US3867681A - Battery charging circuit - Google Patents

Battery charging circuit Download PDF

Info

Publication number
US3867681A
US3867681A US452804A US45280474A US3867681A US 3867681 A US3867681 A US 3867681A US 452804 A US452804 A US 452804A US 45280474 A US45280474 A US 45280474A US 3867681 A US3867681 A US 3867681A
Authority
US
United States
Prior art keywords
charging
voltage
charging signal
timer
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US452804A
Inventor
Larry D Bishop
William R Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US452804A priority Critical patent/US3867681A/en
Priority to CA217,504A priority patent/CA993044A/en
Application granted granted Critical
Publication of US3867681A publication Critical patent/US3867681A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/06Current supply arrangements for telephone systems in which current supply sources at subordinate switching centres are charged from the main exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation

Definitions

  • Our invention relates to a battery charging circuit, and particularly to a charging circuit for maintaining batteries in good condition and in a reliable state of charge but with relatively little detriment to battery life or loss of water from the battery.
  • Electrical storage batteries such as the nickelcadmium lead-acid type, are frequently used for providing electrical power to electronic equipment at remote or typically unattended locations.
  • alternating current electrical power supplied to the location was rectified to direct current, and the batteries were floated across the direct current so that they would receive an almost constant trickle charge. While such an arrangement kept the batteries at a high level of capacity or state of charge, it also reduced the life of the battery, and caused loss of water from the battery. Hence, the batteries had to be frequently serviced, and in the case of lead-acid, frequently replaced.
  • a primary object of our invention is to provide a new and improved charging circuit which keeps storage batteries in a reliable state of charge with relatively little detriment to the life of the battery and with very little loss of water.
  • Another object of our invention is to provide a new and improved charging circuit which automatically provides acharge to a storage battery at selected, periodic times, for example weekly, and which also provides a charge 'to the battery each time the alternating current electrical power fails and is restored.
  • Another object of our invention is to provide a new and improved battery charging circuit which automatically provides a storage battery with a normal charge, and which also provides a storage battery with an equalizing or heavy charge in response to a desired operation.
  • Another object of our invention is to provide a new and improved battery charging circuit which automatically provides a normal charge to a storage battery at selected periodic intervals; which provides a normal charge to the battery each. time the alternating current electrical power fails and is restored; and which provides an equalizing charge to the battery in response to a manual operation or other condition.
  • a voltage regulator and current regulator connected from the charging source through a normally open charging path to the battery to be charged.
  • the actual battery voltage is compared with a reference voltage to provide a first charging signal in response to the battery voltage being below the reference voltage.
  • a first timer for producing a second charging signal at selected predetermined intervals is provided, and a power fail and restore circuit for producing a third charging signal in response to failure and subsequent restoral of electrical power is provided.
  • a second timer for producing a fourth charging signal of selected duration is provided to respond to a manual operation or other condition.
  • a logic circuit is connected to the voltage comparator, the first timer, the power fail and restore circuit, and the second timer for producing a charge signal in response to the simultaneous presence of the first charging signal and either of the second or third charging signals, and further in response to the presenceof only the fourth charging signal.
  • This charge signal is applied to the charging path for closing the path when the charge signal is present.
  • the charging path is closed to provide a normal charge to the battery when either the first timer operates or when power is restored and the battery voltage is below the referencce voltage.
  • the logic circuit also responds to operation of the second timer to cause the battery to receive a high or equalizing charge in response to the fourth charging signal.
  • the single FIGURE shows an electrical block dia gram of a preferred embodiment of a battery charging circuit in accordance with our invention.
  • our battery charging circuit will typically be used in remote or unattendedlocations, although it is to be understood that our circuit can be used in any location.
  • Such locations typically are supplied with alternating current electrical power which is applied to a charging source 10 for rectification to direct current at the proper voltage for the storage battery to be charged.
  • This direct current is applied to the input of a voltage regulator 11 which has a control for setting the regulated voltage at either the normal battery charging voltage or at a higher or equalizing charging voltage.
  • This regulated voltage is applied to a current regulator 12 which regulates the current to some specified magnitude.
  • the regulated charging current is applied to a normally open charging or switch path SP, represented as a single pole, single throw switch.
  • This path in turn is completed to a storage battery 13 which is to be charged.
  • the voltage of the battery 13 is applied to the negative input (indicated by a minus sign) of an operational amplifier 0A.
  • the operational amplifier 0A is connected as a voltage comparator, and produces a relatively high voltage (or a logic 1) at its output if the voltage at its positive input exceeds the voltage at its negative input, and produces a relatively low voltage (or a logic 0) at its output if the voltage at the negative input exceeds the voltage at the positive input.
  • the positive input is connected to a temperature sensing voltage divider comprising a negative coefficient, temperature sensitive resistor RT, a normal charging voltage resistor R1, and a heavy or equalizing charging resistor R2 connected to a suitable voltage source indicated as B+.
