US3875441A - Electron discharge device including an electron emissive electrode having an undulating cross-sectional contour - Google Patents

Electron discharge device including an electron emissive electrode having an undulating cross-sectional contour Download PDF

Info

Publication number
US3875441A
US3875441A US420325A US42032573A US3875441A US 3875441 A US3875441 A US 3875441A US 420325 A US420325 A US 420325A US 42032573 A US42032573 A US 42032573A US 3875441 A US3875441 A US 3875441A
Authority
US
United States
Prior art keywords
electron
electrode
electrodes
series
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US420325A
Inventor
Richard Dale Faulkner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Priority to US420325A priority Critical patent/US3875441A/en
Priority to CA212,688A priority patent/CA1015020A/en
Priority to AU75679/74A priority patent/AU481605B2/en
Priority to FR7438666A priority patent/FR2253271B1/fr
Priority to JP13696474A priority patent/JPS5530663B2/ja
Priority to NLAANVRAGE7415532,A priority patent/NL180714C/en
Priority to GB51813/74A priority patent/GB1494836A/en
Priority to DE19742456596 priority patent/DE2456596A1/en
Application granted granted Critical
Publication of US3875441A publication Critical patent/US3875441A/en
Assigned to BANCBOSTON FINANCIAL COMPANY reassignment BANCBOSTON FINANCIAL COMPANY SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BURLE TECHNOLOGIES, INC., A DE CORPORATION
Anticipated expiration legal-status Critical
Assigned to BARCLAYS BUSINESS CREDIT, INC. reassignment BARCLAYS BUSINESS CREDIT, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BURLES TECHNOLOGIES, INC., A CORP. OF DE
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/12Anode arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers

