US3873345A - Method of finishing coated paper - Google Patents

Method of finishing coated paper Download PDF

Info

Publication number
US3873345A
US3873345A US331815A US33181573A US3873345A US 3873345 A US3873345 A US 3873345A US 331815 A US331815 A US 331815A US 33181573 A US33181573 A US 33181573A US 3873345 A US3873345 A US 3873345A
Authority
US
United States
Prior art keywords
coating
temperature
gloss
polymer
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US331815A
Inventor
Jay H Vreeland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Warren SD Co
Original Assignee
Scott Paper Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scott Paper Co filed Critical Scott Paper Co
Priority to US331815A priority Critical patent/US3873345A/en
Priority to CA191,568A priority patent/CA1044538A/en
Priority to GB503574A priority patent/GB1466698A/en
Priority to NO740376A priority patent/NO142268C/en
Priority to SE7401735A priority patent/SE413153B/en
Priority to AT107974A priority patent/AT348328B/en
Priority to NL7401852A priority patent/NL7401852A/xx
Priority to FI383/74A priority patent/FI57799C/en
Priority to FR7404524A priority patent/FR2217475B1/fr
Priority to DE19742406795 priority patent/DE2406795B2/en
Priority to BE1005702A priority patent/BE810823A/en
Priority to JP1707774A priority patent/JPS537964B2/ja
Priority to ES423166A priority patent/ES423166A1/en
Priority to IT48325/74A priority patent/IT1002904B/en
Application granted granted Critical
Publication of US3873345A publication Critical patent/US3873345A/en
Priority to US05/612,440 priority patent/US4112192A/en
Assigned to S.D. WARREN COMPANY reassignment S.D. WARREN COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SCOTT PAPER COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/08Rearranging applied substances, e.g. metering, smoothing; Removing excess material
    • D21H25/12Rearranging applied substances, e.g. metering, smoothing; Removing excess material with an essentially cylindrical body, e.g. roll or rod
    • D21H25/14Rearranging applied substances, e.g. metering, smoothing; Removing excess material with an essentially cylindrical body, e.g. roll or rod the body being a casting drum, a heated roll or a calender
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • Y10T428/31906Ester, halide or nitrile of addition polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31993Of paper

