US3874004A - Symes ankle joint - Google Patents

Symes ankle joint Download PDF

Info

Publication number
US3874004A
US3874004A US474064A US47406474A US3874004A US 3874004 A US3874004 A US 3874004A US 474064 A US474064 A US 474064A US 47406474 A US47406474 A US 47406474A US 3874004 A US3874004 A US 3874004A
Authority
US
United States
Prior art keywords
ankle joint
artificial
joint according
sole plate
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US474064A
Inventor
Denis Ronald William May
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JE Hanger and Co Ltd
Original Assignee
JE Hanger and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JE Hanger and Co Ltd filed Critical JE Hanger and Co Ltd
Application granted granted Critical
Publication of US3874004A publication Critical patent/US3874004A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2/6607Ankle joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2002/6614Feet
    • A61F2002/6657Feet having a plate-like or strip-like spring element, e.g. an energy-storing cantilever spring keel

Definitions

  • the Syrnes amputation results in a functionally good stump because the end of the stump is capable of taking the full weight of the patient. Prosthetic replacement, however. is difficult because of the small ground clearance. This is the distance between the end of the stump and the ground when the patient is standing level, and may be as little as one inch.
  • the patient has good control of the hip and knee, as these musculatures are not affected by this type of amputation. therefore patients are usually very active and require a robust device.
  • Devices in accordance with the invention make provision for an ankle joint to be supplied within the space of 1 inch from the base of the stump.
  • an artificial ankle joint comprising a metal sole plate within an artificial foot.
  • the said sole plate carrying pivot bearings for a posterior upwardly and forwardly sloped swinging link and an anterior upwardly and rearwardly sloped swinging link.
  • the said links being pivoted at their upper ends to posterior and and anterior lugs forming part of patient weight-bearing structure. and a pre-compressed resilient stress-relieving control block located between the sole plate and the weight-bearing structure.
  • the weight-bearing structure may be a stump socket or a plate fitted to the lower end of a modular leg. In either case its base may have a ground clearance of less than 30mm.
  • the swinging links may have an effective length less than 2()mm.
  • the pivot bearings on the sole plate may have centres a little over lOOmm apart.
  • the lugs on the weight-bearing structure may provide pivot centres somewhat less than 80mm apart.
  • the locus of instantaneous centres of rotation of the joint that is the points of intersection of the extended axes of the two links. forms an inverted hyperbola which passes through the two lower pivot centres and the effective ankle pivot at zero deflection.
  • the locus of the effective ankle pivot moves only about one-eighth inch over the range of Plant-aflexion to l2- doriflexion. This enables the effective ankle centre to be approximately I/4 inches up inside the stump (i.e. approximately at the level of the lateral maleolus. the natural ankle level).
  • FIG. 1 is a vertical section through a joint suitable for a disarticulated ankle
  • FIG. 2 is a vertical section through a joint suitable for use with a modular leg.
  • the metal sole plate 1 carries posterior pivot bearing 2 and an anterior pivot bearing 3 carrying swinging links 4A and 48 respectively.
  • a stump socket 5 carries posterior and anterior lugs to which the upper ends oflinks 4A and 4B are pivoted.
  • a rubber block 6 is bonded to the plate 1 and is precompressed to bear against the base of the socket 5.
  • a balata toe spring assembly 7 is secured to the forward part of the plate 1 and a foamed plastic foot is moulded around the whole.
  • FIG. 2 like references denote like parts to those of FIG. 1.
  • the stump socket 5 has been replaced by the modular leg fitting 10.
  • the fitting 11 shown in broken lines, is in the position requisite for attachment to a conventional ankle joint and demonstrates that a modular leg tube more than 2 inches longer can be accommodated by use of the linkage joint of the invention.
  • An artificial ankle joint comprising a metal sole plate within an artificial foot, the said sole plate carrying pivot bearings for a posterior upwardly and forwardly sloped swinging link and an anterior upwardly and rearwardly sloped swinging link.
  • the said links being pivoted at their upper ends to posterior and an anterior lugs forming part of patient weight-bearing structure, and a pre-compressed resilient stressrelieving control block located between the sole plate and the weight-bearing structure.
  • An artificial ankle joint according to claim 1 in which the instantaneous centres of rotation of the joint, namely the intersection points of the axes of the two links, forms an inverted hyperbola which passes through the two lower pivot centres and through the locus of the effective ankle pivot at zero deflection of the joint.

Landscapes

  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

The invention provides an artificial ankle joint particularly suitable for patients who have undergone the Symes amputation. An effective ankle pivot center is provided at substantially the natural position by the use of a pair of links pivoted to points on the metal sole plate of an artificial foot and points, spaced nearer together, on a stump socket.

