US3867705A - Cyclotron internal ion source with dc extraction - Google Patents
Cyclotron internal ion source with dc extraction Download PDFInfo
- Publication number
- US3867705A US3867705A US456392A US45639274A US3867705A US 3867705 A US3867705 A US 3867705A US 456392 A US456392 A US 456392A US 45639274 A US45639274 A US 45639274A US 3867705 A US3867705 A US 3867705A
- Authority
- US
- United States
- Prior art keywords
- cyclotron
- harmonic
- ion source
- ion
- accelerating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/08—Arrangements for injecting particles into orbits
Definitions
- the present invention was conceived for use with isochronous cyclotrons such as the Oak Ridge Isochronous Cyclotron (ORIC) now in experimental use at the Oak Ridge National Laboratory. Details of the structure and operation of the ORIC system may be obtained from Nuclear Instruments and Methods, 18, 19, Nov. 1962, pp. 46-61, 159-176, 303-308, and 601-605; from US. Pat. No. 3,624,527 issued Nov. 30, 1971; and from the Oak Ridge National Laboratory Electronuclear Division Annual Progress Report No. ORNL-3630, dated June 1964, pp. 38-62.
- ORIC Oak Ridge Isochronous Cyclotron
- a variable radio-frequency (rf) system is used for the acceleration of a large range of mass-to-charge particles.
- the mass-to-charge ratio (m/q) of individual ions is increased, the angular rotation frequency of the particle decreases.
- the particle angular rotation frequency is less than the lower frequency limit of the rf accelerating system, and the high m/q ions do not retain the proper phase for acceleration.
- the acceleration of high m/q ions is made possible through the use of the technique of acceleration on a higher harmonic of the rf frequency.
- ions have been accelerated on harmonics as high as the'9th.
- FIG. 1 shows typical m/q ratios that can, in principle, be accelerated in the ORIC.
- a serious problem with accelerating on the higher harmonics is the large amount of beam current (intensity) that is lost.
- the problem of intensity decrease with increase in harmonic is discussed, for example, in the published proceedings of the Fifth International Cyclotron Conference, Butterworths, 318 (1971).
- the beam current decrease is ascribed by the present inventors to the crossing of the first or initial accelerating gap. The explanation is as follows: In order for the ion beam to cross the first acceleration gap during operation at high harmonics, the beam must start when the voltage is low, and this leads to low intensity from the ion source. If the m/q ratio is further increased, a point will be reached where no beam will cross the gap because there is not enough time available prior to voltage reversal.
- the above object has. been accomplished in the present invention by the addition of a dc ion extraction system to the cyclotron ion source, resulting in significant increases in the small intensities normally obtained at high harmonics in the cyclotron.
- FIG. 1 is a graph depicting the higher harmonic modes of operation of an isochronous cyclotron that must be used to enable the acceleration of high massto-charge ions.
- FIG. 2 is a cross-sectional view of the ion source region in the center of a cyclotron that illustrates the dc accelerating slit of the present invention.
- FIG. 3 is a graph showing the improvement in measured beam current obtained with the present invention.
- FIG. '1 illustrates resonance conditions for various m/q ions in the ORIC. As the m/q value becomes larger, the rf frequency must operate on a higher harmonic and this range of harmonic operation is indicated by the 1st to 11th arrows. It should be understood that FIG. 1 shows typical m/q ratios that can, in principle, be accelerated in the ORIC.
- a graphite dc accelerating electrode 3 provided with an extraction slit 4 is placed at the centerline of the dee system between the ion source 1 and the rf accelerating slit 5 mounted on the dee 7. This necessitates moving the ion source arc chamber 2 just slightly off the centerline from where it would normally be.
- the accelerating electrode 3 is supported from an axially inserted tube. It is possible to compensate for the off-centered source position by adjustment of the harmonic and trim coils of the magnet.
- the graphite electrode 3 Since the graphite electrode 3 is heated to incandescence by the beam, its supporting mechanism must be capable of withstanding high temperatures. Both tantalum and stainless steel mechanisms have been used. An insulator, not shown, that mounts the supporting mechanism is polyethylene and is protected from axial discharges by a stainless steel shield. Voltages to l5 kv are typically applied to the dc electrode 3. The normal voltages of 0 kv on the ion source 1 and to kv on the dee 7 have been retained. A particle starting from the ion source arc chamber 2 is indicated by the orbit 6.
- an initial velocity is given to the ions by the dc accelerating electrode 3.
- This performs two functions: it provides a larger current from the ion source since the current depends on the extraction voltage gradient to the 3/2 power; and it substantially shortens the gap crossing time so that harmonic operation becomes less critical.
- this method of dc extraction from the ion source makes the same amount of beam available for acceleration at any initial phase. This might well be valuable where the magnetic field is not perfectly isochronized, forcing what would be an unfavorable starting phase if dc extraction from the source were not used.
- the first successful runs with the dc electrode 3 were with 5th and 7th harmonic beams and resulted in beam intensities substantially larger than ever achieved before.
- beams of Ar on the 5th harmonic and Ne 1+ on the 7th harmonic have been increased from nanoamperes to microamperes by the use of the dc extractor electrode of the present invention in the ORlC.
- a graph of the current as a function of radius, with and without the dc electrode 3, is shown in FIG. 3 for a "Ne 1+ beam on the 7th harmonic.
- the internal cyclotron beam with the dc electrode 3 is larger than the rf extracted beam by a factor of about 40.
- the extracted dc beam is larger by a factor of about 15.
- an isochronous cyclotron provided with a magnetic'field, an internal ion source provided with an arc chamber, a variable radio-frequency (rf) system including an rfaccelerating slit for withdrawing ions from said are chamber, said rf system effecting the acceleration of said ions through said cyclotron as guided by said magnetic field, and an ion beam extraction system for extracting a desired separated ion beam from said cyclotron, the improvement comprising a slotted dc accelerating electrode positioned between the exist of said ion source are chamber and said rf accelerating slit, and a source of substantially large negative voltage connected to said dc accelerating electrode, whereby.