Definitions

  • the present invention relates to a method of producing high-gloss coated papers with heated calendering apparatus through the use of coating compositions comprising pigments and synthetic polymeric latices.
  • High-gloss coated papers can be produced by-the application of an aqueous coating composition containing pigment and thermoplastic binder and su bsequently developing gloss in the coated paper by means of hot calendering, such as by supercalendering or gloss calendering.
  • a supercalender comprises a stack of alternating steel calender rolls and resilient backing rolls, with means for heating the steel rolls or heat being generated by friction.
  • the paper web is threaded through the stack, thus wrapping the heated roll for a considerable portion of its circumference.
  • the paper web may bepassed directly through the nip formed by the heated roll and the backing roll by the use of fly rolls.
  • super-calender involves relatively high nip pressures, generally in the range of 1,000 to 2,000 pounds per linear inch (pli) and typically l,200-1,600 pli.
  • the temperatures of the steel finishing rolls are generally 140 to 180F. While supercalendering suffers from the disadvantage of compacting and densifying the coated paper web during the calendering operation, it has the advantage of greater speed and lower cost of equipment relative to gloss calendering which is almost invariably done in-line with the coating operation.
  • the method of finishing coatings on paper by means of hot calendering known in the paper-coating art as gloss calendering involves the production of a glossy surface on paper or related web materials by contacting the surface ofa coated substrate with a polished finishing drum under temperature conditions sufficient to cause a temporary condition of plasticity in the surface to thereby obtain a high degree of finish or gloss without unduly compacting the substrate.
  • This higher bulk compared to that obtained by supercalendering leads to increased brightness and opacity, which are desirable properties in coated printing papers, and permits the use of a lighter basis weight paper to provide a given caliper.
  • an aqueous coating composition is applied to a paper web, the web is calendered in the nip formed between a glosscalender drum and the resilient backing roll and the paper web is removed from contact with the drum as it emerges from the nip,
  • the pressure conditions in the gloss-calender nip are generally lower, e.g., 500-900 pli, than in the supercalender, and the temperature conditions are typically higher 275-350F.
  • Aqueous paper coating compositions generally comprise a mineral component, which is preferably predominantly clay, but may also include other mineral pigments such as titanium dioxide, zinc sulfide, or calcium carbonate, and a thermoplastic binder. It has recently been suggested (in U.S. Pat. No. 3,583,881 granted June 8, 1971) that so-called hard polymers be employed as the binder material in a paper coating composition in order to obtain a high gloss coated. paper product. By hard is meant that the thermoplastic polymer has a relatively high apparent second order transition temperature or inflection temperature, more commonly in the paper coating art called the glass transition temperature (T,,), which may be found by plotting Youngs modulus of rigidity against temperature.
  • T glass transition temperature
  • Each polymer has its own glass transition temperature (T this term is well known in the art and is generally used to define or describe a temperature above which the polymer has acquired sufficient thermal energy for molecular rotational motion or considerable torsional oscillation to occur about the majority of bonds in the main chain. This term is also used to define a minimum film forming temperature of polymer latices minimum which the polymer particles are capable of being coalesced by surface tension upon evaporation of water to form a film.
  • glass transition temperature or minimum film forming temperature describes a type of internal melting point for polymer latices, but not a phase change, at and about which the polymer preserves the outward appearance of a solid but at the same time-behaves more like a viscous liquid in its ability to undergo plastic flow and elastic deformation.
  • glass transition temperature may be used interchangeably with and defined as the minimum film forming temperature" of a polymer latex. In actuality, this transition occurs over a small range of temperatures rather than an exact point.
  • any polymer having a Tg substantially greater than T for example, F or 32C
  • any polymer with a T substantially below T for example 60F or 16C
  • the expression hard refers to binders having a Tg substantially greater than room temperature and generally a Tg in excess of F or 38C.
  • the mean Tg value of all polymer components of the binder must be at least 43C. It is further stated that the drying of the coating is effected at an elevated temperature to assure fusion of the polymer therein, the temperature being about 20 to 60C higher than the Tg of the polymer incorporated in the coating.
  • a paper web is coated with a composition containing a hard polymeric binder, the coating is dried at a temperature below that at which the binder coalesces, and the coating is calendered at a temperature above the coalescence temperature. Because the binder in the coating is unfused or only partially fused, the pigments in the coating are unbound and hence the surface is much more moldable and capable of producing a much higher level of gloss than if it had been heated above the Tg temperature before the web reached the calender nip.
  • a further feature of the invention is the discovery of the importance, in the use of hard binders, of the relationship between hardness and temperature.
  • the shape of the curve produced when hardness is plotted against temperature has been found to have meaning for the ease and effectiveness of hard binders in enhancing gloss.
  • FIG. 1 is a graph depicting, for a representative hard binder of the present invention, the shape of the curve formed when Shore A hardness is plotted against tem perature.
  • FIG. 2 is a graph depicting, for a representative soft binder, the shape of the curve formed when Shore A hardness is plotted against temperature.
  • FIG. 3 is a graph depicting, for another hard binder, the shape of the curve formed when Shore A hardness is plotted against temperature.
  • the curve shown in FIG. 2 is representative of a soft polymer, such as that illustrated in Example 3 below, having a T below the temperature range shown in the figure. In the temperature region shown, the curve exhibits only the flatness characteristic of the polymers hardness/temperature relationship in the region well beyond the T of the polymer. It may be seen that the hardness of the binder represented in FIG. 1, at a sufficiently high temperature, actually drops below that of the soft binder represented in FIG. 2 at the same temperature. Thus, it is postulated that the better gloss achievable with hard binders is in part attributable to the fact that these hard binders, at a temperature above T,,, are actually softer than soft binders and for this reason produce better results even if coalesced or fused prior to finishing.
  • the change in hardness is less than that depicted in FIG. 1.
  • the curve shown in FIG. 3 indicates that even when this polymer is in its soft condition, it is not as easily molded as the polymer represented in FIG. 1.
  • the type of material represented by the curve in FIG. 3 is less preferred for use in the present invention than that shown in FIG. 1, as the material is harder at the finishing temperature and thus less easily molded.
  • the gist of the present discovery is that the effectiveness of a hard binder in producing high gloss when utilized in paper coating compositions is not purely a function of the chemical composition of the binder or of its glass transition temperaturefbut primarily of the sharpness and depth of the transition in hardness at T the glass transition temperature.
  • binders for use in the present invention are hard at temperatures below T and very soft at temperatures above T
  • an aqueous coating composition comprising paper coating pigment in a binder consisting essentially of a polymer latex having a T greater than F is applied to a paper web and dried under conditions such that the temperature of the surface of the coating remains below T, and the coated paper web is finished at a temperature above T
  • the temperature of the air employed to dry the coating may be heated to a temperature substantially above T,,.
  • this temperature difference is that the coating is cooled by the evaporation of water from it (evaporative cooling).
  • the temperature of the surface of the web does not approach the temperature of the circulating air until substantially all the moisture is evaporated from the coated web.
  • the coated web need not be reduced to such a degree of dryness in order to be calendered. Accordingly, it will be seen that rapid drying can be effected by utilizing very hot air yet the drying can be carried out in accordance with the present invention, i.e., at a temperature below T,, by removing the coated web from the dryer before evaporative cooling has ceased.
  • the binder is effectively all of the hard, thermoplastic type.
  • the binder component may contain a minor proportion of binder other than the hard, thermoplastic type, provided that the amount is less than that necessary to bind the pigment. In general, this necessary amount is less than 5% based on 100 parts of pigment, but may vary depending on the amount of binder which is absorbed by the paper web. If an amount of soft polymer sufficient to bind the pigment is used, maximum gloss will not be obtained.
  • a further feature of the invention is the development of several unique and desirable features in the finished coating. It is believed that the final film structure produced in the practice of the invention is different from that produced in the usual soft binders.
  • the hot finishing operation may not completely coalesce the latex particles to a solid impervious film but rather leaves what may be characterized as a microporous film in which the latex particles are flowed together but form a semi-continuous structure.
  • Such a film in addition to being strong enough to securely bind the pigment, provides certain very desirable attributes to paper coatings.
  • one of the functions of a coated paper is to provide a smooth surface for subsequent printing with 'gloss ink.
  • a necessary property of this coating is that it also possesses a fine pore structure which can cause the ink to set, via the capillary action of the coating upon the ink or certain more mobile portions of it. This behavior reduces the tendency of printed images to set-of or be transferred to the back side of the subsequent sheet deposited on the pile as the sheets are collected on the printing press.
  • the result of the present invention is to produce a coated paper with excellent ink setting abilities compared to conventionally coated papers.
  • the base stock or fibrous cellulosic substrate to be coated in accordance with the present invention can be one of a wide variety of types depending upon the use for which the product is intended. It can be an internally sized or a surfacesized stock and can vary in weight from a light-weight paper, such a magazine weight, to paperboard weight. As will be understood by those of ordinary skill in the art, to provide a finish of higher quality, it is preferred to prime coat the surface to be finished. The composition of such a prime coat, or even its presence, is not considered to be a critical feature of the present invention.
  • a coating composition comprising the following was prepared:
  • the dried sheet was passed through four successive gloss calender nips with fly rolls being used to guide the web between the nips.
  • the calendering drum temperature was 320F (160C) and the nip pressure was about 500 pounds per linear inch (8,929 Kg/m).
  • the surface coating had a gloss of 77-78 following the four nip gloss calendering operation.
  • the coated paper of this example is dried at a temperature above Tg, for example 302F (C), conditioned at 45% relative humidity and finished as above, the gloss reading is approximately 10 units lower.
  • the coated and dried paper web of this example is finished by supercalendering instead of by gloss calendering, the surface of the finished coating has a gloss of 80.
  • the coated paper of this example is dried at a temperature above Tg, for example 302F (150C), conditioned at 45% relative humidity and finished by supercalendering the gloss reading is about 74.
  • the coated paper of this example is dried at a temperature above Tg, for example 302F (150C) conditioned and finished as above, the gloss reading is approximately 10 units lower.
  • the present invention provides a coated paper with excellent ink setting abilities compared to conventionally coated papers.
  • This ink setting property can be described by a test which is not a standardized test but is nevertheless useful for comparison purposes and may be described as follows.
  • a prescribed amount of a specific commercial printing ink is applied as a uniform film to the paper to be tested.
  • the inked sample is pressed against a surface (the composition of which remains constant at each interval) under uniform conditions.
  • the density of the ink transferred to the surface is measured optically and represents the amount of set-off.
  • the end point of the test occurs at that time when the density of the ink transferred reaches a prescribed low value.
  • the time between application of the film of ink to the paper to be tested and the time when the density of the ink set-off reaches the acceptable value is called the ink set time.
  • Examplel 1 gave an ink-set time of 275 seconds as measured by tthe above described test; whereas the gloss calendered sheet of Example 3 yielded a value of 1,075 seconds.
  • the present invention provides a product of outstanding blister resistance compared to papers coated with compositions containing conventional soft binders.
  • Blister resistance can be illustrated by performing the following comparison. A uniform film of ink is applied to each side of the sheet to be tested, which has been conditioned at standard relative humidity and temperature conditions. To simulate conditions on commercial web off-set printing presses, the inked sheet is then immediately passed through a hot oven to test for its tendency to blister. Provision is made for monitoring the surface temperature of the sample and blistering is judged visually.
  • Gloss-calendering consisted of passing the dried, coated sheet through three successive glosscalender nips.
  • the calendering drum temperature was 245F (118C) and the nip pressure was 400 pounds per linear inch (7,148 Kg/m).
  • the surface of the air dried coating had a gloss of 63 following the calendering operation and the surface of the oven-dried coating a gloss of 57.
  • the surface of the air-dried coating had a gloss of 64 following the calendering operation and the surface of the oven-dried coating, a gloss of 56.
  • aqueous composition comprising acetate, styrene-isoprcne and acrylic polymer latices.
  • a coated paper web made in accordance with