Description

United States Patent May Apr. 1, 1975 i 1 SYMES ANKLE JOINT 975.439 11/1910 Lawrence .1 3/32 l.l02,774 7/l9l4 M t' h k 3 34 [751 Memo" 5:"? kdonald 1.323,444 12/1919 t 333 g an [73] Assignee: J. E. Hanger & Company Limited, FOREIGN PATENTS OR APPLICATONS L d E l d 325,333 9/!920 Germany 4. 3/6 455,64l 2/1928 Germany 3/6 [22] Filed; May 28, 1974 [2]] Appl. No: 474,064 Primary E.\'aminerRonald L. Frinks Attorney, Agent, or Firm-Imirie, Smiley & Linn [30] Foreign Application Priority Data May 31 @973 United Kingdom 1. 25978/73 [57} ABSTRACT [52] U5. CL I I I I H 3/33 3/7 The invention provides an artificial ankle joint partic- {511 lm. CL ularly suitable for patients who have undergone the [58] Field ofgearch 3/3045 Symes amputation. An effective ankle pivot center is provided at substantially the natural position by the use of a pair of links pivoted to points on the metal {56] References Ci'ed sole plate of an artificial foot and points. spaced UNITED STATES PATENTS nearer together, on a stump socket 487,697 l2/l892 Ehle 3/33 7 Claims, 2 Drawing Figures QJEHTED APR 1 I975 SHEET 1 BF 2 PATENTEI] APR 1 i975 swear} 1 SYMES ANKLE JOINT This invention concerns improvements in artificial ankle joints. It is particularly but not exclusively directed to the provision of joints suitable for patients who have undergone the Symes amputation (disarticulation of the ankle); the joints also lend themselves to use with mono-tubular of skeletal modular legs and can accommodate appreciably longer below the knee stumps.
The Syrnes amputation results in a functionally good stump because the end of the stump is capable of taking the full weight of the patient. Prosthetic replacement, however. is difficult because of the small ground clearance. This is the distance between the end of the stump and the ground when the patient is standing level, and may be as little as one inch.
The patient has good control of the hip and knee, as these musculatures are not affected by this type of amputation. therefore patients are usually very active and require a robust device.
Devices in accordance with the invention make provision for an ankle joint to be supplied within the space of 1 inch from the base of the stump.
According to the invention we provide an artificial ankle joint comprising a metal sole plate within an artificial foot. the said sole plate carrying pivot bearings for a posterior upwardly and forwardly sloped swinging link and an anterior upwardly and rearwardly sloped swinging link. the said links being pivoted at their upper ends to posterior and and anterior lugs forming part of patient weight-bearing structure. and a pre-compressed resilient stress-relieving control block located between the sole plate and the weight-bearing structure.
The weight-bearing structure may be a stump socket or a plate fitted to the lower end of a modular leg. In either case its base may have a ground clearance of less than 30mm.
The swinging links may have an effective length less than 2()mm., the pivot bearings on the sole plate may have centres a little over lOOmm apart. while the lugs on the weight-bearing structure may provide pivot centres somewhat less than 80mm apart.
The locus of instantaneous centres of rotation of the joint. that is the points of intersection of the extended axes of the two links. forms an inverted hyperbola which passes through the two lower pivot centres and the effective ankle pivot at zero deflection.
The locus of the effective ankle pivot moves only about one-eighth inch over the range of Plant-aflexion to l2- doriflexion. This enables the effective ankle centre to be approximately I/4 inches up inside the stump (i.e. approximately at the level of the lateral maleolus. the natural ankle level).
At full dorsiflexion the instantaneous centre is back at the rear lower pivot and at full plantafexion it is in front at the forward lower pivot. The effective lever distances to the control rubber are great (compared with single axis ankle joints), the rubber loadings being thus relieved and reducing the stresses in the unit.
Two constructional forms of ankle joint are illustrated in the accompanying drawings, in which;
FIG. 1 is a vertical section through a joint suitable for a disarticulated ankle, and
FIG. 2 is a vertical section through a joint suitable for use with a modular leg.
In FIG. 1 the metal sole plate 1 carries posterior pivot bearing 2 and an anterior pivot bearing 3 carrying swinging links 4A and 48 respectively.
A stump socket 5 carries posterior and anterior lugs to which the upper ends oflinks 4A and 4B are pivoted.
A rubber block 6 is bonded to the plate 1 and is precompressed to bear against the base of the socket 5.
A balata toe spring assembly 7 is secured to the forward part of the plate 1 and a foamed plastic foot is moulded around the whole.
The locus of the instantaneous centres of rotation is indicated by the broken line 8.
In FIG. 2 like references denote like parts to those of FIG. 1. In the illustrated joint the stump socket 5 has been replaced by the modular leg fitting 10.
The fitting 11, shown in broken lines, is in the position requisite for attachment to a conventional ankle joint and demonstrates that a modular leg tube more than 2 inches longer can be accommodated by use of the linkage joint of the invention.
It will be understood that the invention is not restricted to the details of the preferred form which has been described by way ofexample which can be modified without departure from the broad ideas underlying them.
I claim:
1. An artificial ankle joint comprising a metal sole plate within an artificial foot, the said sole plate carrying pivot bearings for a posterior upwardly and forwardly sloped swinging link and an anterior upwardly and rearwardly sloped swinging link. the said links being pivoted at their upper ends to posterior and an anterior lugs forming part of patient weight-bearing structure, and a pre-compressed resilient stressrelieving control block located between the sole plate and the weight-bearing structure.
2. An artificial ankle joint according to claim 1 in which the weight-bearing structure is a stump socket.
3. An artificial ankle joint according to claim I, in which the weight-bearing structure is a plate fitted to the lower end of a modular artificial leg.
4. An artificial ankle joint according to claim 1, in which the instantaneous centres of rotation of the joint, namely the intersection points of the axes of the two links, forms an inverted hyperbola which passes through the two lower pivot centres and through the locus of the effective ankle pivot at zero deflection of the joint.
5. An artificial ankle joint according to claim 1, in which the length of each link is less than 30 mm.
6. An artificial ankle joint according to claim 1, in which the pivot bearings on the sole plate are more than 100 mm apart.
7. An artificial ankle joint according to claim I, in which the lugs on the weight-bearing structure are less than mm apart.