- rf radio-frequency
- heavy ion beams being accelerated in said cyclotron on harmonics from the 5th to the 11th harmonic have their beam intensities increased from nanoamperes to microamperes by use of said dc accelerating electrode in said cyclotron.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Particle Accelerators (AREA)
Abstract
An apparatus is provided for increasing the intensities of heavy ion beams accelerated in isochronous cyclotrons at high harmonics (5th harmonic or greater) of the orbit frequency. The small intensities normally obtained at high harmonics are significantly increased by the addition of a dc ion extraction system to the cyclotron ion source. Use of the dc extraction system has increased beams of 40Ar3 on the 5th harmonic and 20Ne1 on the 7th harmonic from nanoamperes to microamperes.
Description
United States Patent [1 1 Hudson et al.
[ CYCLOTRON INTERNAL ION SOURCE WITH DC EXTRACTION [75] Inventors: Ed D. Hudson, Knoxville; Richard S.
Lord; Merrit L. Mallory, both of Oak Ridge, all of Tenn.
[73] Assignee: The United States of America as represented by the United States Atomic Energy Commission, Washington, D.C.
[22 Filed: Mar. 29, 1974 2.1] Appl. Nol: 456,392
[52] US. Cl. 328/234, 313/62 [51] Int. Cl. H05h 7/08, HOSh 13/00 [58] Field of Search 328/233-238;
[56] References Cited UNITED STATES PATENTS 3,624,527 ll/l97l Hudson 313/62 X [451 Feb. 18, 1975 3,794,927 2/1974 Fleischer et al. 328/324 X Primary Examiner-Siegfried H. Grimm Attorney, Agent, or Firm-John A. Horan; David J. Zachry; Louis M. Deckelmann [5 7] ABSTRACT An apparatus is provided for increasing the intensities of heavy ion beams accelerated in isochronous cyclotrons at high harmonics (5th harmonic or greater) of the orbit frequency. The small intensities normally obtained at high harmonics are significantly increased by the addition of a dc ion extraction system to the cyclotron ion source. Use of the dc extraction system has increased beams of Ar on the 5th harmonic and Ne on the 7th harmonic from nanoamperes to microamperes.
2 Claims, 3 Drawing Figures CYCLOTRON INTERNAL ION SOURCE WITH DC EXTRACTION BACKGROUND OF THE INVENTION This invention was made in the course of, or under, a contract with the United States Atomic Energy Commission.
The present invention was conceived for use with isochronous cyclotrons such as the Oak Ridge Isochronous Cyclotron (ORIC) now in experimental use at the Oak Ridge National Laboratory. Details of the structure and operation of the ORIC system may be obtained from Nuclear Instruments and Methods, 18, 19, Nov. 1962, pp. 46-61, 159-176, 303-308, and 601-605; from US. Pat. No. 3,624,527 issued Nov. 30, 1971; and from the Oak Ridge National Laboratory Electronuclear Division Annual Progress Report No. ORNL-3630, dated June 1964, pp. 38-62.
In isochronous cyclotrons, a variable radio-frequency (rf) system is used for the acceleration of a large range of mass-to-charge particles. As the mass-to-charge ratio (m/q) of individual ions is increased, the angular rotation frequency of the particle decreases. In the ORIC, when the m/q ratio is about four, the particle angular rotation frequency is less than the lower frequency limit of the rf accelerating system, and the high m/q ions do not retain the proper phase for acceleration. It is well known, though, that the acceleration of high m/q ions is made possible through the use of the technique of acceleration on a higher harmonic of the rf frequency. In ORIC, ions have been accelerated on harmonics as high as the'9th. FIG. 1 shows typical m/q ratios that can, in principle, be accelerated in the ORIC.
A serious problem with accelerating on the higher harmonics is the large amount of beam current (intensity) that is lost. The problem of intensity decrease with increase in harmonic is discussed, for example, in the published proceedings of the Fifth International Cyclotron Conference, Butterworths, 318 (1971). The beam current decrease is ascribed by the present inventors to the crossing of the first or initial accelerating gap. The explanation is as follows: In order for the ion beam to cross the first acceleration gap during operation at high harmonics, the beam must start when the voltage is low, and this leads to low intensity from the ion source. If the m/q ratio is further increased, a point will be reached where no beam will cross the gap because there is not enough time available prior to voltage reversal.
Thus, there exists a need for some method or means for increasing the intensities of heavy ion beams accelerated in isochronous cyclotrons at high harmonics of the orbit frequency. The present invention was conceived to meet this need in a manner to be described hereinbelow.
SUMMARY OF THE INVENTION It is the object of the present invention to provide some means for increasing the intensities of heavy ion beams accelerated in isochronous cyclotrons at high harmonics of the orbit frequency, and particularly at the 5th harmonic or greater.
The above object has. been accomplished in the present invention by the addition of a dc ion extraction system to the cyclotron ion source, resulting in significant increases in the small intensities normally obtained at high harmonics in the cyclotron.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph depicting the higher harmonic modes of operation of an isochronous cyclotron that must be used to enable the acceleration of high massto-charge ions.
FIG. 2 is a cross-sectional view of the ion source region in the center of a cyclotron that illustrates the dc accelerating slit of the present invention.
FIG. 3 is a graph showing the improvement in measured beam current obtained with the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT As mentioned above, FIG. '1 illustrates resonance conditions for various m/q ions in the ORIC. As the m/q value becomes larger, the rf frequency must operate on a higher harmonic and this range of harmonic operation is indicated by the 1st to 11th arrows. It should be understood that FIG. 1 shows typical m/q ratios that can, in principle, be accelerated in the ORIC.
With reference now to FIG. 2, a graphite dc accelerating electrode 3 provided with an extraction slit 4 is placed at the centerline of the dee system between the ion source 1 and the rf accelerating slit 5 mounted on the dee 7. This necessitates moving the ion source arc chamber 2 just slightly off the centerline from where it would normally be. The accelerating electrode 3 is supported from an axially inserted tube. It is possible to compensate for the off-centered source position by adjustment of the harmonic and trim coils of the magnet.
Since the graphite electrode 3 is heated to incandescence by the beam, its supporting mechanism must be capable of withstanding high temperatures. Both tantalum and stainless steel mechanisms have been used. An insulator, not shown, that mounts the supporting mechanism is polyethylene and is protected from axial discharges by a stainless steel shield. Voltages to l5 kv are typically applied to the dc electrode 3. The normal voltages of 0 kv on the ion source 1 and to kv on the dee 7 have been retained. A particle starting from the ion source arc chamber 2 is indicated by the orbit 6.