Abstract

Production of high-gloss coated paper with heated calendering apparatus through the use of a coating composition comprising pigment and a hard latex binder.

Description

O 1Jn1ted States Patent 1191 1111 3,373,345 Vreeland Mar. 25, 1975 [54] METHOD OF FINISHING COATED PAPER 3,132,042 5/1964 Weber 117/83 X 3,288,632 11/1966 Rush e. 117/76 [75] Inventor Jay H. Vreeland, Yarmouth, Mame 3,583,881 6/1971 Kennedy 117/76 x 73 Assignee; Scott paper Company, philademhia1 3,634,298 1/1972 Wamsley et al7 260/867 X [22] Filed: Feb 12, 1973 Primary Examiner-Michacl R. Lusignan Attorney, Agent, or Firm.1ohn A. Weygandt; John 1211 Appl. No.: 331,815 w K [52] U.S. C1. 1l7/65.2, 117/76 P, 117/155 UA 1511 1111. C1 134411 1/44 ABSTRACT [58] Flew of Search 1 17/652 76 155 UA Production of high-gloss coated paper with heated calendering apparatus through the use of a coating com- [56] References cued position comprising pigment and a hard latex binder.
UNITED STATES PATENTS 2949,3112 8/1960 Dickerman et a1. 117/76 X 8 Claims, 3 Drawing Figures (D (D LU 2 D 0: 1 I
LL] 0: O I (1') 7O 8O 90 I00 I10 I 130 I I TEMPERATURE, F
METHOD OF FINISHING COATED PAPER BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of producing high-gloss coated papers with heated calendering apparatus through the use of coating compositions comprising pigments and synthetic polymeric latices.
2. Description of the Prior Art High-gloss coated papers can be produced by-the application of an aqueous coating composition containing pigment and thermoplastic binder and su bsequently developing gloss in the coated paper by means of hot calendering, such as by supercalendering or gloss calendering. A supercalender comprises a stack of alternating steel calender rolls and resilient backing rolls, with means for heating the steel rolls or heat being generated by friction. Usually the paper web is threaded through the stack, thus wrapping the heated roll for a considerable portion of its circumference. Alternatively, the paper web may bepassed directly through the nip formed by the heated roll and the backing roll by the use of fly rolls. The use of a super-calender involves relatively high nip pressures, generally in the range of 1,000 to 2,000 pounds per linear inch (pli) and typically l,200-1,600 pli. The temperatures of the steel finishing rolls are generally 140 to 180F. While supercalendering suffers from the disadvantage of compacting and densifying the coated paper web during the calendering operation, it has the advantage of greater speed and lower cost of equipment relative to gloss calendering which is almost invariably done in-line with the coating operation.
The method of finishing coatings on paper by means of hot calendering known in the paper-coating art as gloss calendering" involves the production of a glossy surface on paper or related web materials by contacting the surface ofa coated substrate with a polished finishing drum under temperature conditions sufficient to cause a temporary condition of plasticity in the surface to thereby obtain a high degree of finish or gloss without unduly compacting the substrate. This higher bulk compared to that obtained by supercalendering leads to increased brightness and opacity, which are desirable properties in coated printing papers, and permits the use of a lighter basis weight paper to provide a given caliper. ln gloss-calendering of paper, an aqueous coating composition is applied to a paper web, the web is calendered in the nip formed between a glosscalender drum and the resilient backing roll and the paper web is removed from contact with the drum as it emerges from the nip, The pressure conditions in the gloss-calender nip are generally lower, e.g., 500-900 pli, than in the supercalender, and the temperature conditions are typically higher 275-350F.
Aqueous paper coating compositions generally comprise a mineral component, which is preferably predominantly clay, but may also include other mineral pigments such as titanium dioxide, zinc sulfide, or calcium carbonate, and a thermoplastic binder. It has recently been suggested (in U.S. Pat. No. 3,583,881 granted June 8, 1971) that so-called hard polymers be employed as the binder material in a paper coating composition in order to obtain a high gloss coated. paper product. By hard is meant that the thermoplastic polymer has a relatively high apparent second order transition temperature or inflection temperature, more commonly in the paper coating art called the glass transition temperature (T,,), which may be found by plotting Youngs modulus of rigidity against temperature.
Each polymer has its own glass transition temperature (T this term is well known in the art and is generally used to define or describe a temperature above which the polymer has acquired sufficient thermal energy for molecular rotational motion or considerable torsional oscillation to occur about the majority of bonds in the main chain. This term is also used to define a minimum film forming temperature of polymer latices minimum which the polymer particles are capable of being coalesced by surface tension upon evaporation of water to form a film. In effect, then, the term glass transition temperature or minimum film forming temperature describes a type of internal melting point for polymer latices, but not a phase change, at and about which the polymer preserves the outward appearance of a solid but at the same time-behaves more like a viscous liquid in its ability to undergo plastic flow and elastic deformation. For the purposes of this invention, the term glass transition temperature may be used interchangeably with and defined as the minimum film forming temperature" of a polymer latex. In actuality, this transition occurs over a small range of temperatures rather than an exact point.
From this definition it may be seen that if the temperature T is taken as room temperature (68 to 77F or 20 to 25C), then any polymer having a Tg substantially greater than T, for example, F or 32C, will be a non-film former at T, while any polymer with a T substantially below T, for example 60F or 16C, will be a relatively good film former at T. In the art to which the present invention pertains, the expression hard refers to binders having a Tg substantially greater than room temperature and generally a Tg in excess of F or 38C.
It is stated in the above-mentioned patent U.S. Pat. No. 3,583,881, that in order to prevent sticking of the coating to the hot steel roll used in the gloss calender, the mean Tg value of all polymer components of the binder must be at least 43C. It is further stated that the drying of the coating is effected at an elevated temperature to assure fusion of the polymer therein, the temperature being about 20 to 60C higher than the Tg of the polymer incorporated in the coating.
Another U.S. Patent which is directed to the production of high-gloss papers by coating the papers with a composition comprising a .pigment and a hard binder, U.S. Pat. No. 3,634,298 granted Jan. 11, 1972, presents a theoretical explanation as to why hard binders promote gloss. The pigment is oriented during the drying cycle by surface tension effects which bring the pigment matrix to minimum volume. This is also the point of maximum orientation and highest gloss in the unfinished condition. Binders, however, freeze the pigment in a random orientation as soon as pigment binding occurs, which prevents maximum orientation and gloss before calendering. This binding action commences when the emulsion is broken in the drying cycle and film formation occurs. As the minimum film forming temperature is increased, the time until coalescense in drying is increased, thereby increasing the time for orientation to occur. By this reasoning, gloss is a function of the glass transition temperature.
As will become apparent hereinafter, such a conclusion is only partially correct. Both of the abovementioned patents, moreover, teach that the binder be coalesced during the drying cycle in order that it hold the pigment in place. US. Pat. No. 3,583,881, column 4, lines 18 through 22; US. Pat. No. 3,634,298, column 1, lines 69 through 72.
SUMMARY OF THE INVENTION The present inventor has found that by ignoring the teaching of the prior art, namely that the binder should be fused or coalesced during the drying step, and, instead, by carefully drying the coated paper web below the Tg temperature, (thus avoiding coalescense), a much higher level of gloss can be produced upon subsequent hot calendering.