Definitions

  • An electron emissive surface portion on one of a series of electrodes includes a cross-sectional contour substantially characterized by a superimposed undulating line of curvature which includes a plurality of interconnected arcuate regions.
  • the present invention relates to electron discharge devices and more particularly to electron multipliers. and photomultiplier tubes.
  • Electron multipliers are used, for instance, as internal amplifiers in camera tubes and photomultiplier tubes.
  • An electron multiplier is a device utilizing secondary electron emission to amplify or multiply electron current from an electron source, such as the photocathode of a photomultiplier or a thermionic cathode.
  • the usual electron multiplier comprises a series, or chain, of secondary emitting dynodes, interposed between an elec tron source and an output collector of multiplied electrons.
  • the dynodes are formed of or coated with secondary emissive material and impressed with progressively increasing potentials.
  • Electron multipliers are particularly useful for amplifying electron current produced by weak signals, such as light, nuclear radiation. or radiation in the electromagnetic spectrum.
  • Photomultipliers are particularly useful for converting weak light signals to electron currents which are thereafter amplified by an electron multiplier within the photomultiplier.
  • electron multipliers and photomultipliers have generally been limited in their ability to uniformly amplify information-significant components which are focused to impinge upon various points along their input surfaces.
  • the effective photosensitive area of certain prior art photomultipliers such as the circular cage types, may be only a fraction of the total photocathode area provided.
  • electron interstage skipping may produce undesirable fractionalphotoelectron pulses in the output. Poor collection efficiency at the first electrode of a photomultiplier or of an electron multiplier may destroy the informationsignificant component of the input signal.
  • An electron discharge device includes a series of at least two electron optically aligned electrodes in which one of the electrodes comprises an anode.
  • a means is provided for emitting a stream of electrons from preceding ones of said series of electrodes and for accelerating said electrons to impinge upon succeeding ones of said electrodes in sequence.
  • the means for emitting a stream of electrons from the first of said series of electrodes includes an electron emissive surface portion having a cross-sectional contour substantially characterized by an undulating line of curvature superimposed thereon which includes a plurality of interconnected arcuate regions.
  • FIG. 1 is a cutaway perspective view of a photomultiplier having a circular cage electron multiplier made in accordance with the invention.
  • FIG. 2 is a diagrammatic depiction of so much of the device of FIG. I as is necessary to explain the contour and the relative arrangement of the electrodes required to achieve improved performance.
  • FIG. 3 is a diagrammatic depiction of the crosssectional contour of an electron emissive surface made in accordance with the invention.
  • FIGS. 40 and 4b are a graphical comparison of the relative uniformity of sensitivity of the photomultiplier of FIG. 1 with a comparable prior art photomultiplier device for respective parallel and perpendicular scans relative to planes defined by the major surfaces of the ceramic electrode mounting plates 18a and 18b of the electron multiplier depicted in FIG. 1.
  • FIG. 5 is a perspective view of a modified annular focusing electrode for incorporation in the photomultiplier of FIG. 1.
  • FIG. I there is shown a photomultiplier tube 10, as the preferred embodiment of an electron discharge device in accordance with the invention, having a cylindrical envelope 12.
  • the envelope [2 comprises an evacuated glass bottle having a ceramic base 14 integrally sealed at one end.
  • a semitransparent photocathode I6 is formed on the inner faceplate surface of an end portion 11 of the envelope 12.
  • An electron multiplier 17 is mounted inside the tube 10.
  • Nine successive dynode electrodes 20-38 and an anode electrode 40, of the multiplier 17, are mounted in circular cage fashion between two parallel ceramic electrode mounting plates 18a and 18b.
  • the respective electrodes are provided with an elongation in a direction perpendicular to the planes defined by the plates 18a and 18b (i.e., perpendicular to the cross-section of tube 10 depicted in FIG. 1).
  • annular focusing ring electrode 42 having two upturned lip portions 420 and 42b, is interposed between the photocathode 16 and the electron multiplier 17.
  • Ring 42 includes a substantially u-shaped crosssection. Ceramic plates 18a and 18b are secured to the ring 42 by means of tabs 44 and 46 which protrude through slots in the ring 42, forming therewith an integral assembly.
  • a plurality of lead-in pins 48 sealed through the base of the tube 10, provide electrically insulated leads to the interior of the tube 10.
  • Each of the pins 48 is electrically interconnected within the tube to a corresponding electrode.
  • the photocathode 16 is electrically connected to one of the pins 48 by means of the wire 50 and an aluminized coating 52 disposed around the upper inner cylindrical surface region of the envelope 12.
  • the aluminized coating 52 acts as a shield and, when interconnected to its operating potential, provides for the electrostatic focusing of electrons between the photocathode l6 and the electron multiplier 17 of the device.
  • the semitransparent photocathode l6 acts as a source of electrons which emits electrons in response to light which impinges thereon.
  • These photoelectrons are electrostatically focused by means of the electron optics created within the tube between the cathode 16 and the electron multiplier 17. Suitable electrostatic field forces are generated in that region by the aluminized coating 52 and the annular focusing ring 42 whereby the electrons are accelerated through an aperture 54 in the ring 42 by applying appropriate potentials to respective interconnected pins 42.
  • the aperture 54 preferably is covered with an electron permeable grid 43 as part of electron optic focusing structure, however, its use is not necessarily required and may be avoided without substantially affect ing the operation of the device.
  • Photoelectrons emitted from the electron source 16 are thereafter focused to impinge upon an electron emissive surface 56 of the first dynode 20 of electron multiplier 17.
  • the surface 56 consists of any of the known secondary emissive materials, such as, for example, a berillium oxide 560 coating on a copper berillium substrate 56b. This secondary emissive material releases several secondary electrons for each impinging electron. These emitted electrons are accelerated to impinge on a similar secondary emissive surface 58 on the next dynode 22, whereupon each produces more secondary electrons. This process is repeated at each successive dynode 24-38, in sequence.
  • electrons entering the low potential input end of the electron multiplier are successively multiplied by secondary electron emission at each dynode 20-38.
  • An electric field (electrostatic or magnetic) accelerates the secondary electrons from one dynode to the next successive dynode.
  • the electrons emitted from the last dynode are collected by an anode 40 or collector of electrons.
  • the prior art electron discharge devices include a curved or fiat electron emissive electrode (such as electrode 20) upon which electrons from an electron source are focused, or upon which light is directly focused.
  • the corresponding electrode is the first dynode electrode 20 of the electron multiplier 17.
  • this electrode would comprise the electron source electrode or photocathode.
  • first electrode irrespective of the electron emissive phenomenon (i.e., photoemission or secondary electron emission) associated with this electrode (hereinafter referred to as first electrode), l have found a substantial non-uniformity in the output of the respective prior art devices at their respective anodes when the input energy source (i.e., the electrons of the electron source, or the light source) is scanned across the first electrode in a perpendicular or parallel direction relative to the planes defined by the major surfaces of spacers 18a and i812.
  • the input energy source i.e., the electrons of the electron source, or the light source
  • Electrode 20 includes a substantially L-shaped cross-section including leg sections L1 and L2 (FIG. 3).
  • the section L1 provides an electrostatic shield and establishes requisite field potentials in the region between dynodes 20, 22 and 24 for focusing electrons between these dynodes.