Claims (7)

1. An artificial ankle joint comprising a metal sole plate within an artificial foot, the said sole plate carrying pivot bearings for a posterior upwardly and forwardly sloped swinging link and an anterior upwardly and rearwardly sloped swinging link, the said links being pivoted at their upper ends to posterior and an anterior lugs forming part of patient weightbearing structure, and a pre-compressed resilient stressrelieving control block located between the sole plate and the weight-bearing structure.
2. An artificial ankle joint according to claim 1 in which the weight-bearing structure is a stump socket.
3. An artificial ankle joint according to claim 1, in which the weight-bearing structure is a plate fitted to the lower end of a modular artificial leg.
4. An artificial ankle joint according to claim 1, in which the instantaneous centres of rotation of the joint, namely the intersection points of the axes of the two links, forms an inverted hyperbola which passes through the two lower pivot centres and through the locus of the effective ankle pivot at zero deflection of the joint.
5. An artificial ankle joint according to claim 1, in which the length of each link is less than 30 mm.
6. An artificial ankle joint according to claim 1, in which the pivot bearings on the sole plate are more than 100 mm apart.
7. An artificial ankle joint according to claim 1, in which the lugs on the weight-bearing structure are less than 80 mm apart.
US474064A 1973-05-31 1974-05-28 Symes ankle joint Expired - Lifetime US3874004A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2597873A GB1432481A (en) 1973-05-31 1973-05-31 Symes ankle joint

Publications (1)

Publication Number Publication Date
US3874004A true US3874004A (en) 1975-04-01

Family

ID=10236380

Family Applications (1)

Application Number Title Priority Date Filing Date
US474064A Expired - Lifetime US3874004A (en) 1973-05-31 1974-05-28 Symes ankle joint

Country Status (5)