In accordance with the method of the present invention, a paper web is coated with a composition containing a hard polymeric binder, the coating is dried at a temperature below that at which the binder coalesces, and the coating is calendered at a temperature above the coalescence temperature. Because the binder in the coating is unfused or only partially fused, the pigments in the coating are unbound and hence the surface is much more moldable and capable of producing a much higher level of gloss than if it had been heated above the Tg temperature before the web reached the calender nip.
A further feature of the invention is the discovery of the importance, in the use of hard binders, of the relationship between hardness and temperature. The shape of the curve produced when hardness is plotted against temperature has been found to have meaning for the ease and effectiveness of hard binders in enhancing gloss.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph depicting, for a representative hard binder of the present invention, the shape of the curve formed when Shore A hardness is plotted against tem perature.
FIG. 2 is a graph depicting, for a representative soft binder, the shape of the curve formed when Shore A hardness is plotted against temperature.
FIG. 3 is a graph depicting, for another hard binder, the shape of the curve formed when Shore A hardness is plotted against temperature.
DETAILED DESCRIPTION OF THE INVENTION Referring now to the drawings, it is to be noted from FIG. 1 that the region of T is very short and the slope of the curve in the transition from rigidity to softness is very steep. Thus, polymers having the hardness/temperature characteristics represented by the shape of the curve shown in FIG. 1 are preferred for the practice of the present invention and examples thereof are illustrated in Examples 1, 2, 4 and 5 below. Such polymers are preferred because they begin to flow more readily upon contacting a heated finishing surface and likewise more quickly freeze as the web cools upon leaving the finishing surface because the transition back to hardness occurs over a very narrow temperature range. This rapid return to hardness allows the coating to maintain the high polish or gloss achieved in the nip.
The curve shown in FIG. 2 is representative of a soft polymer, such as that illustrated in Example 3 below, having a T below the temperature range shown in the figure. In the temperature region shown, the curve exhibits only the flatness characteristic of the polymers hardness/temperature relationship in the region well beyond the T of the polymer. It may be seen that the hardness of the binder represented in FIG. 1, at a sufficiently high temperature, actually drops below that of the soft binder represented in FIG. 2 at the same temperature. Thus, it is postulated that the better gloss achievable with hard binders is in part attributable to the fact that these hard binders, at a temperature above T,,, are actually softer than soft binders and for this reason produce better results even if coalesced or fused prior to finishing.
In the case of the binder represented in FIG. 3, while the region of T is very short and the slope of the curve in the transition area is very steep, the change in hardness is less than that depicted in FIG. 1. The curve shown in FIG. 3 indicates that even when this polymer is in its soft condition, it is not as easily molded as the polymer represented in FIG. 1. Thus, the type of material represented by the curve in FIG. 3 is less preferred for use in the present invention than that shown in FIG. 1, as the material is harder at the finishing temperature and thus less easily molded.
While the curves shown in FIGS. 1-3 describe the polymer itself, the hardness/temperature characteristics of a composition containing pigment and the binder can also be measured. The shape of the resulting curve can be correlated to the gloss achieved by the use of the coating composition.
The gist of the present discovery is that the effectiveness of a hard binder in producing high gloss when utilized in paper coating compositions is not purely a function of the chemical composition of the binder or of its glass transition temperaturefbut primarily of the sharpness and depth of the transition in hardness at T the glass transition temperature. The preferred binders for use in the present invention are hard at temperatures below T and very soft at temperatures above T In accordance with the present invention, an aqueous coating composition comprising paper coating pigment in a binder consisting essentially of a polymer latex having a T greater than F is applied to a paper web and dried under conditions such that the temperature of the surface of the coating remains below T, and the coated paper web is finished at a temperature above T As will be herein observed, the temperature of the air employed to dry the coating may be heated to a temperature substantially above T,,. Although the phenomenon is not generally recognized, the actual temperature of the surface ofa paper web during drying, for example in a high velocity air dryer, has been found by the present inventor to be about 100F below the temperature of the air circulating in the dryer. The explanation of this temperature difference is that the coating is cooled by the evaporation of water from it (evaporative cooling). The temperature of the surface of the web does not approach the temperature of the circulating air until substantially all the moisture is evaporated from the coated web. As will be understood by one of ordinary skill in the art, the coated web need not be reduced to such a degree of dryness in order to be calendered. Accordingly, it will be seen that rapid drying can be effected by utilizing very hot air yet the drying can be carried out in accordance with the present invention, i.e., at a temperature below T,,, by removing the coated web from the dryer before evaporative cooling has ceased.
The expression consisting essentially as used.
herein indicates that the binder is effectively all of the hard, thermoplastic type. The binder component may contain a minor proportion of binder other than the hard, thermoplastic type, provided that the amount is less than that necessary to bind the pigment. In general, this necessary amount is less than 5% based on 100 parts of pigment, but may vary depending on the amount of binder which is absorbed by the paper web. If an amount of soft polymer sufficient to bind the pigment is used, maximum gloss will not be obtained.
A further feature of the invention is the development of several unique and desirable features in the finished coating. It is believed that the final film structure produced in the practice of the invention is different from that produced in the usual soft binders. The hot finishing operation may not completely coalesce the latex particles to a solid impervious film but rather leaves what may be characterized as a microporous film in which the latex particles are flowed together but form a semi-continuous structure.
Such a film, in addition to being strong enough to securely bind the pigment, provides certain very desirable attributes to paper coatings. For example, one of the functions of a coated paper is to provide a smooth surface for subsequent printing with 'gloss ink. A necessary property of this coating is that it also possesses a fine pore structure which can cause the ink to set, via the capillary action of the coating upon the ink or certain more mobile portions of it. This behavior reduces the tendency of printed images to set-of or be transferred to the back side of the subsequent sheet deposited on the pile as the sheets are collected on the printing press. The result of the present invention is to produce a coated paper with excellent ink setting abilities compared to conventionally coated papers.
Another advantage of such a structure occurs in the production of papers for web offset printing. In order for a paper to have adequate blister resistance, it must possess sufficient porosity to allow the escape of the sheet moisture, which is being driven off by the high temperatures of the oven dryers. The practice of the present invention results in a product of outstanding blister resistance compared to a similar coated paper made with conventional soft binders.