  • Typical electron trajectories are for example, depicted in FIG. 2 by the dashed lines 60.
  • the functional equivalent of section Ll may be, for example, also provided by a separate focusing structure (electrostatic or magnetic) and is not considered, of necessity, an integral part of the electrode 20.
  • the novel electron emissive surface is provided with a cross-sectional contour which may be substantially characterized by an undulating line of curvature superimposed thereon (along the cross-section of section L2) which includes a plurality of interconnected arcuate regions.
  • the novel electron emissive surface includes two interconnected arcuate regions defined by the angles a and iii, having a respective radii of r, and r,
  • the arcuate regions need not conform exactly to the cross-sectional contour of the electron emission surface.
  • the arcuate region defined by the angle ti! in FIG. 3 includes a region defined by the angle til-B which in turn, includes a straight line portion extending from point C: to C
  • Such minor modification of the undulating contour of the electron emissive surface may be provided so long as an adequate number of the respective electrons emitted from that region are collected by (i.e., impinge upon) the succeeding electrode.
  • numerous other geometrical modifications of the contour may be accomplished on a minor scale relative to the overall contour dimensions without substantially affecting the operational performance of the device.
  • the relative magnitudes of the radii n, r, and the angles out: (and/or B) may be proportionately scaled in accordance with the size and arrangement of various electrodes incorporated into the device, as herinafter described.
  • electron emission electrodes having an undulating cross-sectional contour may be easily incorporated by persons skilled in the art into the prior art electron discharge devices, such as previously described, to provide substantially uniform collection of the electron stream emitted from the first electrode, substantially independent of the respective point of origin of various ones of the electrons along that cross-sectional contour.
  • b:i(3.44,3.20); b,(0.l4,3.20) b (2.39.2.78l1b(;(l.l9.2.79) b1(2.39,2.54); bx(l.l2,2.54l c,(2.3l,l.54); c (1.85,l.5I); c (l.50.l.57) c,(l.30,l.52); c -,(l.l4,l.65) c,;(l.l4.2.45); a 52l5;
  • the cathode was formed in a manner well-known in the art to consist a K C,S,, (Potassium-cesiumantimonide) photoemissive material. Secondary electron emissive electrodes were suitably formed of a 0.01 cm. thick copper berillium material.
  • the construction and arrangement of the photomultiplier was, in other respects, substantially similar to RCA photomultiplier tube type 4,517 and/or other equivalent commercial types.
  • FIGS. 4a and 4b comparative test data is shown relating the uniformity of response of the novel photomultiplier herein described (solid curves 72, 73, 74, 75, 84 and 85) with a comparable RCA type 4,517 photomultiplier (dashed curves 70, 71, 80 and 81).
  • FIGS. 4a and 4b depict relative sensitivity test data obtained by scanning a snall-diameter light source of fixed intensity approximately 1mm. in diameter across the center line of the face of tube which includes the photocathode 16 of respective ones of the tested devices. More specifically, the curves of FIG.
  • FIG. 4a depict sensitivity data for scans of the light source in a direction parallel to the planes defined by spacers 18a and 18b (parallel scans), whereas the curves of FIG. 4b are for scans of the light source in a direction perpendicular to the planes defined by spacers 18a and 18b (i.e., perpendicular scans).
  • the curves 70, 72, 74, 80 and 84 represent cathode scan curves, that is scan curves obtained by connecting the non photoemissive electrodes of the respective devices to act as anodes. These scans represent the anode signal current, in relative sensitivity, when the respective device is operative as a photo diode. Such cathode scan curves provide a visual depiction of the uniformity of response of each respective cathode as that cathode is scanned.
  • the curves 7], 73, 75, 8] and 85 are anode scan" curves, that is, scan curves of the anode signal current obtained by operating the respective devices under normal recommended operating conditions Dynode 20:
  • the respective anode scan curves must follow a substantially similar contour as that depicted by the cathode scan curve of the same device.
  • prior-art photomultiplier tubes in general, have displayed relatively poor uniformity of sensitivity when scanned across their diameter by a uniform light source.
  • the dashed anode scan curves 7] (parallel scan) and 81 (perpendicular scan) for the comparable RCA tube 4,5 l 7 have markedly differing contours from their cathode scan curves represented by the dashed curves and respectively.
  • anode scan test data obtained for the novel photomultiplier tube herein described is represented by the solid line curve 73 and provides a visual depiction of the substantial improvement in the uniformity of response of the device when that curve is compared with its respective cathode scan test data represented by the solid line curve 72.
  • the sensitivity of the device is substantially lost in region D (FIGS. 2 and 4a). I have found that this apparent decreased sensitivity results from electron skipping in the region between the first dynode 20 and the second dynode 22. As shown, by the representative electron trajectories 60 (FIG. 2), a portion of the electron stream emitted from photocathode I6 is lost between the dynode 20 and the dynode 24 and does not impinge upon the electron emissive surface of dynode 22 (i.e., not collected by dynode 22).
  • the tapered annular focusing ring 42t was constructed in a manner similar to ring 42 (FIG. 2). Coordinate dimensional data expressed above for points b,b and b ,,(FIG. 2) remained unchanged as did other pertinent constructional data for the novel device above described fully with reference to FIG. 2. Point b was changed, however, to define a desirable symmetrical ring taper Y for the outer lip 42ta of approximately 7, wherein point b defined as a coordinate point relative to the origin 0 (FIG. 2), was approximately equal to (0.1403602).
  • novel electron emissive electrode herein described in combination with the tapered annular focusing ring 421, not only provides a substantial improvement in the uniformity of sensitivity of re sponse as the novel electron emissive surface of the device is scanned, but, in addition, tubes so constructed have shown appreciable improvement in their general properties such as anode spatial uniformity, pulse height resolution and plateau characteristics.
  • the first electron emissive electrode (analogous to the electrode 20 of electron discharge devices, such as herein described, may alternatively include an electron emissive material 56a suitable for use as a source of electrons or photocathode (such as, for example, cesiumantimony Cs Sb). Electrons would originate from the photocathode surface in response to light focused to impinge thereon; in which case, the photocathode l6 and focusing electrode 42 (or 42!) described above may be omitted and a light permeable grid interposed adjacent to the electrode to provide desirable electron collection of emitted electrons at the succeeding electrode.
  • an electron emissive material 56a suitable for use as a source of electrons or photocathode such as, for example, cesiumantimony Cs Sb. Electrons would originate from the photocathode surface in response to light focused to impinge thereon; in which case, the photocathode l6 and focusing electrode 42 (or 42!) described above may be omitted
  • An electron discharge device comprising:
  • c. means for accelerating electrons emitted from each electron emissive surface region to impinge upon a succeeding one of said electrodes; said emitted electrons being accelerated as a stream of electrons, from a first electrode of said series, to impinge upon succeeding ones of said series in nonrepeating sequence;
  • one of said electrodes comprising an anode for ul timately collecting said electron stream
  • said electron emissive surface region of the first of said series of electrodes includes a crosssectional contour substantially characterized by an undulating line of curvature superimposed thereon which includes a plurality of interconnected arcuate regions;
  • f. means whereby said first electrode may be excited to a substantially single electrostatic field potential across the entire electron emissive surface portion characterized by said undulating line of curvature.
  • a transparent envelope a transparent envelope