In the operation of the present invention in the ORIC, an initial velocity is given to the ions by the dc accelerating electrode 3. This performs two functions: it provides a larger current from the ion source since the current depends on the extraction voltage gradient to the 3/2 power; and it substantially shortens the gap crossing time so that harmonic operation becomes less critical. Furthermore, this method of dc extraction from the ion source makes the same amount of beam available for acceleration at any initial phase. This might well be valuable where the magnetic field is not perfectly isochronized, forcing what would be an unfavorable starting phase if dc extraction from the source were not used.
The first successful runs with the dc electrode 3 were with 5th and 7th harmonic beams and resulted in beam intensities substantially larger than ever achieved before. For example, beams of Ar on the 5th harmonic and Ne 1+ on the 7th harmonic have been increased from nanoamperes to microamperes by the use of the dc extractor electrode of the present invention in the ORlC. A graph of the current as a function of radius, with and without the dc electrode 3, is shown in FIG. 3 for a "Ne 1+ beam on the 7th harmonic. It should be noted that the internal cyclotron beam with the dc electrode 3 is larger than the rf extracted beam by a factor of about 40. The extracted dc beam is larger by a factor of about 15.
ln the search for superheavy elements, a reasonable charge state for a superheavy ion necessitates operation (in ORlC) at a high harmonic such as h=ll. The acceleration of microamperes" of ions on this harmonic is now for the first time possible with the dc extractor on the cyclotron ion source as described above. It should be noted that high mass-to-charge ions are of considerable interest in, for example, radiation damage studies of materials for controlled thermonuclear reactors.
This invention has been described by way of illustration rather than by limitation, and it should be apparent that it is equally applicable in fields other than those described.
What is claimed is:
1. In an isochronous cyclotron provided with a magnetic'field, an internal ion source provided with an arc chamber, a variable radio-frequency (rf) system including an rfaccelerating slit for withdrawing ions from said are chamber, said rf system effecting the acceleration of said ions through said cyclotron as guided by said magnetic field, and an ion beam extraction system for extracting a desired separated ion beam from said cyclotron, the improvement comprising a slotted dc accelerating electrode positioned between the exist of said ion source are chamber and said rf accelerating slit, and a source of substantially large negative voltage connected to said dc accelerating electrode, whereby. during operation of said cyclotron, heavy ion beams being accelerated in said cyclotron on harmonics from the 5th to the 11th harmonic have their beam intensities increased from nanoamperes to microamperes by use of said dc accelerating electrode in said cyclotron.
2. The cyclotron set forth in claim 1, wherein said large negative voltage is at a selected value up to -15 kv.
Claims (2)
1. In an isochronous cyclotron provided with a magnetic field, an internal ion source provided with an arc chamber, a variable radio-frequency (rf) system including an rf accelerating slit for withdrawing ions from said arc chamber, said rf system effecting the acceleration of said ions through said cyclotron as guided by said magnetic field, and an ion beam extraction system for extracting a desired separated ion beam from said cyclotron, the improvement comprising a slotted dc accelerating electrode positioned between the exist of said ion source arc chamber and said rf accelerating slit, and a source of substantially large negative voltage connected to said dc accelerating electrode, whereby, during operation of said cyclotron, heavy ion beams being accelerated in said cyclotron on harmonics from the 5th to the 11th harmonic have their beam intensities increased from nanoamperes to microamperes by use of said dc accelerating electrode in said cyclotron.
2. The cyclotron set forth in claim 1, wherein said large negative voltage is at a selected value up to -15 kv.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US456392A US3867705A (en) | 1974-03-29 | 1974-03-29 | Cyclotron internal ion source with dc extraction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US456392A US3867705A (en) | 1974-03-29 | 1974-03-29 | Cyclotron internal ion source with dc extraction |
Publications (1)
Publication Number | Publication Date |
---|---|
US3867705A true US3867705A (en) | 1975-02-18 |
Family
ID=23812568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US456392A Expired - Lifetime US3867705A (en) | 1974-03-29 | 1974-03-29 | Cyclotron internal ion source with dc extraction |
Country Status (1)
Country | Link |
---|---|
US (1) | US3867705A (en) |
Cited By (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4146811A (en) * | 1975-07-21 | 1979-03-27 | C.G.R. Mev | Extractive electrode situated in the vicinity of the particle source of accelerators of the cyclotron type |
US20090309040A1 (en) * | 2008-05-22 | 2009-12-17 | Dr. Vladmir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US20090309520A1 (en) * | 2008-05-22 | 2009-12-17 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US20090309046A1 (en) * | 2008-05-22 | 2009-12-17 | Dr. Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US20090309038A1 (en) * | 2008-05-22 | 2009-12-17 | Dr. Vladimir Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US20090314961A1 (en) * | 2008-05-22 | 2009-12-24 | Dr. Vladimir Balakin | Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron |
US20090314960A1 (en) * | 2008-05-22 | 2009-12-24 | Vladimir Balakin | Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
US20100008466A1 (en) * | 2008-05-22 | 2010-01-14 | Vladimir Balakin | Charged particle cancer therapy and patient breath monitoring method and apparatus |
US20100014640A1 (en) * | 2008-05-22 | 2010-01-21 | Dr. Vladimir Balakin | Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system |
US20100014639A1 (en) * | 2008-05-22 | 2010-01-21 | Vladimir Balakin | Negative ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