MODE OF OPERATION OF INVENTION To assist those skilled in the art to practice the present invention, the following modes of operation are suggested by way of illustration. The base stock or fibrous cellulosic substrate to be coated in accordance with the present invention can be one of a wide variety of types depending upon the use for which the product is intended. It can be an internally sized or a surfacesized stock and can vary in weight from a light-weight paper, such a magazine weight, to paperboard weight. As will be understood by those of ordinary skill in the art, to provide a finish of higher quality, it is preferred to prime coat the surface to be finished. The composition of such a prime coat, or even its presence, is not considered to be a critical feature of the present invention.
While the description herein mentions the coating of one surface of the paper, both faces may be so coated if desired. Ream" as used herein represents 3,300 square feet. All weights, unless otherwise indicated, are on a dry weight basis. All gloss readings given herein EXAMPLE 1 An internally sized paper stock was prime coated on both sides with a conventional aqueous paper coating composition of starch and clay in an amount per side of 2.5 pounds per ream (3.8 grams per square meter).
A coating composition comprising the following was prepared:
Parts by Weight Mineral Pigment Tetrasodium pyrophosphate (dispersant) 0.15 poly (vinyl acetate) emulsion" 20 Tg F (49C) Water in an amount sufiicient to produce a coating composition having 65% solids ""Gel\'a E-900" supplied by Monsanto and applied at 1,500 feet per minute to one side of the prime-coated web by means of a flooded-nip trailingblade coater at a rate to provide 7 pounds per ream 10 grams per square meter). Immediately following the application of the coating, it was dried by passing it through an air cap containing rapidly circulating air heated to about 235F (113C) under conditions such that the temperature of the coating, due to evaporative cooling, did not exceed 104F (40C).
The dried sheet was passed through four successive gloss calender nips with fly rolls being used to guide the web between the nips. The calendering drum temperature was 320F (160C) and the nip pressure was about 500 pounds per linear inch (8,929 Kg/m). The surface coating had a gloss of 77-78 following the four nip gloss calendering operation.
If the coated paper of this example is dried at a temperature above Tg, for example 302F (C), conditioned at 45% relative humidity and finished as above, the gloss reading is approximately 10 units lower.
1f the coated and dried paper web of this example is finished by supercalendering instead of by gloss calendering, the surface of the finished coating has a gloss of 80. 1f the coated paper of this example is dried at a temperature above Tg, for example 302F (150C), conditioned at 45% relative humidity and finished by supercalendering the gloss reading is about 74.
EXAMPLE 2 A coating composition comprising the following was prepared:
Parts by Weight Mineral Pigment 100 Tetrasodium pyrophos hate 0.15 Styrene-isoprene copoiymer emulsion Tg 122F (50C) 20 Water in an amount sufficient to produce a coating composition having 65% solids *XD 3709.08" supplied by Dow Chemical Company at 44% solids the coating had a gloss of 76 following the calendering operation.
If the coated paper of this example is dried at a temperature above Tg, for example 302F (150C) conditioned and finished as above, the gloss reading is approximately 10 units lower.
EXAMPLE 3 A coating composition comprising the following was prepared:
Parts by Weight Mineral Pigment 100 Tetrasodium pyrophosphate 0.15 Styrene-butadiene latex l8 Water in an amount sufficient to produce a coating composition having 62% solids "fiZfY supplied by Dow Chemical Company and applied to the prime-coated base sheet of Example Example 1 in the same manner and weight as in Example 1. Following the application of the coating, the paper was then dried (above T and finished as in Example l. The gloss of the gloss calendered paper was 50.
As previously pointed out, the present invention provides a coated paper with excellent ink setting abilities compared to conventionally coated papers. This ink setting property can be described by a test which is not a standardized test but is nevertheless useful for comparison purposes and may be described as follows. A prescribed amount of a specific commercial printing ink is applied as a uniform film to the paper to be tested. At regular intervals of time after the application of the ink to the paper, the inked sample is pressed against a surface (the composition of which remains constant at each interval) under uniform conditions. The density of the ink transferred to the surface is measured optically and represents the amount of set-off. The end point of the test occurs at that time when the density of the ink transferred reaches a prescribed low value. The time between application of the film of ink to the paper to be tested and the time when the density of the ink set-off reaches the acceptable value is called the ink set time.
By way of illustration, the gloss calendered seet described in Examplel 1 gave an ink-set time of 275 seconds as measured by tthe above described test; whereas the gloss calendered sheet of Example 3 yielded a value of 1,075 seconds.
Also as stated above, the present invention provides a product of outstanding blister resistance compared to papers coated with compositions containing conventional soft binders. Blister resistance can be illustrated by performing the following comparison. A uniform film of ink is applied to each side of the sheet to be tested, which has been conditioned at standard relative humidity and temperature conditions. To simulate conditions on commercial web off-set printing presses, the inked sheet is then immediately passed through a hot oven to test for its tendency to blister. Provision is made for monitoring the surface temperature of the sample and blistering is judged visually.
By way of illustration, the gloss calendered sheet of Example 1 showed no evidence of blistering when so tested at a temperature of 300F. (149C. whereas the gloss calendered sheet of Example 3 showed pronounced blistering at 288F. (142C) EXAMPLE 4 A coating composition comprising the following was prepared:
Parts by Weight Clay Tetrasodium pyrophosphate 0.15 acrylic polymer emulsion 16 and applied to the prime-coated base stock of Example 1 by means of a flooded-nip trailing-blade coater at a rate to provide 8 pounds per ream (12 grams per square meter). Following the application of the coating, the stock was divided into two parts. One part was air-dried at room temperature overnight, and the other oven dried for one minute at 302F (C).
After drying, each part was finished by glosscalendering, Gloss-calendering consisted of passing the dried, coated sheet through three successive glosscalender nips. The calendering drum temperature was 245F (118C) and the nip pressure was 400 pounds per linear inch (7,148 Kg/m). The surface of the air dried coating had a gloss of 63 following the calendering operation and the surface of the oven-dried coating a gloss of 57.
EXAMPLE 5 A coating composition comprising the following was prepared:
Parts by Weight Clay I00 Tetrasodium pyrophosphate 0,05 Acrylic polymer emulsion l6 T,,= 217F (103C) Water in an amount sufiicient to produce a coating composition having 63% solids 'B-SS" supplied by the Rohm and Haas Company and applied to the prime-coated base stock of Example 4 in the same manner and weight as in Example 4. Following the application of the coating, the paper was then dried and finished as in Example 1.
The surface of the air-dried coating had a gloss of 64 following the calendering operation and the surface of the oven-dried coating, a gloss of 56.
It is apparent that other variations and modifications may be made without departing from the present invention. For example, the newly introduced plastic pigments, typically polystyrene spheres, may be substituted for mineral pigments. Accordingly, it should be understood that the forms of the present invention described above and shown in the accompanying drawings are illustrative only and not intended to limit the scope of the invention.
What is claimed is:
1. In a method of finishing by heated calender means a paper web to which an aqueous coating composition has been applied, the steps of:
1. applying to the surface of at least one side of the paper web an aqueous composition comprising acetate, styrene-isoprcne and acrylic polymer latices.
4. The method in accordance with claim 1 wherein the coating is finished by gloss calendering.
5. The method in accordance with claim 1 wherein the coating is finished by supercalendering.
6. A coated paper web made in accordance with claim 1.
7. A coated paper web made in accordance with claim 4.
8. A coated paper web made in accordance with