Country Link
US (1) US3874004A (en)
DE (1) DE2426070C3 (en)
FR (1) FR2231357B1 (en)
GB (1) GB1432481A (en)
NL (1) NL155450B (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225982A (en) * 1978-12-04 1980-10-07 Cochrane Ian W Molded syme foot with attached stump socket
US4413360A (en) * 1981-10-27 1983-11-08 Lamb Steve R Adjustable prosthetic ankle assembly
US4442554A (en) * 1982-02-12 1984-04-17 Arthur Copes Biomechanical ankle device
US4645509A (en) * 1984-06-11 1987-02-24 Model & Instrument Development Corporation Prosthetic foot having a cantilever spring keel
US4718913A (en) * 1986-05-27 1988-01-12 Voisin Jerome P Dual, ankle, springs prosthetic foot and ankle system
US5037444A (en) * 1989-01-05 1991-08-06 Phillips L Van Prosthetic foot
US5066305A (en) * 1988-10-25 1991-11-19 Model & Instrument Development Corporation Prosthetic foot having a low profile cantilever spring keel
US5181932A (en) * 1989-04-13 1993-01-26 Phillips L Van Foot prosthesis having auxiliary ankle construction
US5314499A (en) * 1991-04-04 1994-05-24 Collier Jr Milo S Artificial limb including a shin, ankle and foot
US5458656A (en) * 1991-09-30 1995-10-17 Flex-Foot Energy-storing prosthesis leg pylon vertical shock leg
US5509938A (en) * 1991-02-28 1996-04-23 Phillips; Van L. Prosthetic foot incorporating adjustable bladder
US5514186A (en) * 1989-04-13 1996-05-07 Phillips; Van L. Attachment construction for prosthesis
US5514185A (en) * 1991-02-28 1996-05-07 Phillips; Van L. Split foot prosthesis
US5545234A (en) * 1991-04-04 1996-08-13 Collier, Jr.; Milo S. Lower extremity prosthetic device
US5549714A (en) * 1990-09-21 1996-08-27 Phillips; Van L. Symes foot prosthesis
US5728177A (en) * 1994-08-15 1998-03-17 Flex-Foot, Inc. Prosthesis with foam block ankle
US5800570A (en) * 1996-03-14 1998-09-01 Collier; Milo S. Lower extremity prosthetic device
US6206934B1 (en) 1998-04-10 2001-03-27 Flex-Foot, Inc. Ankle block with spring inserts
US6406500B1 (en) 1989-04-13 2002-06-18 Van L. Phillips Foot prosthesis having curved forefoot
US6443995B1 (en) 2000-12-22 2002-09-03 Barry W. Townsend Prosthetic foot
US20030093158A1 (en) * 2000-10-26 2003-05-15 Phillips Van L. Foot prosthesis having cushioned ankle
US20040199265A1 (en) * 2000-12-22 2004-10-07 Townsend Barry W. Prosthetic foot
US6811571B1 (en) 2000-05-02 2004-11-02 Van L. Phillips Universal prosthesis with cushioned ankle
US20040225376A1 (en) * 2000-12-22 2004-11-11 Townsend Barry W. Prosthetic foot
US20050033450A1 (en) * 2002-10-08 2005-02-10 Christensen Roland J. Prosthetic foot with a resilient ankle
US20050038524A1 (en) * 2003-08-15 2005-02-17 Jonsson Orn Ingvi Low profile prosthetic foot
US6875241B2 (en) 2000-06-30 2005-04-05 Roland J. Christensen, As Operating Manager Of Rjc Development Lc, General Partner Of The Roland J. Christensen Family Limited Partnership Variable resistance cell
US20050085926A1 (en) * 2003-10-21 2005-04-21 General Partner Of The Roland J. Christensen Family Limited Partnership Prosthetic foot with an adjustable ankle and method
US6899737B1 (en) 1998-04-10 2005-05-31 Van L. Phillips Foot prosthesis having cushioned ankle
US20050171618A1 (en) * 2000-06-30 2005-08-04 Christensen Roland J. Prosthetic foot with energy transfer including variable orifice
US20050187640A1 (en) * 2004-02-20 2005-08-25 Roland J. Christensen Prosthetic foot with cam
US20050203640A1 (en) * 2002-10-08 2005-09-15 Christensen Roland J. Prosthetic foot with a resilient ankle
US20050216098A1 (en) * 2000-06-30 2005-09-29 Roland J. Christensen Variable resistance cell
US20050267602A1 (en) * 2004-05-28 2005-12-01 Clausen Arinbjorn V Foot prosthesis with resilient multi-axial ankle
US20060041321A1 (en) * 2003-10-21 2006-02-23 Christensen Roland J Prosthetic foot with an adjustable ankle and method
US20060058893A1 (en) * 2004-05-28 2006-03-16 Clausen Arinbjorn V Method of measuring the performance of a prosthetic foot
US7060104B2 (en) 2000-08-30 2006-06-13 Phillips Van L Energy storing foot prosthesis with improved plantar flexion
US20060229736A1 (en) * 2000-06-30 2006-10-12 Christensen Roland J Prosthetic foot with energy transfer
US20060241783A1 (en) * 2000-06-30 2006-10-26 Christensen Roland J Variable resistance cell
US20080033578A1 (en) * 2006-08-03 2008-02-07 Christensen Roland J Prosthetic foot with variable medial/lateral stiffness
US20080167731A1 (en) * 2006-12-06 2008-07-10 Christensen Roland J Prosthetic foot with longer upper forefoot and shorter lower forefoot
US20080183301A1 (en) * 2000-06-30 2008-07-31 Christensen Roland J Prosthetic foot with energy transfer
US20080188951A1 (en) * 2007-01-30 2008-08-07 Christensen Roland J Prosthetic foot with variable medial/lateral stiffness
US7462201B2 (en) 2003-10-21 2008-12-09 Freedom Innovations, Llc Prosthetic foot with an adjustable ankle and method
US20090082878A1 (en) * 2007-09-18 2009-03-26 Christensen Roland J Multi-axial prosthetic ankle
US20090265019A1 (en) * 2008-04-18 2009-10-22 Chritstensen Roland J Prosthetic foot with two leaf-springs joined at heel and toe
US20100004757A1 (en) * 2008-07-01 2010-01-07 Ossur Hf Smooth rollover insole for prosthetic foot
US20110213471A1 (en) * 2010-02-26 2011-09-01 össur hf Prosthetic foot with a curved split
US8500825B2 (en) 2010-06-29 2013-08-06 Freedom Innovations, Llc Prosthetic foot with floating forefoot keel
US8961618B2 (en) 2011-12-29 2015-02-24 össur hf Prosthetic foot with resilient heel
US9028559B2 (en) 2011-09-26 2015-05-12 össur hf Frictionless vertical suspension mechanism for prosthetic feet
US9439786B2 (en) 2012-08-01 2016-09-13 össur hf Prosthetic ankle module
USD795433S1 (en) 2015-06-30 2017-08-22 Össur Iceland Ehf Prosthetic foot cover
USD797292S1 (en) 2014-06-30 2017-09-12 össur hf Prosthetic foot plate
US20170290684A1 (en) * 2016-04-07 2017-10-12 REHABILITATION INSTITUTE OF CHICAGO d/b/a Shirley Ryan AbilityLab Polycentric powered ankle prosthesis
US10821007B2 (en) 2016-12-01 2020-11-03 Össur Iceland Ehf Prosthetic feet having heel height adjustability
USD915596S1 (en) 2018-04-10 2021-04-06 Össur Iceland Ehf Prosthetic foot with tapered fasteners
US10980648B1 (en) 2017-09-15 2021-04-20 Össur Iceland Ehf Variable stiffness mechanism and limb support device incorporating the same
US11446164B1 (en) 2017-09-15 2022-09-20 Össur Iceland Ehf Variable stiffness mechanisms