US20100027745A1 (en) * | 2008-05-22 | 2010-02-04 | Vladimir Balakin | Charged particle cancer therapy and patient positioning method and apparatus |
US20100046697A1 (en) * | 2008-05-22 | 2010-02-25 | Dr. Vladmir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US20100059686A1 (en) * | 2008-05-22 | 2010-03-11 | Vladimir Balakin | Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US20100060209A1 (en) * | 2008-05-22 | 2010-03-11 | Vladimir Balakin | Rf accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US20100090122A1 (en) * | 2008-05-22 | 2010-04-15 | Vladimir | Multi-field charged particle cancer therapy method and apparatus |
US20100091948A1 (en) * | 2008-05-22 | 2010-04-15 | Vladimir Balakin | Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy |
US20100127184A1 (en) * | 2008-05-22 | 2010-05-27 | Dr. Vladimir Balakin | Charged particle cancer therapy dose distribution method and apparatus |
US20100128846A1 (en) * | 2008-05-22 | 2010-05-27 | Vladimir Balakin | Synchronized x-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system |
US20100133444A1 (en) * | 2008-05-22 | 2010-06-03 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US20100141183A1 (en) * | 2008-05-22 | 2010-06-10 | Vladimir Balakin | Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods |
US20100171447A1 (en) * | 2008-05-22 | 2010-07-08 | Vladimir Balakin | Intensity modulated three-dimensional radiation scanning method and apparatus |
US20100266100A1 (en) * | 2008-05-22 | 2010-10-21 | Dr. Vladimir Balakin | Charged particle cancer therapy beam path control method and apparatus |
US20110118531A1 (en) * | 2008-05-22 | 2011-05-19 | Vladimir Yegorovich Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US20110118529A1 (en) * | 2008-05-22 | 2011-05-19 | Vladimir Balakin | Multi-axis / multi-field charged particle cancer therapy method and apparatus |
US20110118530A1 (en) * | 2008-05-22 | 2011-05-19 | Vladimir Yegorovich Balakin | Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system |
US20110147608A1 (en) * | 2008-05-22 | 2011-06-23 | Vladimir Balakin | Charged particle cancer therapy imaging method and apparatus |
US20110150180A1 (en) * | 2008-05-22 | 2011-06-23 | Vladimir Yegorovich Balakin | X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US20110196223A1 (en) * | 2008-05-22 | 2011-08-11 | Dr. Vladimir Balakin | Proton tomography apparatus and method of operation therefor |
US20110218430A1 (en) * | 2008-05-22 | 2011-09-08 | Vladimir Yegorovich Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US20110233423A1 (en) * | 2008-05-22 | 2011-09-29 | Vladimir Yegorovich Balakin | Multi-field charged particle cancer therapy method and apparatus |
US20110284761A1 (en) * | 2008-05-22 | 2011-11-24 | Vladimir Balakin | Synchrotron power supply apparatus and method of use thereof |
US8067748B2 (en) | 2008-05-22 | 2011-11-29 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8093564B2 (en) | 2008-05-22 | 2012-01-10 | Vladimir Balakin | Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system |
US8178859B2 (en) | 2008-05-22 | 2012-05-15 | Vladimir Balakin | Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system |
US8229072B2 (en) | 2008-07-14 | 2012-07-24 | Vladimir Balakin | Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
WO2012159212A1 (en) * | 2011-05-23 | 2012-11-29 | Schmor Particle Accelerator Consulting Inc. | Particle accelerator and method of reducing beam divergence in the particle accelerator |
US8374314B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system |
US8373145B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Charged particle cancer therapy system magnet control method and apparatus |
US8378311B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Synchrotron power cycling apparatus and method of use thereof |
US8399866B2 (en) | 2008-05-22 | 2013-03-19 | Vladimir Balakin | Charged particle extraction apparatus and method of use thereof |
US8625739B2 (en) | 2008-07-14 | 2014-01-07 | Vladimir Balakin | Charged particle cancer therapy x-ray method and apparatus |
US8627822B2 (en) | 2008-07-14 | 2014-01-14 | Vladimir Balakin | Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
US8718231B2 (en) | 2008-05-22 | 2014-05-06 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US8791435B2 (en) | 2009-03-04 | 2014-07-29 | Vladimir Egorovich Balakin | Multi-field charged particle cancer therapy method and apparatus |
US20140257099A1 (en) * | 2008-05-22 | 2014-09-11 | Vladimir Balakin | Treatment delivery control system and method of operation thereof |
US8841866B2 (en) | 2008-05-22 | 2014-09-23 | Vladimir Yegorovich Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8907309B2 (en) | 2009-04-17 | 2014-12-09 | Stephen L. Spotts | Treatment delivery control system and method of operation thereof |
US8933651B2 (en) | 2012-11-16 | 2015-01-13 | Vladimir Balakin | Charged particle accelerator magnet apparatus and method of use thereof |
US8957396B2 (en) | 2008-05-22 | 2015-02-17 | Vladimir Yegorovich Balakin | Charged particle cancer therapy beam path control method and apparatus |
US8963112B1 (en) | 2011-05-25 | 2015-02-24 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8969834B2 (en) | 2008-05-22 | 2015-03-03 | Vladimir Balakin | Charged particle therapy patient constraint apparatus and method of use thereof |
US9056199B2 (en) * | 2008-05-22 | 2015-06-16 | Vladimir Balakin | Charged particle treatment, rapid patient positioning apparatus and method of use thereof |
US9058910B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Yegorovich Balakin | Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system |
US9095040B2 (en) | 2008-05-22 | 2015-07-28 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US9155911B1 (en) | 2008-05-22 | 2015-10-13 | Vladimir Balakin | Ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
US9168392B1 (en) | 2008-05-22 | 2015-10-27 | Vladimir Balakin | Charged particle cancer therapy system X-ray apparatus and method of use thereof |
US9177751B2 (en) | 2008-05-22 | 2015-11-03 | Vladimir Balakin | Carbon ion beam injector apparatus and method of use thereof |
US9498649B2 (en) | 2008-05-22 | 2016-11-22 | Vladimir Balakin | Charged particle cancer therapy patient constraint apparatus and method of use thereof |
US20160339272A1 (en) * | 2008-05-22 | 2016-11-24 | W. Davis Lee | Ion beam extraction apparatus and method of use thereof |