  • the temperature sensitive resistor RT is located so as to sense the ambient temperature at the batteries. As this ambient temperature increases, the voltage Vl at the junction of the resistors R1, RT and the voltage V2 at the junction of the resistors R2, R1 decrease. As this ambient temperature decreases, the voltages V1, V2 increase.
  • a first timer 20 is provided to produce a pulse or signal once for every selected time interval, in a preferred embodiment this being once every seven days.
  • An AC fail and restore circuit 21 is provided in order to sense when alternating current power to the charging circuit has been interrupted and is then restored, and this is indicated by a signal or pulse.
  • the signals from the timer 20 and the AC fail and restore circuit 21 are applied to the latching circuit 17 which, upon receipt of either of these signals, latches to a condition to supply a logic 1 to one'of two inputs of. an OR gate 24.
  • the output of the OR gate 24 is appliedto the other input of the AND gate 18.
  • We also provide a periodic timer 22 which, in a preferred embodiment, provides a logic 1 signal for a 20 hour period when activated.
  • the output of the timer 22 is applied to the other input of the OR gate 24 and also to the other input of the OR gate 16.
  • the output of the timer 22 is also applied to a driver circuit 23.,When the driver circuit 23 receives a logic 1 from the timer 22, it causes the switch S1 to move from the-lower contact as shown to the upper contact.
  • the lower contact is connected to the junction of the resistors R1, RT, and the upper contact is connected to the junction of the resistors R2, R1.
  • the movable element of the switch S1 is connected to the control input of the voltage regulator 11.
  • lead-acid storage battery having a nominal voltage of 48 volts is the battery 13 in our charging circuit.
  • the actual terminal voltageof such a battery at a typical temperatureof 77F is 50.4 volts.
  • the switch path SP is normally open. Unless the battery is supplying power to the equipment, it is losing its charge-at a rate dependent upon the internal leakage of the battery.
  • the timer 20 At the time determined by the timer 20,
  • a pulse is produced to cause the latching circuit 17 to supply a logic 1 to the OR gate 24.
  • This logic 1 is supplied to the ANd gate 18.
  • the AND gate 18 does not produce a logic 1 to the driver 19 unles the op- 5 erational amplifier OA supplies a logic 1.
  • the operational amplifier OA will produce a logic 1 only if the voltage V1 at the divider exceeds the voltage of the battery 13 being charged. If the battery voltage is sufficiently low, a logic 1 will be supplied by the amplifier OA and passed through the OR gate 16 so that the AND gate 18 provides a logic 1 to the driver 19. This causes the switch path SP to close so that the battery 13 receives a charge.
  • the AC fail and restore circuit 21 had produced a logic 1 in response to a power failure and subsequent restoral, then the operation just described would occur.
  • the battery voltage is sufficiently low, it receives a charge.
  • the voltage at the negative input of the operational amplifier OA exceeds the voltage at the positive input so that the operational amplifier OA produces a logic 0.
  • the OR gate 16 to produce a logic 0.
  • the AND gate produces a logic 0 so that the driver 19 opens the switch path SP.
  • the switch path SP may, in actuality', be a feature that renders either the current regulator 12 or the voltage regulator 11 inoperative or operative in response to the driver 19.
  • the timer and the timer 22 may be varied in their timing intervals.
  • the operational amplifier OA may have a fixed reference voltage rather than a temperature sensing voltage.
  • the latch 17 may be omitted, and the timer 20 and the AC fail and restore circuit 21 may provide fixed duration outputsignals to the OR gate 24 so that these signals determine the maximum length of time a battery will receive a charge, rather than the operational amplifier OA determining the amount of charge. And finally, our circuit can provide visual or audible indications of the charging state at any time. Therefore, while our invention has been described with reference to a particular embodiment, it is to be understood that modifications may be made without departing from the spirit of our invention or from the scope of the claims.
  • An improved circuit for charging a battery from a charging source comprising:
  • a voltage regulator adapted to be connected to the charging source, said voltage regulator having a control input for selectively causing said voltage regulator to produce an upper regulated voltage and a lower regulated voltage at its output;
  • a normally open charging path having an input connected to said current regulator, having an output, and having a control input;
  • a voltage comparator having an input adapted to be connected to said battery to be charged for producing a first charging signal in response to a battery voltage below a selected voltage reference level
  • a power fail and restore circuit for producing a third charging signal in response to failure and subsequent restoral of primary power
  • the improved circuit of claim 1 and further comprising a latch circuit connected to said first timer and to said power fail and restore circuit for producing a continuous second charging signal and a continuous third charging signal in response to said second charging signal and said third charging signal respectively, and means connected between said voltage comparator and said latch circuit for disabling said latch circuit and stopping said second and third continuous charging signals in response to the absence of said first charging signal.
  • the improved circuit of claim 1 and further comprising means connected to said second timer for causing said second timer to produce said fourth charging signal in response to a battery discharge of selected duration.
  • the improved circuit of claim 1 and further comprising a latch circuit connected to said first timer and to said power fail and restore circuit for producing a continuous second charging signal and a continuous third charging signal in response to said second charging signal and said third charging signal respectively, means connected between said voltage comparator and said latch circuit for disabling said latch circuit and stopping said second and third continous charging signals in response to the absence of said first charging signal, and means connected to said second timer for causing said second timer to produce said fourth charging signal in response to a battery discharge of selected duration.