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2000442B (en) * 1977-03-28 1982-01-20 Tucker M Moulded syme foot and method of fitting and fabricating same
US5376141A (en) * 1990-09-21 1994-12-27 Phillips; Van L. Low-profile symes foot prosthesis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US487697A (en) * 1892-12-06 Homer f
US975439A (en) * 1910-05-31 1910-11-15 George H Mcdannel Artificial limb.
US1102774A (en) * 1913-08-13 1914-07-07 Stephan Martinchek Artificial leg.
US1323444A (en) * 1919-03-29 1919-12-02 Bartholomew Bowler Artificial leg.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH9430A (en) * 1894-10-24 1895-05-31 Josef Granz New artificial foot
DE325333C (en) * 1917-04-29 1920-09-13 Josef Granz Device for cushioning artificial ankles
DE455641C (en) * 1925-07-04 1928-02-06 Paul Veh Artificial ankle
AT165155B (en) * 1945-08-16 1950-01-25 Leopold Svatek Artificial foot
FR2048707A5 (en) * 1969-05-23 1971-03-19 Grisoni Angelo

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US487697A (en) * 1892-12-06 Homer f
US975439A (en) * 1910-05-31 1910-11-15 George H Mcdannel Artificial limb.
US1102774A (en) * 1913-08-13 1914-07-07 Stephan Martinchek Artificial leg.
US1323444A (en) * 1919-03-29 1919-12-02 Bartholomew Bowler Artificial leg.