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

An electron emissive surface portion on one of a series of electrodes includes a cross-sectional contour substantially characterized by a superimposed undulating line of curvature which includes a plurality of interconnected arcuate regions.

Description

United States Patent 1191 Faulkner ELECTRON DISCHARGE DEVICE INCLUDING AN ELECTRON EMISSIVE ELECTRODE HAVING AN UNDULA'IING CROSS-SECTIONAL CONTOUR [75] Inventor: Richard Dale Faulkner, Lancaster,
[73] Assignee: RCA Corporation, New York, NY.
[22] Filed: Nov. 29, 1973 [21] App1.N0.:420.325
[52] US. Cl 313/104, 313/95, 313/102, 313/105, 313/326 [51] Int. Cl I-IOIj 43/10, HOlj 39/06 I58] Field of Search 313/95, 102-105. 313/326; 315/11; 250/207 156] References Cited UNITED STATES PATENTS 1/1960 Rodda 313/94 1 Apr. 1,1975
4/1966 Wolfgang 313/95 5/1972 Damoth et a1. 313/103 X Primary Examiner-Rudolph V. Rolinec Assistant Examiner-E. R. LaRoche Attorney, Agent, or Firm-Glenn H. Bruestle; Robert J. Boivin [57] ABSTRACT An electron emissive surface portion on one of a series of electrodes includes a cross-sectional contour substantially characterized by a superimposed undulating line of curvature which includes a plurality of interconnected arcuate regions.
5 Claims, 6 Drawing Figures PMEMEWR HES SHEET ELECTRON DISCHARGE DEVICE INCLUDING AN ELECTRON EMISSIVE ELECTRODE HAVING AN UNDULATING CROSS-SECTIONAL CONTOUR BACKGROUND OF THE INVENTION The present invention relates to electron discharge devices and more particularly to electron multipliers. and photomultiplier tubes.
Electron multipliers are used, for instance, as internal amplifiers in camera tubes and photomultiplier tubes. An electron multiplier is a device utilizing secondary electron emission to amplify or multiply electron current from an electron source, such as the photocathode of a photomultiplier or a thermionic cathode. The usual electron multiplier comprises a series, or chain, of secondary emitting dynodes, interposed between an elec tron source and an output collector of multiplied electrons. The dynodes are formed of or coated with secondary emissive material and impressed with progressively increasing potentials.
Electron multipliers are particularly useful for amplifying electron current produced by weak signals, such as light, nuclear radiation. or radiation in the electromagnetic spectrum. Photomultipliers are particularly useful for converting weak light signals to electron currents which are thereafter amplified by an electron multiplier within the photomultiplier. However, electron multipliers and photomultipliers have generally been limited in their ability to uniformly amplify information-significant components which are focused to impinge upon various points along their input surfaces. For example, I have found that the effective photosensitive area of certain prior art photomultipliers, such as the circular cage types, may be only a fraction of the total photocathode area provided. Also, in electron multipliers or photom ultipliers, electron interstage skipping may produce undesirable fractionalphotoelectron pulses in the output. Poor collection efficiency at the first electrode of a photomultiplier or of an electron multiplier may destroy the informationsignificant component of the input signal.
SUMMARY OF THE INVENTION An electron discharge device includes a series of at least two electron optically aligned electrodes in which one of the electrodes comprises an anode. A means is provided for emitting a stream of electrons from preceding ones of said series of electrodes and for accelerating said electrons to impinge upon succeeding ones of said electrodes in sequence. The means for emitting a stream of electrons from the first of said series of electrodes, includes an electron emissive surface portion having a cross-sectional contour substantially characterized by an undulating line of curvature superimposed thereon which includes a plurality of interconnected arcuate regions.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cutaway perspective view of a photomultiplier having a circular cage electron multiplier made in accordance with the invention.
FIG. 2 is a diagrammatic depiction of so much of the device of FIG. I as is necessary to explain the contour and the relative arrangement of the electrodes required to achieve improved performance.
FIG. 3 is a diagrammatic depiction of the crosssectional contour of an electron emissive surface made in accordance with the invention.
FIGS. 40 and 4b are a graphical comparison of the relative uniformity of sensitivity of the photomultiplier of FIG. 1 with a comparable prior art photomultiplier device for respective parallel and perpendicular scans relative to planes defined by the major surfaces of the ceramic electrode mounting plates 18a and 18b of the electron multiplier depicted in FIG. 1.
FIG. 5 is a perspective view of a modified annular focusing electrode for incorporation in the photomultiplier of FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. I, there is shown a photomultiplier tube 10, as the preferred embodiment of an electron discharge device in accordance with the invention, having a cylindrical envelope 12. The envelope [2 comprises an evacuated glass bottle having a ceramic base 14 integrally sealed at one end. A semitransparent photocathode I6 is formed on the inner faceplate surface of an end portion 11 of the envelope 12.
An electron multiplier 17 is mounted inside the tube 10. Nine successive dynode electrodes 20-38 and an anode electrode 40, of the multiplier 17, are mounted in circular cage fashion between two parallel ceramic electrode mounting plates 18a and 18b. The respective electrodes are provided with an elongation in a direction perpendicular to the planes defined by the plates 18a and 18b (i.e., perpendicular to the cross-section of tube 10 depicted in FIG. 1).
An annular focusing ring electrode 42, having two upturned lip portions 420 and 42b, is interposed between the photocathode 16 and the electron multiplier 17. Ring 42 includes a substantially u-shaped crosssection. Ceramic plates 18a and 18b are secured to the ring 42 by means of tabs 44 and 46 which protrude through slots in the ring 42, forming therewith an integral assembly.
A plurality of lead-in pins 48, sealed through the base of the tube 10, provide electrically insulated leads to the interior of the tube 10. Each of the pins 48 is electrically interconnected within the tube to a corresponding electrode. For example, the photocathode 16 is electrically connected to one of the pins 48 by means of the wire 50 and an aluminized coating 52 disposed around the upper inner cylindrical surface region of the envelope 12. The aluminized coating 52 acts as a shield and, when interconnected to its operating potential, provides for the electrostatic focusing of electrons between the photocathode l6 and the electron multiplier 17 of the device.
In the operation of tube 10, the semitransparent photocathode l6 acts as a source of electrons which emits electrons in response to light which impinges thereon. These photoelectrons are electrostatically focused by means of the electron optics created within the tube between the cathode 16 and the electron multiplier 17. Suitable electrostatic field forces are generated in that region by the aluminized coating 52 and the annular focusing ring 42 whereby the electrons are accelerated through an aperture 54 in the ring 42 by applying appropriate potentials to respective interconnected pins 42. The aperture 54 preferably is covered with an electron permeable grid 43 as part of electron optic focusing structure, however, its use is not necessarily required and may be avoided without substantially affect ing the operation of the device.