Abstract

Batteries in locations such as unattended telephone buildings are kept in a good and reliable condition by a circuit which provides a normal charge periodically, which provides a normal charge each time the primary electrical power fails and is restored, and which provides an equalizing charge for a predetermined length of time in response to a manual or automatic operation.

Description

[ BATTERY CHARGING CIRCUIT [75] Inventors:
Assignee: General Electric Company,
Filed:
Appl. No.: 452,804
Lynchburg, Va.
Mar. 20, 1974 Larry D Bishop; William R. Smith, both of Lynchburg, Va.
u.s. Cl 320/21, 320/22, 320/29, 320/31, 320/37, 320/39 rm. Cl. H02j 7/04 I References Cited UNITED STATES PATENTS 2,305,178 12/1942 Lomax et al 320/21 X- Field of Search 320/2934, 320/37, 38, 39, 40, 21, 22, l4, 19
Feb. 18, 1975 2,385,455 9/1945 Lcssey 320/22 Primary Examiner-.l. D. Miller Assistant ExaminerRobert J. Hickey ABSTRACT tion.
5 Claims, 1 Drawing Figure REFER VOLT/7G5 i 3 'CHKWG/AIG v02 mas cuMEA/T JDUifiE REGULATM KEGULATOA L go 7 DA Y LATC H 77415? c/Rc u/ 7- 4 c. F/l/L RES T0175 10 HOUR .22
TIME R 7 29+ I va 71 m BATTERY CHARGING CIRCUIT BACKGROUND OF THE INVENTION Our invention relates to a battery charging circuit, and particularly to a charging circuit for maintaining batteries in good condition and in a reliable state of charge but with relatively little detriment to battery life or loss of water from the battery.
Electrical storage batteries, such as the nickelcadmium lead-acid type, are frequently used for providing electrical power to electronic equipment at remote or typically unattended locations. Previously, alternating current electrical power supplied to the location was rectified to direct current, and the batteries were floated across the direct current so that they would receive an almost constant trickle charge. While such an arrangement kept the batteries at a high level of capacity or state of charge, it also reduced the life of the battery, and caused loss of water from the battery. Hence, the batteries had to be frequently serviced, and in the case of lead-acid, frequently replaced.
Accordingly, a primary object of our invention is to provide a new and improved charging circuit which keeps storage batteries in a reliable state of charge with relatively little detriment to the life of the battery and with very little loss of water.
Another object of our invention is to provide a new and improved charging circuit which automatically provides acharge to a storage battery at selected, periodic times, for example weekly, and which also provides a charge 'to the battery each time the alternating current electrical power fails and is restored.
Another object of our invention is to provide a new and improved battery charging circuit which automatically provides a storage battery with a normal charge, and which also provides a storage battery with an equalizing or heavy charge in response to a desired operation.
Another object of our invention is to provide a new and improved battery charging circuit which automatically provides a normal charge to a storage battery at selected periodic intervals; which provides a normal charge to the battery each. time the alternating current electrical power fails and is restored; and which provides an equalizing charge to the battery in response to a manual operation or other condition.
SUMMARY OF THE INVENTION Briefly, these and other objects are achieved in accordance with our invention by a voltage regulator and current regulator connected from the charging source through a normally open charging path to the battery to be charged. The actual battery voltage is compared with a reference voltage to provide a first charging signal in response to the battery voltage being below the reference voltage. A first timer for producing a second charging signal at selected predetermined intervals is provided, and a power fail and restore circuit for producing a third charging signal in response to failure and subsequent restoral of electrical power is provided. A second timer for producing a fourth charging signal of selected duration is provided to respond to a manual operation or other condition. A logic circuit is connected to the voltage comparator, the first timer, the power fail and restore circuit, and the second timer for producing a charge signal in response to the simultaneous presence of the first charging signal and either of the second or third charging signals, and further in response to the presenceof only the fourth charging signal. This charge signal is applied to the charging path for closing the path when the charge signal is present. Thus, the charging path is closed to provide a normal charge to the battery when either the first timer operates or when power is restored and the battery voltage is below the referencce voltage. The logic circuit also responds to operation of the second timer to cause the battery to receive a high or equalizing charge in response to the fourth charging signal.