Cited By (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225982A (en) * 1978-12-04 1980-10-07 Cochrane Ian W Molded syme foot with attached stump socket
US4413360A (en) * 1981-10-27 1983-11-08 Lamb Steve R Adjustable prosthetic ankle assembly
US4442554A (en) * 1982-02-12 1984-04-17 Arthur Copes Biomechanical ankle device
US4645509A (en) * 1984-06-11 1987-02-24 Model & Instrument Development Corporation Prosthetic foot having a cantilever spring keel
US4718913A (en) * 1986-05-27 1988-01-12 Voisin Jerome P Dual, ankle, springs prosthetic foot and ankle system
WO1989000035A1 (en) * 1986-05-27 1989-01-12 Voisin Jerome P Prosthetic foot and ankle system
US5066305A (en) * 1988-10-25 1991-11-19 Model & Instrument Development Corporation Prosthetic foot having a low profile cantilever spring keel
US5037444A (en) * 1989-01-05 1991-08-06 Phillips L Van Prosthetic foot
US5181932A (en) * 1989-04-13 1993-01-26 Phillips L Van Foot prosthesis having auxiliary ankle construction
US6406500B1 (en) 1989-04-13 2002-06-18 Van L. Phillips Foot prosthesis having curved forefoot
US5593457A (en) * 1989-04-13 1997-01-14 Phillips; Van L. Foot prosthesis having auxiliary ankle construction
US5486209A (en) * 1989-04-13 1996-01-23 Phillips; Van L. Foot prosthesis having auxiliary ankle construction
US5976191A (en) * 1989-04-13 1999-11-02 Phillips; Van L. Foot prosthesis having curved forefoot
US5514186A (en) * 1989-04-13 1996-05-07 Phillips; Van L. Attachment construction for prosthesis
US6527811B1 (en) 1989-04-13 2003-03-04 Van L. Phillips Foot prosthesis with modular foot plate
US5728176A (en) * 1989-04-13 1998-03-17 Flex-Foot, Inc. Attachment construction for prosthesis
US5549714A (en) * 1990-09-21 1996-08-27 Phillips; Van L. Symes foot prosthesis
US5514185A (en) * 1991-02-28 1996-05-07 Phillips; Van L. Split foot prosthesis
US5509938A (en) * 1991-02-28 1996-04-23 Phillips; Van L. Prosthetic foot incorporating adjustable bladder
US5545234A (en) * 1991-04-04 1996-08-13 Collier, Jr.; Milo S. Lower extremity prosthetic device
US5314499A (en) * 1991-04-04 1994-05-24 Collier Jr Milo S Artificial limb including a shin, ankle and foot
US5458656A (en) * 1991-09-30 1995-10-17 Flex-Foot Energy-storing prosthesis leg pylon vertical shock leg
US5728177A (en) * 1994-08-15 1998-03-17 Flex-Foot, Inc. Prosthesis with foam block ankle
US5800569A (en) * 1994-08-15 1998-09-01 Phillips; Van L. Prosthesis with resilient ankle block
US5993488A (en) * 1994-08-15 1999-11-30 Phillips; Van L. Prosthesis with resilient ankle block
US20050234563A1 (en) * 1994-08-15 2005-10-20 Phillips Van L Foot prosthesis having cushioned ankle
US7354456B2 (en) 1994-08-15 2008-04-08 Phillips Van L Foot prosthesis having cushioned ankle
US5800570A (en) * 1996-03-14 1998-09-01 Collier; Milo S. Lower extremity prosthetic device
US6206934B1 (en) 1998-04-10 2001-03-27 Flex-Foot, Inc. Ankle block with spring inserts
US6280479B1 (en) 1998-04-10 2001-08-28 Flex-Foot, Inc. Foot prosthesis having cushioned ankle
US20040162623A1 (en) * 1998-04-10 2004-08-19 Phillips Van L. Foot prosthesis having cushioned ankle
US7279011B2 (en) 1998-04-10 2007-10-09 Phillips Van L Foot prosthesis having cushioned ankle
US6899737B1 (en) 1998-04-10 2005-05-31 Van L. Phillips Foot prosthesis having cushioned ankle
US20100106260A1 (en) * 1998-04-10 2010-04-29 Phillips Van L Foot prosthesis having cushioned ankle
US7879110B2 (en) 1998-04-10 2011-02-01 Ossur Hf Foot prosthesis having cushioned ankle
US20050071018A1 (en) * 2000-05-02 2005-03-31 Phillips Van L. Universal prosthesis with cushioned ankle
US6811571B1 (en) 2000-05-02 2004-11-02 Van L. Phillips Universal prosthesis with cushioned ankle
US7572299B2 (en) 2000-06-30 2009-08-11 Freedom Innovations, Llc Prosthetic foot with energy transfer
US6875241B2 (en) 2000-06-30 2005-04-05 Roland J. Christensen, As Operating Manager Of Rjc Development Lc, General Partner Of The Roland J. Christensen Family Limited Partnership Variable resistance cell
US7341603B2 (en) 2000-06-30 2008-03-11 Applied Composite Technology, Inc. Prosthetic foot with energy transfer including variable orifice
US20050171618A1 (en) * 2000-06-30 2005-08-04 Christensen Roland J. Prosthetic foot with energy transfer including variable orifice
US7686848B2 (en) 2000-06-30 2010-03-30 Freedom Innovations, Llc Prosthetic foot with energy transfer
US20080183301A1 (en) * 2000-06-30 2008-07-31 Christensen Roland J Prosthetic foot with energy transfer
US20060241783A1 (en) * 2000-06-30 2006-10-26 Christensen Roland J Variable resistance cell
US20050216098A1 (en) * 2000-06-30 2005-09-29 Roland J. Christensen Variable resistance cell
US20060229736A1 (en) * 2000-06-30 2006-10-12 Christensen Roland J Prosthetic foot with energy transfer
US7060104B2 (en) 2000-08-30 2006-06-13 Phillips Van L Energy storing foot prosthesis with improved plantar flexion
US20030093158A1 (en) * 2000-10-26 2003-05-15 Phillips Van L. Foot prosthesis having cushioned ankle
US7063727B2 (en) 2000-10-26 2006-06-20 Van L. Phillips Foot prosthesis having cushioned ankle
US20040225376A1 (en) * 2000-12-22 2004-11-11 Townsend Barry W. Prosthetic foot
US6936074B2 (en) 2000-12-22 2005-08-30 Barry W. Townsend Prosthetic foot
US6443995B1 (en) 2000-12-22 2002-09-03 Barry W. Townsend Prosthetic foot
US6743260B2 (en) 2000-12-22 2004-06-01 Barry W. Townsend Prosthetic foot
US20040199265A1 (en) * 2000-12-22 2004-10-07 Townsend Barry W. Prosthetic foot
US7108723B2 (en) 2000-12-22 2006-09-19 Townsend Barry W Prosthetic foot
US20050033450A1 (en) * 2002-10-08 2005-02-10 Christensen Roland J. Prosthetic foot with a resilient ankle
US20050203640A1 (en) * 2002-10-08 2005-09-15 Christensen Roland J. Prosthetic foot with a resilient ankle
US7419509B2 (en) 2002-10-08 2008-09-02 Freedom Innovations, Llc Prosthetic foot with a resilient ankle
US8377144B2 (en) 2003-08-15 2013-02-19 Ossur Hf Low profile prosthetic foot
US9579220B2 (en) 2003-08-15 2017-02-28 össur hf Low profile prosthetic foot
US20050038524A1 (en) * 2003-08-15 2005-02-17 Jonsson Orn Ingvi Low profile prosthetic foot
US8858649B2 (en) 2003-08-15 2014-10-14 össur hf Low profile prosthetic foot
US8007544B2 (en) 2003-08-15 2011-08-30 Ossur Hf Low profile prosthetic foot