Claims (13)

1. IN A METHOD OF FINISHING BY HEATED CALENDER MEANS A PAPER WEB TO WHICH AN AQUEOUS COATING COMPOSITION HAS BEEN APPLIED, THE STEPS OF:
1. APPLYING TO THE SURFACE OF AT LEAST ONE SIDE OF THE PAPER WEB AN AQUEOUS COMPOSITION COMPRISING PAPER COATING PIGMENT AND A BINDER CONSISTING ESSENTIALLY OF A POLYMER LATEX HAVING A GLASS TRANSITION TEMPERATURE GREATER THAN 100*F
2. DRYING THE COATING AT A TEMPERATURE BELOW GLASS TRANSITION TEMPERATURE OF THE POLYMER
2. The method in accordance with claim 1 wherein the binder has a hardness/temperature relationship as represented by the curve shown in FIG. 1.
2. drying the coating at a temperature below glass transition temperature of the polymer
3. finishing the coating by hot calendering at a temperature above glass transition temperature of the polymer.
3. The method in accordance with claim 1 wherein the binder is selected from the group consisting of vinyl acetate, styrene-isoprene and acrylic polymer latices.
3. FINISHING THE COATING BY HOT CALENDERING AT A TEMPERATURE ABOVE GLASS TRANSITION TEMPERATURE OF THE POLYMER.
4. The method in accordance with claim 1 wherein the coating is finished by gloss calendering.
5. The method in accordance with claim 1 wherein the coating is finished by supercalendering.
6. A coated paper web made in accordance with claim 1.
7. A coated paper web made in accordance with claim 4.
8. A coated paper web made in accordance with claim 5.
US331815A 1973-02-12 1973-02-12 Method of finishing coated paper Expired - Lifetime US3873345A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US331815A US3873345A (en) 1973-02-12 1973-02-12 Method of finishing coated paper
CA191,568A CA1044538A (en) 1973-02-12 1974-02-01 Method of finishing coated paper
GB503574A GB1466698A (en) 1973-02-12 1974-02-04 Method of finishing coated paper
NO740376A NO142268C (en) 1973-02-12 1974-02-05 PROCEDURE FOR FINISH TREATMENT OF A PAPER COVER
SE7401735A SE413153B (en) 1973-02-12 1974-02-08 PROCEDURE FOR MANUFACTURING HOGGLAN PAPER THROUGH HEAT CALENDAR OF A PAPER COATED WITH A COMPOSITION CONTAINING PIGMENT AND A BINDING MADE OF A POLYMER LATEX WITH A ...
FR7404524A FR2217475B1 (en) 1973-02-12 1974-02-11
NL7401852A NL7401852A (en) 1973-02-12 1974-02-11
FI383/74A FI57799C (en) 1973-02-12 1974-02-11 FOERFARANDE FOER FAERDIGGOERNING AV EN PAPPERSBANA
AT107974A AT348328B (en) 1973-02-12 1974-02-11 PROCESS FOR RE-PROCESSING OR SMOOTHING A PAPER TRACK
DE19742406795 DE2406795B2 (en) 1973-02-12 1974-02-11 PROCESS FOR RE-PROCESSING OR SMOOTHING A COATED PAPER TRACK
BE1005702A BE810823A (en) 1973-02-12 1974-02-11 COATED PAPER FINISHING PROCESS
JP1707774A JPS537964B2 (en) 1973-02-12 1974-02-12
ES423166A ES423166A1 (en) 1973-02-12 1974-02-12 Method of finishing coated paper
IT48325/74A IT1002904B (en) 1973-02-12 1974-02-14 PROCESS FOR FINISHING COATED PAPER AND RELATIVE COATING COMPOSITION
US05/612,440 US4112192A (en) 1973-02-12 1975-09-11 Method of finishing coated paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US331815A US3873345A (en) 1973-02-12 1973-02-12 Method of finishing coated paper

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05476467 Division 1974-06-05

Publications (1)

Publication Number Publication Date
US3873345A true US3873345A (en) 1975-03-25

Family

ID=23295491

Family Applications (1)

Application Number Title Priority Date Filing Date
US331815A Expired - Lifetime US3873345A (en) 1973-02-12 1973-02-12 Method of finishing coated paper

Country Status (14)