Photoelectrons emitted from the electron source 16 are thereafter focused to impinge upon an electron emissive surface 56 of the first dynode 20 of electron multiplier 17. The surface 56 consists of any of the known secondary emissive materials, such as, for example, a berillium oxide 560 coating on a copper berillium substrate 56b. This secondary emissive material releases several secondary electrons for each impinging electron. These emitted electrons are accelerated to impinge on a similar secondary emissive surface 58 on the next dynode 22, whereupon each produces more secondary electrons. This process is repeated at each successive dynode 24-38, in sequence. Thus, electrons entering the low potential input end of the electron multiplier are successively multiplied by secondary electron emission at each dynode 20-38. An electric field (electrostatic or magnetic) accelerates the secondary electrons from one dynode to the next successive dynode. The electrons emitted from the last dynode are collected by an anode 40 or collector of electrons.
The construction of various types of electron multipliers is well-known to persons skilled in the art of electron discharge devices. Such devices may be constructed, for example, with their dynodes arranged in a circular cage fashion, as in FIG. 1, or as an elongated staggered series of dynodes as, for example, shown in U.S. Pat. No. 2,908,840 issued to R. H. Anderson on Oct. 13, i959. Similarly, various constructions of photomultipliers are also well-known in the art, such as, for example, the head-on construction shown in FIG. 1, wherein light is focused head-on to impinge upon a circular end of the device, or wherein light is focused side-on to pass through a transparent side of an evacuated envelope (similar to 12), to impinge upon a photoemissive surface disposed on an electrode analogous to electrode 20. An example of the latter construction is, for example, disclosed in U.S. Pat. No. 2,702,865 issued to G. l-lerzog on Feb. 22, 1965. In the latter construction, the first electrode is provided with a reflective mode photocathode in lieu of the secondary emissive material 56a prescribed for the embodiment of FIG. 1 for the electrode. 20.
in general, the prior art electron discharge devices, such as above described, include a curved or fiat electron emissive electrode (such as electrode 20) upon which electrons from an electron source are focused, or upon which light is directly focused. in the embodiment of FIG. 1, the corresponding electrode is the first dynode electrode 20 of the electron multiplier 17. Alternatively, in the side-on construction, this electrode would comprise the electron source electrode or photocathode. irrespective of the electron emissive phenomenon (i.e., photoemission or secondary electron emission) associated with this electrode (hereinafter referred to as first electrode), l have found a substantial non-uniformity in the output of the respective prior art devices at their respective anodes when the input energy source (i.e., the electrons of the electron source, or the light source) is scanned across the first electrode in a perpendicular or parallel direction relative to the planes defined by the major surfaces of spacers 18a and i812.
l have discovered that certain changes in the crosssectional contour of the first electrode may provide significant improvement in the uniformity of the sensitivity of response of such electron discharge devices.
Referring to FIG. 2, an enlarged cross-sectional view of the novel electrode 20 and its position relative to immediately succeeding operative electrodes of the device is shown. Referring to FIG. 3, an even greater enlargement of electrode 20 is shown. Electrode 20 includes a substantially L-shaped cross-section including leg sections L1 and L2 (FIG. 3). The section L1 provides an electrostatic shield and establishes requisite field potentials in the region between dynodes 20, 22 and 24 for focusing electrons between these dynodes. Typical electron trajectories are for example, depicted in FIG. 2 by the dashed lines 60. The functional equivalent of section Ll may be, for example, also provided by a separate focusing structure (electrostatic or magnetic) and is not considered, of necessity, an integral part of the electrode 20.
Unlike the contour of prior art electron emissive surfaces, the novel electron emissive surface is provided with a cross-sectional contour which may be substantially characterized by an undulating line of curvature superimposed thereon (along the cross-section of section L2) which includes a plurality of interconnected arcuate regions. Principally, the novel electron emissive surface includes two interconnected arcuate regions defined by the angles a and iii, having a respective radii of r, and r,
The arcuate regions need not conform exactly to the cross-sectional contour of the electron emission surface. For example, the arcuate region defined by the angle ti! in FIG. 3 includes a region defined by the angle til-B which in turn, includes a straight line portion extending from point C: to C Such minor modification of the undulating contour of the electron emissive surface may be provided so long as an adequate number of the respective electrons emitted from that region are collected by (i.e., impinge upon) the succeeding electrode. Similarly, numerous other geometrical modifications of the contour may be accomplished on a minor scale relative to the overall contour dimensions without substantially affecting the operational performance of the device. The relative magnitudes of the radii n, r, and the angles out: (and/or B) may be proportionately scaled in accordance with the size and arrangement of various electrodes incorporated into the device, as herinafter described.
importantly, electron emission electrodes having an undulating cross-sectional contour, such as described, may be easily incorporated by persons skilled in the art into the prior art electron discharge devices, such as previously described, to provide substantially uniform collection of the electron stream emitted from the first electrode, substantially independent of the respective point of origin of various ones of the electrons along that cross-sectional contour.
Referring now to FIG. 2, the stream of electrons gen= erated by secondary electron emission along the electron emissive surface 56 of section L2 of electrode 20 is accelerated and focused by the electron optics of the structure (primarily provided by electrodes 42, 20, 22 and 24) to impinge upon the electron emissive surface 58 of electrode 22 for subsequent electron multiplica= tion within the device, as previously described. Addi= tional focusing electrodes, such as red 62, may also be included in the structure to aid in providing optimum electron optics for accelerating the electron stream be tween successive dynodes and for achieving optimum collection of electrons at the anode 40.
An operative embodiment of the disclosed photomultiplier approximately 3.8 cm. in diameter and 12.5 cm. long was constructed and tested. Critical dimensions and relative positioning of electrodes were established with reference to a coordinate designation system expressed in cm. having designations (X,Y) related to the origin shown in FIG. 2. Pertinent points having coordinate values expressed in cm. and other variables were selected approximately as follows: Photocathode l6: a (0.0,5.70); a2(3.5l.5.70) Focusing ring 42: b|(0.l4,2.58); b2(3.44, 2.58)
b:i(3.44,3.20); b,(0.l4,3.20) b (2.39.2.78l1b(;(l.l9.2.79) b1(2.39,2.54); bx(l.l2,2.54l c,(2.3l,l.54); c (1.85,l.5I); c (l.50.l.57) c,(l.30,l.52); c -,(l.l4,l.65) c,;(l.l4.2.45); a=52l5;
Dynode 24: c (2.36,l.88); c (2.54,l.32)