US8377146B2 (en) 2003-08-15 2013-02-19 Ossur Hf Low profile prosthetic foot
US20050085926A1 (en) * 2003-10-21 2005-04-21 General Partner Of The Roland J. Christensen Family Limited Partnership Prosthetic foot with an adjustable ankle and method
US20060041321A1 (en) * 2003-10-21 2006-02-23 Christensen Roland J Prosthetic foot with an adjustable ankle and method
US7520904B2 (en) 2003-10-21 2009-04-21 Freedom Innovations, Llc Prosthetic foot with an adjustable ankle and method
US6966933B2 (en) 2003-10-21 2005-11-22 Roland J. Christensen, As Operating Manager Of Rjc Development, Lc, General Partner Of The Roland J. Christensen Family Limited Partnership Prosthetic foot with an adjustable ankle and method
US7462201B2 (en) 2003-10-21 2008-12-09 Freedom Innovations, Llc Prosthetic foot with an adjustable ankle and method
US7172630B2 (en) 2004-02-20 2007-02-06 Roland J. Christensen, As Operating Manager Of Rjc Development, Lc, General Partner Of The Roland J. Christensen Family Limited Partnership Prosthetic foot with cam
US20050187640A1 (en) * 2004-02-20 2005-08-25 Roland J. Christensen Prosthetic foot with cam
US20090293641A1 (en) * 2004-05-28 2009-12-03 Clausen Arinbjoern V Method of measuring the performance of a prosthetic foot
US20050267603A1 (en) * 2004-05-28 2005-12-01 Lecomte Christophe G Foot prosthesis with resilient multi-axial ankle
US9132022B2 (en) 2004-05-28 2015-09-15 össur hf Foot prosthesis with resilient multi-axial ankle
US9668887B2 (en) 2004-05-28 2017-06-06 össur hf Foot prosthesis with resilient multi-axial ankle
US20090287315A1 (en) * 2004-05-28 2009-11-19 össur hf. Foot prosthesis with resilient multi-axial ankle
US7891258B2 (en) 2004-05-28 2011-02-22 össur hf Method of measuring the performance of a prosthetic foot
US20050267602A1 (en) * 2004-05-28 2005-12-01 Clausen Arinbjorn V Foot prosthesis with resilient multi-axial ankle
US7581454B2 (en) 2004-05-28 2009-09-01 össur hf Method of measuring the performance of a prosthetic foot
US7347877B2 (en) 2004-05-28 2008-03-25 össur hf Foot prosthesis with resilient multi-axial ankle
US20060058893A1 (en) * 2004-05-28 2006-03-16 Clausen Arinbjorn V Method of measuring the performance of a prosthetic foot
US8025699B2 (en) 2004-05-28 2011-09-27 össur hf Foot prosthesis with resilient multi-axial ankle
US20070106395A9 (en) * 2004-05-28 2007-05-10 Clausen Arinbjorn V Foot prosthesis with resilient multi-axial ankle
US7846213B2 (en) 2004-05-28 2010-12-07 össur hf. Foot prosthesis with resilient multi-axial ankle
US7998221B2 (en) 2004-05-28 2011-08-16 össur hf Foot prosthesis with resilient multi-axial ankle
US20080033578A1 (en) * 2006-08-03 2008-02-07 Christensen Roland J Prosthetic foot with variable medial/lateral stiffness
US7618464B2 (en) 2006-08-03 2009-11-17 Freedom Innovations, Llc Prosthetic foot with variable medial/lateral stiffness
US7824446B2 (en) 2006-12-06 2010-11-02 Freedom Innovations, Llc Prosthetic foot with longer upper forefoot and shorter lower forefoot
US20080167731A1 (en) * 2006-12-06 2008-07-10 Christensen Roland J Prosthetic foot with longer upper forefoot and shorter lower forefoot
US7727285B2 (en) 2007-01-30 2010-06-01 Freedom Innovations, Llc Prosthetic foot with variable medial/lateral stiffness
US20080188951A1 (en) * 2007-01-30 2008-08-07 Christensen Roland J Prosthetic foot with variable medial/lateral stiffness
US7794506B2 (en) 2007-09-18 2010-09-14 Freedom Innovations, Llc Multi-axial prosthetic ankle
US20090082878A1 (en) * 2007-09-18 2009-03-26 Christensen Roland J Multi-axial prosthetic ankle
US8034121B2 (en) 2008-04-18 2011-10-11 Freedom Innovations, Llc Prosthetic foot with two leaf-springs joined at heel and toe
US20090265019A1 (en) * 2008-04-18 2009-10-22 Chritstensen Roland J Prosthetic foot with two leaf-springs joined at heel and toe
US8685109B2 (en) 2008-07-01 2014-04-01 össur hf Smooth rollover insole for prosthetic foot
US20100004757A1 (en) * 2008-07-01 2010-01-07 Ossur Hf Smooth rollover insole for prosthetic foot
US9168158B2 (en) 2008-07-01 2015-10-27 össur hf Smooth rollover insole for prosthetic foot
US8486156B2 (en) 2010-02-26 2013-07-16 össur hf Prosthetic foot with a curved split
US20110213471A1 (en) * 2010-02-26 2011-09-01 össur hf Prosthetic foot with a curved split
US8500825B2 (en) 2010-06-29 2013-08-06 Freedom Innovations, Llc Prosthetic foot with floating forefoot keel
US9999523B2 (en) 2011-09-26 2018-06-19 össur hf Frictionless vertical suspension mechanism for prosthetic feet
US9028559B2 (en) 2011-09-26 2015-05-12 össur hf Frictionless vertical suspension mechanism for prosthetic feet
US11478364B2 (en) 2011-09-26 2022-10-25 Össur Iceland Ehf Frictionless vertical suspension mechanism for prosthetic feet
US10758377B2 (en) 2011-09-26 2020-09-01 Össur Iceland Ehf Frictionless vertical suspension mechanism for prosthetic feet
US8961618B2 (en) 2011-12-29 2015-02-24 össur hf Prosthetic foot with resilient heel
US9439786B2 (en) 2012-08-01 2016-09-13 össur hf Prosthetic ankle module
US10342680B2 (en) 2012-08-01 2019-07-09 Ossur Iceland Ehf Prosthetic ankle module
USD797292S1 (en) 2014-06-30 2017-09-12 össur hf Prosthetic foot plate
US9999524B2 (en) 2014-06-30 2018-06-19 össur hf Prosthetic feet and foot covers
US11147692B2 (en) 2014-06-30 2021-10-19 Össur Iceland Ehf Prosthetic feet and foot covers
USD795433S1 (en) 2015-06-30 2017-08-22 Össur Iceland Ehf Prosthetic foot cover
US20170290684A1 (en) * 2016-04-07 2017-10-12 REHABILITATION INSTITUTE OF CHICAGO d/b/a Shirley Ryan AbilityLab Polycentric powered ankle prosthesis
US10772742B2 (en) * 2016-04-07 2020-09-15 Rehabilitation Institute Of Chicago Polycentric powered ankle prosthesis
US10821007B2 (en) 2016-12-01 2020-11-03 Össur Iceland Ehf Prosthetic feet having heel height adjustability
US11771572B2 (en) 2016-12-01 2023-10-03 Össur Iceland Ehf Prosthetic feet having heel height adjustability
US10980648B1 (en) 2017-09-15 2021-04-20 Össur Iceland Ehf Variable stiffness mechanism and limb support device incorporating the same
US11446164B1 (en) 2017-09-15 2022-09-20 Össur Iceland Ehf Variable stiffness mechanisms
USD915596S1 (en) 2018-04-10 2021-04-06 Össur Iceland Ehf Prosthetic foot with tapered fasteners