US9579525B2 (en) | 2008-05-22 | 2017-02-28 | Vladimir Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US9616252B2 (en) | 2008-05-22 | 2017-04-11 | Vladimir Balakin | Multi-field cancer therapy apparatus and method of use thereof |
US9682254B2 (en) | 2008-05-22 | 2017-06-20 | Vladimir Balakin | Cancer surface searing apparatus and method of use thereof |
US9737731B2 (en) | 2010-04-16 | 2017-08-22 | Vladimir Balakin | Synchrotron energy control apparatus and method of use thereof |
US9737734B2 (en) | 2008-05-22 | 2017-08-22 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US9737733B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle state determination apparatus and method of use thereof |
US9737272B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle cancer therapy beam state determination apparatus and method of use thereof |
US9744380B2 (en) | 2008-05-22 | 2017-08-29 | Susan L. Michaud | Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof |
US9782140B2 (en) | 2008-05-22 | 2017-10-10 | Susan L. Michaud | Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof |
US9855444B2 (en) | 2008-05-22 | 2018-01-02 | Scott Penfold | X-ray detector for proton transit detection apparatus and method of use thereof |
US9907981B2 (en) | 2016-03-07 | 2018-03-06 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US9910166B2 (en) | 2008-05-22 | 2018-03-06 | Stephen L. Spotts | Redundant charged particle state determination apparatus and method of use thereof |
US9937362B2 (en) | 2008-05-22 | 2018-04-10 | W. Davis Lee | Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof |
US9974978B2 (en) | 2008-05-22 | 2018-05-22 | W. Davis Lee | Scintillation array apparatus and method of use thereof |
US10029122B2 (en) | 2008-05-22 | 2018-07-24 | Susan L. Michaud | Charged particle—patient motion control system apparatus and method of use thereof |
US10029124B2 (en) | 2010-04-16 | 2018-07-24 | W. Davis Lee | Multiple beamline position isocenterless positively charged particle cancer therapy apparatus and method of use thereof |
US10037863B2 (en) | 2016-05-27 | 2018-07-31 | Mark R. Amato | Continuous ion beam kinetic energy dissipater apparatus and method of use thereof |
US10070831B2 (en) | 2008-05-22 | 2018-09-11 | James P. Bennett | Integrated cancer therapy—imaging apparatus and method of use thereof |
US10086214B2 (en) | 2010-04-16 | 2018-10-02 | Vladimir Balakin | Integrated tomography—cancer treatment apparatus and method of use thereof |
US10092776B2 (en) | 2008-05-22 | 2018-10-09 | Susan L. Michaud | Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof |
US10143854B2 (en) | 2008-05-22 | 2018-12-04 | Susan L. Michaud | Dual rotation charged particle imaging / treatment apparatus and method of use thereof |
US10179250B2 (en) | 2010-04-16 | 2019-01-15 | Nick Ruebel | Auto-updated and implemented radiation treatment plan apparatus and method of use thereof |
US10349906B2 (en) | 2010-04-16 | 2019-07-16 | James P. Bennett | Multiplexed proton tomography imaging apparatus and method of use thereof |
US10376717B2 (en) | 2010-04-16 | 2019-08-13 | James P. Bennett | Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof |
US10518109B2 (en) | 2010-04-16 | 2019-12-31 | Jillian Reno | Transformable charged particle beam path cancer therapy apparatus and method of use thereof |
US10548551B2 (en) | 2008-05-22 | 2020-02-04 | W. Davis Lee | Depth resolved scintillation detector array imaging apparatus and method of use thereof |
US10556126B2 (en) | 2010-04-16 | 2020-02-11 | Mark R. Amato | Automated radiation treatment plan development apparatus and method of use thereof |
US10555710B2 (en) | 2010-04-16 | 2020-02-11 | James P. Bennett | Simultaneous multi-axes imaging apparatus and method of use thereof |
US10589128B2 (en) | 2010-04-16 | 2020-03-17 | Susan L. Michaud | Treatment beam path verification in a cancer therapy apparatus and method of use thereof |
US10625097B2 (en) | 2010-04-16 | 2020-04-21 | Jillian Reno | Semi-automated cancer therapy treatment apparatus and method of use thereof |
US10638988B2 (en) | 2010-04-16 | 2020-05-05 | Scott Penfold | Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof |
US10684380B2 (en) | 2008-05-22 | 2020-06-16 | W. Davis Lee | Multiple scintillation detector array imaging apparatus and method of use thereof |
US10751551B2 (en) | 2010-04-16 | 2020-08-25 | James P. Bennett | Integrated imaging-cancer treatment apparatus and method of use thereof |
US11648420B2 (en) | 2010-04-16 | 2023-05-16 | Vladimir Balakin | Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3624527A (en) * | 1970-09-15 | 1971-11-30 | Atomic Energy Commission | Magnetically self-shaping septum for beam deflection |
US3794927A (en) * | 1970-01-20 | 1974-02-26 | Atomic Energy Commission | System for producing high energy positively charged particles |
-
1974
- 1974-03-29 US US456392A patent/US3867705A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3794927A (en) * | 1970-01-20 | 1974-02-26 | Atomic Energy Commission | System for producing high energy positively charged particles |
US3624527A (en) * | 1970-09-15 | 1971-11-30 | Atomic Energy Commission | Magnetically self-shaping septum for beam deflection |
Cited By (143)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4146811A (en) * | 1975-07-21 | 1979-03-27 | C.G.R. Mev | Extractive electrode situated in the vicinity of the particle source of accelerators of the cyclotron type |
US8624528B2 (en) | 2008-05-22 | 2014-01-07 | Vladimir Balakin | Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods |
US20100027745A1 (en) * | 2008-05-22 | 2010-02-04 | Vladimir Balakin | Charged particle cancer therapy and patient positioning method and apparatus |
US20090309046A1 (en) * | 2008-05-22 | 2009-12-17 | Dr. Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US20090309038A1 (en) * | 2008-05-22 | 2009-12-17 | Dr. Vladimir Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US20090314961A1 (en) * | 2008-05-22 | 2009-12-24 | Dr. Vladimir Balakin | Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron |
US20090314960A1 (en) * | 2008-05-22 | 2009-12-24 | Vladimir Balakin | Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
US20100008466A1 (en) * | 2008-05-22 | 2010-01-14 | Vladimir Balakin | Charged particle cancer therapy and patient breath monitoring method and apparatus |