The cathode was formed in a manner well-known in the art to consist a K C,S,, (Potassium-cesiumantimonide) photoemissive material. Secondary electron emissive electrodes were suitably formed of a 0.01 cm. thick copper berillium material. The construction and arrangement of the photomultiplier was, in other respects, substantially similar to RCA photomultiplier tube type 4,517 and/or other equivalent commercial types.
Referring to FIGS. 4a and 4b, comparative test data is shown relating the uniformity of response of the novel photomultiplier herein described ( solid curves 72, 73, 74, 75, 84 and 85) with a comparable RCA type 4,517 photomultiplier (dashed curves 70, 71, 80 and 81). FIGS. 4a and 4b depict relative sensitivity test data obtained by scanning a snall-diameter light source of fixed intensity approximately 1mm. in diameter across the center line of the face of tube which includes the photocathode 16 of respective ones of the tested devices. More specifically, the curves of FIG. 4a depict sensitivity data for scans of the light source in a direction parallel to the planes defined by spacers 18a and 18b (parallel scans), whereas the curves of FIG. 4b are for scans of the light source in a direction perpendicular to the planes defined by spacers 18a and 18b (i.e., perpendicular scans).
The curves 70, 72, 74, 80 and 84 represent cathode scan curves, that is scan curves obtained by connecting the non photoemissive electrodes of the respective devices to act as anodes. These scans represent the anode signal current, in relative sensitivity, when the respective device is operative as a photo diode. Such cathode scan curves provide a visual depiction of the uniformity of response of each respective cathode as that cathode is scanned.
The curves 7], 73, 75, 8] and 85 are anode scan" curves, that is, scan curves of the anode signal current obtained by operating the respective devices under normal recommended operating conditions Dynode 20:
Dynode 22:
In general, for uniform scan sensitivity to exist, the respective anode scan curves must follow a substantially similar contour as that depicted by the cathode scan curve of the same device. However, prior-art photomultiplier tubes, in general, have displayed relatively poor uniformity of sensitivity when scanned across their diameter by a uniform light source. For example, the dashed anode scan curves 7] (parallel scan) and 81 (perpendicular scan) for the comparable RCA tube 4,5 l 7 have markedly differing contours from their cathode scan curves represented by the dashed curves and respectively. In contrast, the anode scan test data obtained for the novel photomultiplier tube herein described is represented by the solid line curve 73 and provides a visual depiction of the substantial improvement in the uniformity of response of the device when that curve is compared with its respective cathode scan test data represented by the solid line curve 72.
With regard to the parallel anode scan obtained for the novel photomultiplier tube above described, represented by the solid curve 73, the sensitivity of the device is substantially lost in region D (FIGS. 2 and 4a). I have found that this apparent decreased sensitivity results from electron skipping in the region between the first dynode 20 and the second dynode 22. As shown, by the representative electron trajectories 60 (FIG. 2), a portion of the electron stream emitted from photocathode I6 is lost between the dynode 20 and the dynode 24 and does not impinge upon the electron emissive surface of dynode 22 (i.e., not collected by dynode 22). I have discovered that the replacement of the annular ring 52 with a tapered u-shaped annular focusing ring 42t, such as depicted in FIG 5, provides a significant improvement in sensitivity in the D sensitivity region of the curve. A modified device incorporating the tapered annular focusing ring 42t (FIG. 5) was tested in a manner similar to that described for the various curves of FIGS 4a and 4b. Referring to FIGS. 4a and 5b, the resulting cathode scan curve 74, 84 and the anode scan curves 75, 85 are shown for the modified service clearly indicating the substantial improvement in sensitivity in the D region.
Referring to FIG. 5, the tapered annular focusing ring 42t was constructed in a manner similar to ring 42 (FIG. 2). Coordinate dimensional data expressed above for points b,b and b ,,(FIG. 2) remained unchanged as did other pertinent constructional data for the novel device above described fully with reference to FIG. 2. Point b was changed, however, to define a desirable symmetrical ring taper Y for the outer lip 42ta of approximately 7, wherein point b defined as a coordinate point relative to the origin 0 (FIG. 2), was approximately equal to (0.1403602).
The addition of the novel electron emissive electrode herein described, in combination with the tapered annular focusing ring 421, not only provides a substantial improvement in the uniformity of sensitivity of re sponse as the novel electron emissive surface of the device is scanned, but, in addition, tubes so constructed have shown appreciable improvement in their general properties such as anode spatial uniformity, pulse height resolution and plateau characteristics.
In general, the first electron emissive electrode (analogous to the electrode 20 of electron discharge devices, such as herein described, may alternatively include an electron emissive material 56a suitable for use as a source of electrons or photocathode (such as, for example, cesiumantimony Cs Sb). Electrons would originate from the photocathode surface in response to light focused to impinge thereon; in which case, the photocathode l6 and focusing electrode 42 (or 42!) described above may be omitted and a light permeable grid interposed adjacent to the electrode to provide desirable electron collection of emitted electrons at the succeeding electrode.
1 claim:
1. An electron discharge device comprising:
a. a series of at least two electron optically aligned electrodes;
b. means for emitting electrons from preceding ones of said series of electrodes comprising an electron emissive surface region on each preceding one of said series of electrodes;
c. means for accelerating electrons emitted from each electron emissive surface region to impinge upon a succeeding one of said electrodes; said emitted electrons being accelerated as a stream of electrons, from a first electrode of said series, to impinge upon succeeding ones of said series in nonrepeating sequence;
d. one of said electrodes comprising an anode for ul timately collecting said electron stream;
e. wherein said electron emissive surface region of the first of said series of electrodes includes a crosssectional contour substantially characterized by an undulating line of curvature superimposed thereon which includes a plurality of interconnected arcuate regions; and
f. means whereby said first electrode may be excited to a substantially single electrostatic field potential across the entire electron emissive surface portion characterized by said undulating line of curvature.
2. An electron discharge device in accordance with claim 1, additionally including a transparent envelope, and wherein said electron emissive surface region of first electrode is photoemissive.
3. An electron discharge device in accordance with claim 1, additionally including:
a. a transparent envelope, and b. a semitransparent photocathode electrode on an inside surface portion of said transparent envelope.
4. An electron discharge device in accordance with claim 3, wherein said accelerating means includes:
5. An electron discharge device in accordance with claim 4, wherein the outer lip portion of said annular ring defines a symmetrical lip taper relative to the axial portion of said ring.