Also Published As

Publication number Publication date
GB1432481A (en) 1976-04-14
NL7407182A (en) 1974-12-03
DE2426070C3 (en) 1981-10-22
DE2426070B2 (en) 1981-01-15
FR2231357B1 (en) 1978-03-24
FR2231357A1 (en) 1974-12-27
NL155450B (en) 1978-01-16
DE2426070A1 (en) 1974-12-19

Similar Documents

Publication Publication Date Title
US3874004A (en) Symes ankle joint
JP3128237B2 (en) Artificial toggle joint
US3901223A (en) Knee joints for leg irons
US5746774A (en) Knee joint mechanism for knee disarticulation prosthesis
US3823424A (en) Artificial leg with stable link-type knee joint
Radcliffe Functional considerations in the fitting of above-knee prostheses
Goh et al. Biomechanical evaluation of SACH and uniaxial feet
US4911709A (en) Artificial knee with improved stable link-type knee joint
US4005496A (en) Prosthetic knee joint
US5443522A (en) Artificial foot having a low-positioned joint and a horizontal plantar buffer
US4064569A (en) Artificial polycentric knee joint
US20050085926A1 (en) Prosthetic foot with an adjustable ankle and method
US4261064A (en) Bicondylar joint prosthesis
US5800570A (en) Lower extremity prosthetic device
WO1985004095A1 (en) Biomechanical ankle
WO1996023461A1 (en) Prosthetic foot
US3806958A (en) Thigh prosthesis
CN111150528B (en) Bionic passive flexible low-energy-consumption ankle joint prosthesis based on rigid-flexible coupling
US20050049719A1 (en) Prosthetic hip joint with side pivot
SU1454449A1 (en) Prosthesis for lower extremity
KR101921607B1 (en) Artificial Multi-Axis Knee Joint
Öberg Knee mechanisms for through-knee prostheses
CN115501014A (en) Integrated ankle system artificial limb
US2594752A (en) Joint construction for artificial limbs
CN211023319U (en) Artificial leg