-07 Tyco Healthcare Group Lp Thermal penetration and arc length controllable electrosurgical pencil
US20090157067A1 (en) * 2007-12-17 2009-06-18 Thermage, Inc. Method and apparatus for digital signal processing for radio frequency surgery measurements
US8180458B2 (en) * 2007-12-17 2012-05-15 Thermage, Inc. Method and apparatus for digital signal processing for radio frequency surgery measurements
US20090248010A1 (en) * 2008-03-31 2009-10-01 Monte Fry Electrosurgical Pencil Including Improved Controls
US8663219B2 (en) 2008-03-31 2014-03-04 Covidien Lp Electrosurgical pencil including improved controls
US8632536B2 (en) 2008-03-31 2014-01-21 Covidien Lp Electrosurgical pencil including improved controls
US20090248017A1 (en) * 2008-03-31 2009-10-01 Tyco Healthcare Group Lp Electrosurgical Pencil Including Improved Controls
US8597292B2 (en) 2008-03-31 2013-12-03 Covidien Lp Electrosurgical pencil including improved controls
US8591509B2 (en) 2008-03-31 2013-11-26 Covidien Lp Electrosurgical pencil including improved controls
US8663218B2 (en) 2008-03-31 2014-03-04 Covidien Lp Electrosurgical pencil including improved controls
US9198720B2 (en) 2008-03-31 2015-12-01 Covidien Lp Electrosurgical pencil including improved controls
US8636733B2 (en) 2008-03-31 2014-01-28 Covidien Lp Electrosurgical pencil including improved controls
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US20090322034A1 (en) * 2008-06-27 2009-12-31 Cunningham James S High Volume Fluid Seal for Electrosurgical Handpiece
US8162937B2 (en) 2008-06-27 2012-04-24 Tyco Healthcare Group Lp High volume fluid seal for electrosurgical handpiece
US9504855B2 (en) 2008-08-06 2016-11-29 Ethicon Surgery, LLC Devices and techniques for cutting and coagulating tissue
US9795808B2 (en) 2008-08-06 2017-10-24 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US8568444B2 (en) 2008-10-03 2013-10-29 Covidien Lp Method of transferring rotational motion in an articulating surgical instrument
US9113898B2 (en) 2008-10-09 2015-08-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US20100094288A1 (en) * 2008-10-10 2010-04-15 Tyco Healthcare Group Lp System and Method for Delivering High Current to Electrosurgical Device
US8734444B2 (en) 2008-10-10 2014-05-27 Covidien Lp System and method for delivering high current to electrosurgical device
US9770287B2 (en) 2008-10-10 2017-09-26 Covidien Lp System and method for delivering high current to electrosurgical device
US8487199B2 (en) 2008-11-06 2013-07-16 Covidien Ag Method of switching a surgical device
US8497436B2 (en) 2008-11-06 2013-07-30 Covidien Ag Two-stage switch for surgical device
US8742269B2 (en) 2008-11-06 2014-06-03 Covidien Ag Two-stage switch for surgical device
US8497437B2 (en) 2008-11-06 2013-07-30 Covidien Ag Method of switching a surgical device
US8502091B2 (en) 2008-11-06 2013-08-06 Covidien Ag Two-Stage Switch for Surgical Device
US8334468B2 (en) 2008-11-06 2012-12-18 Covidien Ag Method of switching a cordless hand-held ultrasonic cautery cutting device
US8486061B2 (en) 2009-01-12 2013-07-16 Covidien Lp Imaginary impedance process monitoring and intelligent shut-off
US9655674B2 (en) 2009-01-13 2017-05-23 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8852228B2 (en) 2009-01-13 2014-10-07 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8231620B2 (en) * 2009-02-10 2012-07-31 Tyco Healthcare Group Lp Extension cutting blade
US20100204696A1 (en) * 2009-02-10 2010-08-12 Tyco Healthcare Group Lp Extension Cutting Blade
US8709006B2 (en) * 2009-04-14 2014-04-29 Old Dominion Research Foundation System and method for applying plasma sparks to tissue
US20100280513A1 (en) * 2009-04-14 2010-11-04 Old Dominion University Research Foundation System and method for applying plasma sparks to tissue
US8858554B2 (en) 2009-05-07 2014-10-14 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US9345535B2 (en) 2009-05-07 2016-05-24 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8454602B2 (en) 2009-05-07 2013-06-04 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9498245B2 (en) 2009-06-24 2016-11-22 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US8523898B2 (en) 2009-07-08 2013-09-03 Covidien Lp Endoscopic electrosurgical jaws with offset knife
US9764164B2 (en) 2009-07-15 2017-09-19 Ethicon Llc Ultrasonic surgical instruments
WO2011025857A1 (en) * 2009-08-26 2011-03-03 Syntheon, Llc Two -stage switch for cordless hand-held ultrasonic cautery cutting device
US8338726B2 (en) 2009-08-26 2012-12-25 Covidien Ag Two-stage switch for cordless hand-held ultrasonic cautery cutting device
US9028493B2 (en) 2009-09-18 2015-05-12 Covidien Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US20110071520A1 (en) * 2009-09-23 2011-03-24 Tyco Healthcare Group Lp Methods and Apparatus for Smart Handset Design in Surgical Instruments