Claims (5)

1. An electron discharge device comprising: a. a series of at least two electron optically aligned electrodes; b. means for emitting electrons from preceding ones of said series of electrodes comprising an electron emissive surface region on each preceding one of said series of electrodes; c. means for accelerating electrons emitted from each electron emissive surface region to impinge upon a succeeding one of said electrodes; said emitted electrons being accelerated as a stream of electrons, from a first electrode of said series, to impinge upon succeeding ones of said series in nonrepeating sequence; d. one of said electrodes comprising an anode for ultimately collecting said electron stream; e. wherein said electron emissive surface region of the first of said series of electrodes includes a cross-sectional contour substantially characterized by an undulating line of curvature superimposed thereon which includes a plurality of interconnected arcuate regions; and f. means whereby said first electrode may be excited to a substantially single electrostatic field potential across the entire electron emissive surface portion characterized by said undulating line of curvature.
2. An electron discharge device in accordance with claim 1, additionally including a transparent envelope, and wherein said electron emissive surface region of first electrode is photoemissive.
3. An electron discharge device in accordance with claim 1, additionally including: a. a transparent envelope, and b. a semitransparent photocathode electrode on an inside surface portion of said transparent envelope.
4. An electron discharge device in accordance with claim 3, wherein said accelerating means includes: an electrostatic electron focusing electrode interposed between said photocathode electrode and said first electrode, said focusing electrode comprising an annular ring having a U-shaped cross-section, said ring including a centrally located aperture and inner and outer lip portions whereby electrons emitted from said photocathode are accelerated through said aperture to impinge upon said first electrode.
5. An electron discharge device in accordance with claim 4, wherein the outer lip portion of said annular ring defines a symmetrical lip taper relative to the axial portion of said ring.
US420325A 1973-11-29 1973-11-29 Electron discharge device including an electron emissive electrode having an undulating cross-sectional contour Expired - Lifetime US3875441A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US420325A US3875441A (en) 1973-11-29 1973-11-29 Electron discharge device including an electron emissive electrode having an undulating cross-sectional contour
CA212,688A CA1015020A (en) 1973-11-29 1974-10-30 Electron discharge device including an electron emissive electrode having an undulating cross sectional contour
AU75679/74A AU481605B2 (en) 1973-11-29 1974-11-25 Electron discharge device including an electron emissive electrode having an undulating cross sectional contour
FR7438666A FR2253271B1 (en) 1973-11-29 1974-11-26
JP13696474A JPS5530663B2 (en) 1973-11-29 1974-11-27
NLAANVRAGE7415532,A NL180714C (en) 1973-11-29 1974-11-28 PHOTO MULTIPLICATOR TUBE.
GB51813/74A GB1494836A (en) 1973-11-29 1974-11-29 Electron discharge devices
DE19742456596 DE2456596A1 (en) 1973-11-29 1974-11-29 ELECTRON DISCHARGE ARRANGEMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US420325A US3875441A (en) 1973-11-29 1973-11-29 Electron discharge device including an electron emissive electrode having an undulating cross-sectional contour

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/901,975 Reissue USRE30249E (en) 1976-08-05 1978-05-01 Electron discharge device including an electron emissive electrode having an undulating cross-sectional contour

Publications (1)

Publication Number Publication Date
US3875441A true US3875441A (en) 1975-04-01

Family

ID=23666003

Family Applications (1)

Application Number Title Priority Date Filing Date
US420325A Expired - Lifetime US3875441A (en) 1973-11-29 1973-11-29 Electron discharge device including an electron emissive electrode having an undulating cross-sectional contour

Country Status (7)