Country Link
US (1) US3873345A (en)
JP (1) JPS537964B2 (en)
AT (1) AT348328B (en)
BE (1) BE810823A (en)
CA (1) CA1044538A (en)
DE (1) DE2406795B2 (en)
ES (1) ES423166A1 (en)
FI (1) FI57799C (en)
FR (1) FR2217475B1 (en)
GB (1) GB1466698A (en)
IT (1) IT1002904B (en)
NL (1) NL7401852A (en)
NO (1) NO142268C (en)
SE (1) SE413153B (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241143A (en) * 1978-03-17 1980-12-23 Mitsubishi Paper Mills, Ltd. Process for producing highly glossy coated paper
US4265969A (en) * 1978-05-19 1981-05-05 Mitsubishi Paper Mills, Ltd. Method for manufacturing cast-coated paper
US4277524A (en) * 1978-12-27 1981-07-07 Mitsubishi Paper Mills, Ltd. Method and apparatus for finishing coated papers
US4308320A (en) * 1980-08-20 1981-12-29 Consolidated Papers, Inc. Method for coating and drying paper
US4317849A (en) * 1979-11-06 1982-03-02 Mitsubishi Paper Mills, Ltd. Process for producing high-gloss coated paper
US4328284A (en) * 1979-04-05 1982-05-04 Lepoutre Pierre F Coating of paper
US4397984A (en) * 1981-02-02 1983-08-09 Basf Aktiengesellschaft Use of acrylate-based emulsion copolymer as the sole binder for a paper coating composition
US4624744A (en) * 1984-05-18 1986-11-25 S. D. Warren Company Method of finishing paper utilizing substrata thermal molding
US4749445A (en) * 1984-05-18 1988-06-07 S. D. Warren Company Method of finishing paper utilizing substrata thermal molding
US4978560A (en) * 1989-07-13 1990-12-18 The Mead Corporation Hot roll glosser method with glossing temperature below free air glass transistion temperature of resin utilized
US5344675A (en) * 1993-02-26 1994-09-06 Rohm And Haas Company Emulsion polymer blend
US5654039A (en) * 1993-05-10 1997-08-05 International Paper Company Recyclable and compostable coated paper stocks and related methods of manufacture
US5989724A (en) * 1993-05-10 1999-11-23 International Paper Company Recyclable and repulpable ream wrap and related methods of manufacture
US6254725B1 (en) 1997-06-20 2001-07-03 Consolidated Papers, Inc. High bulk paper
US20020114933A1 (en) * 2000-12-28 2002-08-22 Gould Richard J. Grease masking packaging materials and methods thereof
US20050112387A1 (en) * 2003-10-31 2005-05-26 Appleton Papers Inc. Recyclable repulpable coated paper stock
US20050158524A1 (en) * 2000-10-10 2005-07-21 Sloat Jeffrey T. Packaging material and method
US20070166512A1 (en) * 2004-08-25 2007-07-19 Jesch Norman L Absorbent Release Sheet
US20070292569A1 (en) * 2005-06-29 2007-12-20 Bohme Reinhard D Packaging material for food items containing permeating oils
US20090263048A1 (en) * 2008-04-16 2009-10-22 Iannelli Ii Michael Louis Bag Structures And Methods Of Assembling The Same
US20100263332A1 (en) * 2006-06-29 2010-10-21 Graphic Packaging International, Inc. Heat Sealing Systems and Methods, and Related Articles and Materials
US20100270309A1 (en) * 2006-06-29 2010-10-28 Files John C High Strength Packages and Packaging Materials
US9358576B2 (en) 2010-11-05 2016-06-07 International Paper Company Packaging material having moisture barrier and methods for preparing same
US9365980B2 (en) 2010-11-05 2016-06-14 International Paper Company Packaging material having moisture barrier and methods for preparing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1483441A (en) * 1975-01-31 1977-08-17 Star Paper Ltd Cast coated paper and its production and compositions for making it
JPS6018840Y2 (en) * 1979-10-17 1985-06-07 エルナ−株式会社 Electrolytic capacitor
JPS5690502U (en) * 1979-12-14 1981-07-20
US4636409A (en) * 1983-09-19 1987-01-13 Canon Kabushiki Kaisha Recording medium
GB8326902D0 (en) * 1983-10-07 1983-11-09 Wiggins Teape Group Ltd Removal of formaldehyde from micro-capsules
CN110312833B (en) * 2017-02-27 2022-06-14 维实洛克Mwv有限责任公司 Heat sealable barrier paperboard

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2949382A (en) * 1958-02-28 1960-08-16 Cons Water Power & Paper Co Method of making printable coated paper
US3132042A (en) * 1962-03-01 1964-05-05 Kimberly Clark Co Manufacture of cellulosic product
US3288632A (en) * 1962-08-23 1966-11-29 Cons Papers Inc Production of coated paper
US3583881A (en) * 1968-04-25 1971-06-08 Rohm & Haas Mineral-coated paper and method of producing it
US3634298A (en) * 1969-04-11 1972-01-11 Celanese Coatings Co High gloss paper coating composition of a latex interpolymer of alkyl acrylate-monovinyl aromatic-unsaturated carboxylic acid-acrylonitrile

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2554662A (en) * 1947-08-16 1951-05-29 Us Rubber Co Process of glossing paper
US2554663A (en) * 1949-12-15 1951-05-29 Us Rubber Co Method of glossing paper
NL290530A (en) * 1962-03-23

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2949382A (en) * 1958-02-28 1960-08-16 Cons Water Power & Paper Co Method of making printable coated paper
US3132042A (en) * 1962-03-01 1964-05-05 Kimberly Clark Co Manufacture of cellulosic product
US3288632A (en) * 1962-08-23 1966-11-29 Cons Papers Inc Production of coated paper
US3583881A (en) * 1968-04-25 1971-06-08 Rohm & Haas Mineral-coated paper and method of producing it
US3634298A (en) * 1969-04-11 1972-01-11 Celanese Coatings Co High gloss paper coating composition of a latex interpolymer of alkyl acrylate-monovinyl aromatic-unsaturated carboxylic acid-acrylonitrile