US20100014640A1 (en) * | 2008-05-22 | 2010-01-21 | Dr. Vladimir Balakin | Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system |
US20100014639A1 (en) * | 2008-05-22 | 2010-01-21 | Vladimir Balakin | Negative ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
US10684380B2 (en) | 2008-05-22 | 2020-06-16 | W. Davis Lee | Multiple scintillation detector array imaging apparatus and method of use thereof |
US20100046697A1 (en) * | 2008-05-22 | 2010-02-25 | Dr. Vladmir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US20100059686A1 (en) * | 2008-05-22 | 2010-03-11 | Vladimir Balakin | Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US20100060209A1 (en) * | 2008-05-22 | 2010-03-11 | Vladimir Balakin | Rf accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US20100090122A1 (en) * | 2008-05-22 | 2010-04-15 | Vladimir | Multi-field charged particle cancer therapy method and apparatus |
US20100091948A1 (en) * | 2008-05-22 | 2010-04-15 | Vladimir Balakin | Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy |
US20100127184A1 (en) * | 2008-05-22 | 2010-05-27 | Dr. Vladimir Balakin | Charged particle cancer therapy dose distribution method and apparatus |
US20100128846A1 (en) * | 2008-05-22 | 2010-05-27 | Vladimir Balakin | Synchronized x-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system |
US20100133444A1 (en) * | 2008-05-22 | 2010-06-03 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US20100141183A1 (en) * | 2008-05-22 | 2010-06-10 | Vladimir Balakin | Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods |
US20100155621A1 (en) * | 2008-05-22 | 2010-06-24 | Vladmir Balakin | Multi-axis / multi-field charged particle cancer therapy method and apparatus |
US20100171447A1 (en) * | 2008-05-22 | 2010-07-08 | Vladimir Balakin | Intensity modulated three-dimensional radiation scanning method and apparatus |
US20100266100A1 (en) * | 2008-05-22 | 2010-10-21 | Dr. Vladimir Balakin | Charged particle cancer therapy beam path control method and apparatus |
US7939809B2 (en) * | 2008-05-22 | 2011-05-10 | Vladimir Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US7943913B2 (en) | 2008-05-22 | 2011-05-17 | Vladimir Balakin | Negative ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
US20110118531A1 (en) * | 2008-05-22 | 2011-05-19 | Vladimir Yegorovich Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US20110118529A1 (en) * | 2008-05-22 | 2011-05-19 | Vladimir Balakin | Multi-axis / multi-field charged particle cancer therapy method and apparatus |
US20110118530A1 (en) * | 2008-05-22 | 2011-05-19 | Vladimir Yegorovich Balakin | Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system |
US7953205B2 (en) | 2008-05-22 | 2011-05-31 | Vladimir Balakin | Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system |
US20110147608A1 (en) * | 2008-05-22 | 2011-06-23 | Vladimir Balakin | Charged particle cancer therapy imaging method and apparatus |
US20110150180A1 (en) * | 2008-05-22 | 2011-06-23 | Vladimir Yegorovich Balakin | X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US20110174984A1 (en) * | 2008-05-22 | 2011-07-21 | Vladimir Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US20110196223A1 (en) * | 2008-05-22 | 2011-08-11 | Dr. Vladimir Balakin | Proton tomography apparatus and method of operation therefor |
US20110218430A1 (en) * | 2008-05-22 | 2011-09-08 | Vladimir Yegorovich Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US20110233423A1 (en) * | 2008-05-22 | 2011-09-29 | Vladimir Yegorovich Balakin | Multi-field charged particle cancer therapy method and apparatus |
US20110284761A1 (en) * | 2008-05-22 | 2011-11-24 | Vladimir Balakin | Synchrotron power supply apparatus and method of use thereof |
US8067748B2 (en) | 2008-05-22 | 2011-11-29 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8089054B2 (en) | 2008-05-22 | 2012-01-03 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8093564B2 (en) | 2008-05-22 | 2012-01-10 | Vladimir Balakin | Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system |
US20090309040A1 (en) * | 2008-05-22 | 2009-12-17 | Dr. Vladmir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8129699B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US8144832B2 (en) | 2008-05-22 | 2012-03-27 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US8178859B2 (en) | 2008-05-22 | 2012-05-15 | Vladimir Balakin | Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system |
US8188688B2 (en) | 2008-05-22 | 2012-05-29 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US20120143051A1 (en) * | 2008-05-22 | 2012-06-07 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US8198607B2 (en) | 2008-05-22 | 2012-06-12 | Vladimir Balakin | Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US10548551B2 (en) | 2008-05-22 | 2020-02-04 | W. Davis Lee | Depth resolved scintillation detector array imaging apparatus and method of use thereof |
US20120248325A1 (en) * | 2008-05-22 | 2012-10-04 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8288742B2 (en) | 2008-05-22 | 2012-10-16 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8309941B2 (en) | 2008-05-22 | 2012-11-13 | Vladimir Balakin | Charged particle cancer therapy and patient breath monitoring method and apparatus |
US10143854B2 (en) | 2008-05-22 | 2018-12-04 | Susan L. Michaud | Dual rotation charged particle imaging / treatment apparatus and method of use thereof |
US8368038B2 (en) | 2008-05-22 | 2013-02-05 | Vladimir Balakin | Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron |
US8374314B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system |
US8373145B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Charged particle cancer therapy system magnet control method and apparatus |
US8373143B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy |
US8373146B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US8378311B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Synchrotron power cycling apparatus and method of use thereof |
US8378321B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Charged particle cancer therapy and patient positioning method and apparatus |
US8384053B2 (en) | 2008-05-22 | 2013-02-26 | Vladimir Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8399866B2 (en) | 2008-05-22 | 2013-03-19 | Vladimir Balakin | Charged particle extraction apparatus and method of use thereof |