US8568400B2 (en) * 2009-09-23 2013-10-29 Covidien Lp Methods and apparatus for smart handset design in surgical instruments
US20110077631A1 (en) * 2009-09-28 2011-03-31 Tyco Healthcare Group Lp Electrosurgical Generator User Interface
US8898888B2 (en) 2009-09-28 2014-12-02 Covidien Lp System for manufacturing electrosurgical seal plates
US8652125B2 (en) 2009-09-28 2014-02-18 Covidien Lp Electrosurgical generator user interface
US9623237B2 (en) 2009-10-09 2017-04-18 Ethicon Endo-Surgery, Llc Surgical generator for ultrasonic and electrosurgical devices
US9427249B2 (en) 2010-02-11 2016-08-30 Ethicon Endo-Surgery, Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US9510850B2 (en) 2010-02-11 2016-12-06 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9649126B2 (en) 2010-02-11 2017-05-16 Ethicon Endo-Surgery, Llc Seal arrangements for ultrasonically powered surgical instruments
US9848901B2 (en) 2010-02-11 2017-12-26 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US9707027B2 (en) 2010-05-21 2017-07-18 Ethicon Endo-Surgery, Llc Medical device
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US20120253339A1 (en) * 2011-03-31 2012-10-04 Tyco Healthcare Group Lp Radio frequency-based surgical implant fixation apparatus
US9241764B2 (en) 2011-09-26 2016-01-26 Andrew I. Schneider Method of making polymeric gloves having embedded surgical support systems and discrete elements
US20160174636A1 (en) * 2011-09-26 2016-06-23 Andrew I. Schneider Method of making polymeric gloves having embedded surgical support systems and discrete elements
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US9925003B2 (en) 2012-02-10 2018-03-27 Ethicon Endo-Surgery, Llc Robotically controlled surgical instrument
US9232979B2 (en) 2012-02-10 2016-01-12 Ethicon Endo-Surgery, Inc. Robotically controlled surgical instrument
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9700343B2 (en) 2012-04-09 2017-07-11 Ethicon Endo-Surgery, Llc Devices and techniques for cutting and coagulating tissue
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9737326B2 (en) 2012-06-29 2017-08-22 Ethicon Endo-Surgery, Llc Haptic feedback devices for surgical robot
US9713507B2 (en) 2012-06-29 2017-07-25 Ethicon Endo-Surgery, Llc Closed feedback control for electrosurgical device
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US9795405B2 (en) 2012-10-22 2017-10-24 Ethicon Llc Surgical instrument
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9743947B2 (en) 2013-03-15 2017-08-29 Ethicon Endo-Surgery, Llc End effector with a clamp arm assembly and blade
US20150001956A1 (en) * 2013-06-27 2015-01-01 Tdk Corporation Wireless power receiving device, and wireless power transmission device
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9655670B2 (en) 2013-07-29 2017-05-23 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9931131B2 (en) 2015-05-11 2018-04-03 Covidien Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor

Similar Documents

Publication Publication Date Title
US5019076A (en) Radio frequency surgical tool and method
US5192280A (en) Pivoting multiple loop bipolar cutting device
US5267998A (en) Medical high frequency coagulation cutting instrument
US4919129A (en) Extendable electrocautery surgery apparatus and method
US5234429A (en) Cauterization instrument and associated surgical method
US5035695A (en) Extendable electrocautery surgery apparatus and method
US5669907A (en) Plasma enhanced bipolar electrosurgical system
US5540684A (en) Method and apparatus for electrosurgically treating tissue
US5443463A (en) Coagulating forceps
US5976128A (en) Electrosurgical high frequency generator
US4311143A (en) Apparatus for resecting tissue inside the body cavity utilizing high-frequency currents
US2442966A (en) Electrosurgical resecting instrument
US6296640B1 (en) RF bipolar end effector for use in electrosurgical instruments
US4269174A (en) Transcutaneous vasectomy apparatus and method
US3913583A (en) Control circuit for electrosurgical units
US5976131A (en) Detachable endovascular occlusion device activated by alternating electric current
US6551313B1 (en) Electrosurgical instrument with separate cutting and coagulating members
EP1330991B1 (en) Electrosurgical instrument with light monitor on effector
US7335199B2 (en) Tissue resurfacing
EP1157666B1 (en) Impedance feedback monitor for electrosurgical instrument
US3920021A (en) Coagulating devices
US6030383A (en) Electrosurgical instrument and method of use
US6582427B1 (en) Electrosurgery system
US3730188A (en) Electrosurgical apparatus for dental use
US4031898A (en) Surgical instrument for coagulation purposes