Country Link
US (1) US3875441A (en)
JP (1) JPS5530663B2 (en)
CA (1) CA1015020A (en)
DE (1) DE2456596A1 (en)
FR (1) FR2253271B1 (en)
GB (1) GB1494836A (en)
NL (1) NL180714C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006376A (en) * 1975-02-28 1977-02-01 Rca Corporation Phototube having improved electron collection efficiency
US4079282A (en) * 1976-01-26 1978-03-14 Rca Corporation Phototube having apertured electrode recessed in cup-shaped electrode
US4112325A (en) * 1976-02-04 1978-09-05 Rca Corporation Electron discharge tube having a cup-shaped secondary electron emissive electrode
US4306171A (en) * 1979-08-13 1981-12-15 Rca Corporation Focusing structure for photomultiplier tubes
EP0495589A2 (en) * 1991-01-14 1992-07-22 Hamamatsu Photonics K.K. Photomultiplier tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2508232A1 (en) * 1981-06-19 1982-12-24 Hyperelec Photo-electrode for electron photomultiplier tube - has thin conductive layer forming cylindrical portion between photocathode and accelerating electrode to correct focussing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2922064A (en) * 1956-07-18 1960-01-19 Siemens Edison Swan Ltd Photomultiplier tubes
US3244922A (en) * 1962-11-05 1966-04-05 Itt Electron multiplier having undulated passage with semiconductive secondary emissive coating
US3660654A (en) * 1969-09-15 1972-05-02 Bendix Corp Mass spectrometer having means compensating electron transit time across the cathode of the electron multiplier

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2160798A (en) * 1936-11-20 1939-05-30 Bell Telephone Labor Inc Electron discharge apparatus
US2392155A (en) * 1940-06-27 1946-01-01 Rca Corp Electron beam tube
US2702865A (en) * 1949-04-02 1955-02-22 Texas Co Electron multiplier
US2908840A (en) * 1955-09-01 1959-10-13 Rca Corp Photo-emissive device
JPS4518435Y1 (en) * 1966-12-09 1970-07-28

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2922064A (en) * 1956-07-18 1960-01-19 Siemens Edison Swan Ltd Photomultiplier tubes
US3244922A (en) * 1962-11-05 1966-04-05 Itt Electron multiplier having undulated passage with semiconductive secondary emissive coating
US3660654A (en) * 1969-09-15 1972-05-02 Bendix Corp Mass spectrometer having means compensating electron transit time across the cathode of the electron multiplier

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006376A (en) * 1975-02-28 1977-02-01 Rca Corporation Phototube having improved electron collection efficiency
US4079282A (en) * 1976-01-26 1978-03-14 Rca Corporation Phototube having apertured electrode recessed in cup-shaped electrode
US4112325A (en) * 1976-02-04 1978-09-05 Rca Corporation Electron discharge tube having a cup-shaped secondary electron emissive electrode
US4306171A (en) * 1979-08-13 1981-12-15 Rca Corporation Focusing structure for photomultiplier tubes
EP0495589A2 (en) * 1991-01-14 1992-07-22 Hamamatsu Photonics K.K. Photomultiplier tube
EP0495589A3 (en) * 1991-01-14 1992-08-26 Hamamatsu Photonics K.K. Photomultiplier tube
US5189338A (en) * 1991-01-14 1993-02-23 Hamamatsu Photonics K.K. Photomultiplier tube having reduced tube length

Also Published As

Publication number Publication date
JPS5530663B2 (en) 1980-08-12
DE2456596A1 (en) 1975-06-05
NL7415532A (en) 1975-06-02
GB1494836A (en) 1977-12-14
FR2253271B1 (en) 1978-09-22
NL180714C (en) 1987-04-01
NL180714B (en) 1986-11-03
JPS50106559A (en) 1975-08-22
FR2253271A1 (en) 1975-06-27
CA1015020A (en) 1977-08-02
AU7567974A (en) 1976-05-27

Similar Documents

Publication Publication Date Title
JP3392240B2 (en) Electron multiplier
US4431943A (en) Electron discharge device having a high speed cage
JPS63261664A (en) Photomultiplier
GB634639A (en) Improvements in or relating to television tubes incorporating electron multiplier units
US3260876A (en) Image intensifier secondary emissive matrix internally coated to form a converging lens
US6538399B1 (en) Electron tube
US2908840A (en) Photo-emissive device
US4306171A (en) Focusing structure for photomultiplier tubes
US3875441A (en) Electron discharge device including an electron emissive electrode having an undulating cross-sectional contour
US2161643A (en) Television picture analyzer
US3668388A (en) Multi-channel photomultiplier tube
US2868994A (en) Electron multiplier
US3295010A (en) Image dissector with field mesh near photocathode
US4456852A (en) Mesh structure for a photomultiplier tube
USRE30249E (en) Electron discharge device including an electron emissive electrode having an undulating cross-sectional contour
US3771004A (en) Reflective multiplier phototube
JP2803889B2 (en) High-speed photomultiplier with high collection uniformity
US4079282A (en) Phototube having apertured electrode recessed in cup-shaped electrode
US3849644A (en) Electron discharge device having ellipsoid-shaped electrode surfaces
US3688143A (en) Multi-diode camera tube with fiber-optics faceplate and channel multiplier
US4446401A (en) Photomultiplier tube having improved count-rate stability
US4006376A (en) Phototube having improved electron collection efficiency
US2796547A (en) Sensitive electron discharge tube
US2206713A (en) Photoelectric apparatus
US4001618A (en) Electron discharge image tube with electrostatic field shaping electrode

Legal Events

Date Code Title Description
AS Assignment

Owner name: BANCBOSTON FINANCIAL COMPANY, A MA BUSINESS TRUST

Free format text: SECURITY INTEREST;ASSIGNOR:BURLE TECHNOLOGIES, INC., A DE CORPORATION;REEL/FRAME:005707/0021

Effective date: 19901211

AS Assignment

Owner name: BARCLAYS BUSINESS CREDIT, INC.

Free format text: SECURITY INTEREST;ASSIGNOR:BURLES TECHNOLOGIES, INC., A CORP. OF DE;REEL/FRAME:006309/0039

Effective date: 19920622