US8415643B2 (en) | 2008-05-22 | 2013-04-09 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8421041B2 (en) | 2008-05-22 | 2013-04-16 | Vladimir Balakin | Intensity control of a charged particle beam extracted from a synchrotron |
US8436327B2 (en) * | 2008-05-22 | 2013-05-07 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus |
US8487278B2 (en) | 2008-05-22 | 2013-07-16 | Vladimir Yegorovich Balakin | X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US8519365B2 (en) | 2008-05-22 | 2013-08-27 | Vladimir Balakin | Charged particle cancer therapy imaging method and apparatus |
US8569717B2 (en) * | 2008-05-22 | 2013-10-29 | Vladimir Balakin | Intensity modulated three-dimensional radiation scanning method and apparatus |
US8581215B2 (en) * | 2008-05-22 | 2013-11-12 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8598543B2 (en) | 2008-05-22 | 2013-12-03 | Vladimir Balakin | Multi-axis/multi-field charged particle cancer therapy method and apparatus |
US8614429B2 (en) * | 2008-05-22 | 2013-12-24 | Vladimir Balakin | Multi-axis/multi-field charged particle cancer therapy method and apparatus |
US8614554B2 (en) | 2008-05-22 | 2013-12-24 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US10092776B2 (en) | 2008-05-22 | 2018-10-09 | Susan L. Michaud | Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof |
US8129694B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system |
US20090309520A1 (en) * | 2008-05-22 | 2009-12-17 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US8642978B2 (en) * | 2008-05-22 | 2014-02-04 | Vladimir Balakin | Charged particle cancer therapy dose distribution method and apparatus |
US8637818B2 (en) | 2008-05-22 | 2014-01-28 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US8637833B2 (en) * | 2008-05-22 | 2014-01-28 | Vladimir Balakin | Synchrotron power supply apparatus and method of use thereof |
US8688197B2 (en) | 2008-05-22 | 2014-04-01 | Vladimir Yegorovich Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8710462B2 (en) * | 2008-05-22 | 2014-04-29 | Vladimir Balakin | Charged particle cancer therapy beam path control method and apparatus |
US8718231B2 (en) | 2008-05-22 | 2014-05-06 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US8766217B2 (en) | 2008-05-22 | 2014-07-01 | Vladimir Yegorovich Balakin | Multi-field charged particle cancer therapy method and apparatus |
US10070831B2 (en) | 2008-05-22 | 2018-09-11 | James P. Bennett | Integrated cancer therapy—imaging apparatus and method of use thereof |
US20140257099A1 (en) * | 2008-05-22 | 2014-09-11 | Vladimir Balakin | Treatment delivery control system and method of operation thereof |
US8841866B2 (en) | 2008-05-22 | 2014-09-23 | Vladimir Yegorovich Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8896239B2 (en) | 2008-05-22 | 2014-11-25 | Vladimir Yegorovich Balakin | Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system |
US8901509B2 (en) | 2008-05-22 | 2014-12-02 | Vladimir Yegorovich Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US10029122B2 (en) | 2008-05-22 | 2018-07-24 | Susan L. Michaud | Charged particle—patient motion control system apparatus and method of use thereof |
US9981147B2 (en) * | 2008-05-22 | 2018-05-29 | W. Davis Lee | Ion beam extraction apparatus and method of use thereof |
US8941084B2 (en) | 2008-05-22 | 2015-01-27 | Vladimir Balakin | Charged particle cancer therapy dose distribution method and apparatus |
US8957396B2 (en) | 2008-05-22 | 2015-02-17 | Vladimir Yegorovich Balakin | Charged particle cancer therapy beam path control method and apparatus |
US9974978B2 (en) | 2008-05-22 | 2018-05-22 | W. Davis Lee | Scintillation array apparatus and method of use thereof |
US8969834B2 (en) | 2008-05-22 | 2015-03-03 | Vladimir Balakin | Charged particle therapy patient constraint apparatus and method of use thereof |
US8975600B2 (en) * | 2008-05-22 | 2015-03-10 | Vladimir Balakin | Treatment delivery control system and method of operation thereof |
US9018601B2 (en) * | 2008-05-22 | 2015-04-28 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US9044600B2 (en) * | 2008-05-22 | 2015-06-02 | Vladimir Balakin | Proton tomography apparatus and method of operation therefor |
US9056199B2 (en) * | 2008-05-22 | 2015-06-16 | Vladimir Balakin | Charged particle treatment, rapid patient positioning apparatus and method of use thereof |
US9058910B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Yegorovich Balakin | Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system |
US9095040B2 (en) | 2008-05-22 | 2015-07-28 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US9155911B1 (en) | 2008-05-22 | 2015-10-13 | Vladimir Balakin | Ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
US9168392B1 (en) | 2008-05-22 | 2015-10-27 | Vladimir Balakin | Charged particle cancer therapy system X-ray apparatus and method of use thereof |
US9177751B2 (en) | 2008-05-22 | 2015-11-03 | Vladimir Balakin | Carbon ion beam injector apparatus and method of use thereof |
US9314649B2 (en) | 2008-05-22 | 2016-04-19 | Vladimir Balakin | Fast magnet method and apparatus used in conjunction with a charged particle cancer therapy system |
US9937362B2 (en) | 2008-05-22 | 2018-04-10 | W. Davis Lee | Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof |
US9498649B2 (en) | 2008-05-22 | 2016-11-22 | Vladimir Balakin | Charged particle cancer therapy patient constraint apparatus and method of use thereof |
US20160339272A1 (en) * | 2008-05-22 | 2016-11-24 | W. Davis Lee | Ion beam extraction apparatus and method of use thereof |
US9543106B2 (en) | 2008-05-22 | 2017-01-10 | Vladimir Balakin | Tandem charged particle accelerator including carbon ion beam injector and carbon stripping foil |
US9579525B2 (en) | 2008-05-22 | 2017-02-28 | Vladimir Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US9616252B2 (en) | 2008-05-22 | 2017-04-11 | Vladimir Balakin | Multi-field cancer therapy apparatus and method of use thereof |
US9682254B2 (en) | 2008-05-22 | 2017-06-20 | Vladimir Balakin | Cancer surface searing apparatus and method of use thereof |
US9910166B2 (en) | 2008-05-22 | 2018-03-06 | Stephen L. Spotts | Redundant charged particle state determination apparatus and method of use thereof |
US9737734B2 (en) | 2008-05-22 | 2017-08-22 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US9737733B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle state determination apparatus and method of use thereof |