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241143A (en) * 1978-03-17 1980-12-23 Mitsubishi Paper Mills, Ltd. Process for producing highly glossy coated paper
US4265969A (en) * 1978-05-19 1981-05-05 Mitsubishi Paper Mills, Ltd. Method for manufacturing cast-coated paper
US4301210A (en) * 1978-05-19 1981-11-17 Mitsubishi Paper Mills, Ltd. Method for manufacturing cast-coated paper
US4277524A (en) * 1978-12-27 1981-07-07 Mitsubishi Paper Mills, Ltd. Method and apparatus for finishing coated papers
US4328284A (en) * 1979-04-05 1982-05-04 Lepoutre Pierre F Coating of paper
US4317849A (en) * 1979-11-06 1982-03-02 Mitsubishi Paper Mills, Ltd. Process for producing high-gloss coated paper
US4308320A (en) * 1980-08-20 1981-12-29 Consolidated Papers, Inc. Method for coating and drying paper
US4397984A (en) * 1981-02-02 1983-08-09 Basf Aktiengesellschaft Use of acrylate-based emulsion copolymer as the sole binder for a paper coating composition
US4624744A (en) * 1984-05-18 1986-11-25 S. D. Warren Company Method of finishing paper utilizing substrata thermal molding
US4749445A (en) * 1984-05-18 1988-06-07 S. D. Warren Company Method of finishing paper utilizing substrata thermal molding
US4978560A (en) * 1989-07-13 1990-12-18 The Mead Corporation Hot roll glosser method with glossing temperature below free air glass transistion temperature of resin utilized
US5344675A (en) * 1993-02-26 1994-09-06 Rohm And Haas Company Emulsion polymer blend
US5654039A (en) * 1993-05-10 1997-08-05 International Paper Company Recyclable and compostable coated paper stocks and related methods of manufacture
US5837383A (en) * 1993-05-10 1998-11-17 International Paper Company Recyclable and compostable coated paper stocks and related methods of manufacture
US5989724A (en) * 1993-05-10 1999-11-23 International Paper Company Recyclable and repulpable ream wrap and related methods of manufacture
US6548120B1 (en) 1993-05-10 2003-04-15 International Paper Company Recyclable and repulpable ream wrap and related methods of manufacture
US6254725B1 (en) 1997-06-20 2001-07-03 Consolidated Papers, Inc. High bulk paper
US20050158524A1 (en) * 2000-10-10 2005-07-21 Sloat Jeffrey T. Packaging material and method
US20020114933A1 (en) * 2000-12-28 2002-08-22 Gould Richard J. Grease masking packaging materials and methods thereof
US7954306B2 (en) 2000-12-28 2011-06-07 Rock-Tenn Shared Services, Llc Grease masking packaging materials and methods thereof
US8733070B2 (en) 2000-12-28 2014-05-27 Rock-Tenn Shared Services, Llc Grease masking packaging materials and methods thereof
US20110200757A1 (en) * 2000-12-28 2011-08-18 Rock-Tenn Shared Services, Llc Grease masking packaging materials and methods thereof
US20090255624A1 (en) * 2000-12-28 2009-10-15 Gould Richard J Grease masking packaging materials and methods thereof
US20050112387A1 (en) * 2003-10-31 2005-05-26 Appleton Papers Inc. Recyclable repulpable coated paper stock
US7235308B2 (en) 2003-10-31 2007-06-26 Appleton Papers Inc. Recyclable repulpable coated paper stock
US20070166512A1 (en) * 2004-08-25 2007-07-19 Jesch Norman L Absorbent Release Sheet
US20070292569A1 (en) * 2005-06-29 2007-12-20 Bohme Reinhard D Packaging material for food items containing permeating oils
US20100263332A1 (en) * 2006-06-29 2010-10-21 Graphic Packaging International, Inc. Heat Sealing Systems and Methods, and Related Articles and Materials
US20100270309A1 (en) * 2006-06-29 2010-10-28 Files John C High Strength Packages and Packaging Materials
US8753012B2 (en) 2006-06-29 2014-06-17 Graphic Flexible Packaging, Llc High strength packages and packaging materials
US8826959B2 (en) 2006-06-29 2014-09-09 Graphic Packaging International, Inc. Heat sealing systems and methods, and related articles and materials
US9522499B2 (en) 2006-06-29 2016-12-20 Graphic Packaging International, Inc. Heat sealing systems and methods, and related articles and materials
US20090263048A1 (en) * 2008-04-16 2009-10-22 Iannelli Ii Michael Louis Bag Structures And Methods Of Assembling The Same
US9358576B2 (en) 2010-11-05 2016-06-07 International Paper Company Packaging material having moisture barrier and methods for preparing same
US9365980B2 (en) 2010-11-05 2016-06-14 International Paper Company Packaging material having moisture barrier and methods for preparing same

Also Published As

Publication number Publication date
DE2406795A1 (en) 1974-10-10
NL7401852A (en) 1974-08-14
NO740376L (en) 1974-08-13
ES423166A1 (en) 1976-09-16
SE413153B (en) 1980-04-21
FI57799C (en) 1980-10-10
AT348328B (en) 1979-02-12
FR2217475A1 (en) 1974-09-06
CA1044538A (en) 1978-12-19
IT1002904B (en) 1976-05-20
FR2217475B1 (en) 1976-06-25
JPS537964B2 (en) 1978-03-24
JPS49110906A (en) 1974-10-22
BE810823A (en) 1974-08-12
DE2406795B2 (en) 1977-01-20
NO142268C (en) 1980-07-23
GB1466698A (en) 1977-03-09
FI57799B (en) 1980-06-30
ATA107974A (en) 1977-05-15
NO142268B (en) 1980-04-14

Similar Documents

Publication Publication Date Title
US3873345A (en) Method of finishing coated paper
US4112192A (en) Method of finishing coated paper
US5378497A (en) Method for providing irreversible smoothness in a paper rawstock
US4012543A (en) Coated paper and method of making same
US7943011B2 (en) Paperboard material with expanded polymeric microspheres
USRE25039E (en) Method of producing high gloss mineral-coated
US4624744A (en) Method of finishing paper utilizing substrata thermal molding
US4749445A (en) Method of finishing paper utilizing substrata thermal molding
US5789031A (en) Process for manufacturing coated paper
US5064692A (en) Method for producing paper products having increased gloss in which surface characteristics of a release film are imparted to coated substrates
US3963843A (en) Production of coated paper
US8273215B2 (en) Method for producing coated paper
US3268354A (en) Coating process and product
US5360657A (en) Coated printing paper and process for producing the same
EP0430391A1 (en) Coated printing material and process for producing the same
EP0245250B1 (en) Method of finishing paper utilizing substrata thermal molding
US3583881A (en) Mineral-coated paper and method of producing it
US3338736A (en) Production of coated paper utilizing aqueous coatings containing a major weight proportion based on solids of heat softenable resin and utilizing non-equilibrium moisture conditions and shearing forces
US3136652A (en) Method and apparatus for coating paper
US3044896A (en) Method of making cast coated paper
US5425851A (en) Method for improving the printability of web offset paper
US3338735A (en) Production of coated paper utilizing aqueous coatings containing particulate filler and resins having an affinity for water and utilizing nonequilibrium moisture conditions and shearing forces
CA1169306A (en) Method for coating and drying paper
US7037407B2 (en) Method and calender for calendering a paper web above the glass transition range of the paper
EP0513452A1 (en) Coated printing paper and process for producing the same

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)

AS Assignment

Owner name: S.D. WARREN COMPANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SCOTT PAPER COMPANY;REEL/FRAME:004811/0245

Effective date: 19871013