US9737272B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle cancer therapy beam state determination apparatus and method of use thereof |
US9744380B2 (en) | 2008-05-22 | 2017-08-29 | Susan L. Michaud | Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof |
US9757594B2 (en) | 2008-05-22 | 2017-09-12 | Vladimir Balakin | Rotatable targeting magnet apparatus and method of use thereof in conjunction with a charged particle cancer therapy system |
US9782140B2 (en) | 2008-05-22 | 2017-10-10 | Susan L. Michaud | Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof |
US9855444B2 (en) | 2008-05-22 | 2018-01-02 | Scott Penfold | X-ray detector for proton transit detection apparatus and method of use thereof |
US8229072B2 (en) | 2008-07-14 | 2012-07-24 | Vladimir Balakin | Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US8627822B2 (en) | 2008-07-14 | 2014-01-14 | Vladimir Balakin | Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
US8625739B2 (en) | 2008-07-14 | 2014-01-07 | Vladimir Balakin | Charged particle cancer therapy x-ray method and apparatus |
US8791435B2 (en) | 2009-03-04 | 2014-07-29 | Vladimir Egorovich Balakin | Multi-field charged particle cancer therapy method and apparatus |
US8907309B2 (en) | 2009-04-17 | 2014-12-09 | Stephen L. Spotts | Treatment delivery control system and method of operation thereof |
US11648420B2 (en) | 2010-04-16 | 2023-05-16 | Vladimir Balakin | Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof |
US10638988B2 (en) | 2010-04-16 | 2020-05-05 | Scott Penfold | Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof |
US10179250B2 (en) | 2010-04-16 | 2019-01-15 | Nick Ruebel | Auto-updated and implemented radiation treatment plan apparatus and method of use thereof |
US10751551B2 (en) | 2010-04-16 | 2020-08-25 | James P. Bennett | Integrated imaging-cancer treatment apparatus and method of use thereof |
US10086214B2 (en) | 2010-04-16 | 2018-10-02 | Vladimir Balakin | Integrated tomography—cancer treatment apparatus and method of use thereof |
US10518109B2 (en) | 2010-04-16 | 2019-12-31 | Jillian Reno | Transformable charged particle beam path cancer therapy apparatus and method of use thereof |
US10349906B2 (en) | 2010-04-16 | 2019-07-16 | James P. Bennett | Multiplexed proton tomography imaging apparatus and method of use thereof |
US10029124B2 (en) | 2010-04-16 | 2018-07-24 | W. Davis Lee | Multiple beamline position isocenterless positively charged particle cancer therapy apparatus and method of use thereof |
US9737731B2 (en) | 2010-04-16 | 2017-08-22 | Vladimir Balakin | Synchrotron energy control apparatus and method of use thereof |
US10589128B2 (en) | 2010-04-16 | 2020-03-17 | Susan L. Michaud | Treatment beam path verification in a cancer therapy apparatus and method of use thereof |
US10357666B2 (en) | 2010-04-16 | 2019-07-23 | W. Davis Lee | Fiducial marker / cancer imaging and treatment apparatus and method of use thereof |
US10376717B2 (en) | 2010-04-16 | 2019-08-13 | James P. Bennett | Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof |
US10188877B2 (en) | 2010-04-16 | 2019-01-29 | W. Davis Lee | Fiducial marker/cancer imaging and treatment apparatus and method of use thereof |
US10625097B2 (en) | 2010-04-16 | 2020-04-21 | Jillian Reno | Semi-automated cancer therapy treatment apparatus and method of use thereof |
US10556126B2 (en) | 2010-04-16 | 2020-02-11 | Mark R. Amato | Automated radiation treatment plan development apparatus and method of use thereof |
US10555710B2 (en) | 2010-04-16 | 2020-02-11 | James P. Bennett | Simultaneous multi-axes imaging apparatus and method of use thereof |
WO2012159212A1 (en) * | 2011-05-23 | 2012-11-29 | Schmor Particle Accelerator Consulting Inc. | Particle accelerator and method of reducing beam divergence in the particle accelerator |
US9386681B2 (en) | 2011-05-23 | 2016-07-05 | Schmor Particle Accelerator Consulting Inc. | Particle accelerator and method of reducing beam divergence in the particle accelerator |
US8963112B1 (en) | 2011-05-25 | 2015-02-24 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8933651B2 (en) | 2012-11-16 | 2015-01-13 | Vladimir Balakin | Charged particle accelerator magnet apparatus and method of use thereof |
US9907981B2 (en) | 2016-03-07 | 2018-03-06 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US10037863B2 (en) | 2016-05-27 | 2018-07-31 | Mark R. Amato | Continuous ion beam kinetic energy dissipater apparatus and method of use thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3867705A (en) | Cyclotron internal ion source with dc extraction | |
US3868522A (en) | Superconducting cyclotron | |
EP0062058A1 (en) | Method and apparatus for accelerating charged particles | |
US3230418A (en) | Device having high-gradient magnetic cusp geometry | |
US3626305A (en) | High energy ion accelerator | |
US3030543A (en) | Method and apparatus for trapping ions in a magnetic field | |
Arianer et al. | Cryebis, a multi-purpose ebis for the synchrotron SATURNE II | |
Postma et al. | Observation of Negative-Mass Instability in an Energetic Proton Plasma | |
US3896392A (en) | All-magnetic extraction for cyclotron beam reacceleration | |
Griem et al. | Measurements of Electron Densities and Temperatures and other Plasma Parameters in Magnetic Compression Experiments | |
GB963493A (en) | Improved ion magnetron plasma device | |
US3898496A (en) | Means for obtaining a metal ion beam from a heavy-ion cyclotron source | |
Hudson et al. | Cyclotron internal ion source with dc extraction | |
Botman et al. | Extraction from cyclotrons | |
Clark et al. | Fast energy changes with a cyclotron | |
Mallory et al. | Cyclotron Internal Ion Source with DC Extraction | |
US3006835A (en) | Neutron source using magnetic compression of plasma | |
US3677889A (en) | Magnetic compression controlled thermonuclear reactor | |
Winterberg | Attainment of gigavolt potentials by magnetic insulation | |
US3374378A (en) | Acceleration of heavy particles | |
Zel’dovich | Prestellar state of matter | |
Beck et al. | Millimetre-wave generator working at half the cyclotron resonance frequency | |
Mills et al. | Multiturn Injection Techniques in the MURA 50‐MeV Electron Accelerator. X | |
US3222559A (en) | Production of completely ionized plasma | |
McGuire | The Iowa State University 1.5 Mev Undergraduate Cyclotron |