BRIEF DESCRIPTION OF THE DRAWINGS The subject matter which we regard as our invention is particularly pointed out and distinctly claimed in the claims. The structure and operation of our invention, together with further objects and advantages, may be better understood from the following description given in connection with the accompanying drawing, in which:
The single FIGURE shows an electrical block dia gram of a preferred embodiment of a battery charging circuit in accordance with our invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT As indicated earlier, we contemplate that our battery charging circuit will typically be used in remote or unattendedlocations, although it is to be understood that our circuit can be used in any location. Such locations typically are supplied with alternating current electrical power which is applied to a charging source 10 for rectification to direct current at the proper voltage for the storage battery to be charged. This direct current is applied to the input of a voltage regulator 11 which has a control for setting the regulated voltage at either the normal battery charging voltage or at a higher or equalizing charging voltage. This regulated voltage is applied to a current regulator 12 which regulates the current to some specified magnitude. The regulated charging current is applied to a normally open charging or switch path SP, represented as a single pole, single throw switch. This path in turn is completed to a storage battery 13 which is to be charged. The voltage of the battery 13 is applied to the negative input (indicated by a minus sign) of an operational amplifier 0A. The operational amplifier 0A is connected as a voltage comparator, and produces a relatively high voltage (or a logic 1) at its output if the voltage at its positive input exceeds the voltage at its negative input, and produces a relatively low voltage (or a logic 0) at its output if the voltage at the negative input exceeds the voltage at the positive input. The positive input is connected to a temperature sensing voltage divider comprising a negative coefficient, temperature sensitive resistor RT, a normal charging voltage resistor R1, and a heavy or equalizing charging resistor R2 connected to a suitable voltage source indicated as B+. The temperature sensitive resistor RT is located so as to sense the ambient temperature at the batteries. As this ambient temperature increases, the voltage Vl at the junction of the resistors R1, RT and the voltage V2 at the junction of the resistors R2, R1 decrease. As this ambient temperature decreases, the voltages V1, V2 increase. The as the ambient temperature rises, a smaller voltage at the negative input of the operational amplifier 0A is required to produce a low or logic 0 output, and as the ambient temperature falls, a greater voltage is required at the negative input of the operational amplifier A to proarranged so that when the operational amplifier OA produces a logic 0, as it will when the voltage on the storage battery 13 exceeds the reference voltage V1, the latch, circuit 17 will be opened and will remove the logic 1 being supplied to the OR gate 24. The output 1 from the OR gate 16 is applied to one of two inputs of an AND logic gatel8, and the output of the AND gate 18 is applied to a driver 19. When the AND gate l8 produces a logic 1, it causes the driver 19 to close the switch path SP.
A first timer 20 is provided to produce a pulse or signal once for every selected time interval, in a preferred embodiment this being once every seven days. An AC fail and restore circuit 21 is provided in order to sense when alternating current power to the charging circuit has been interrupted and is then restored, and this is indicated by a signal or pulse. The signals from the timer 20 and the AC fail and restore circuit 21 are applied to the latching circuit 17 which, upon receipt of either of these signals, latches to a condition to supply a logic 1 to one'of two inputs of. an OR gate 24. The output of the OR gate 24 is appliedto the other input of the AND gate 18. We also provide a periodic timer 22 which, in a preferred embodiment, provides a logic 1 signal for a 20 hour period when activated. This activation is typically a manual one, but it may also be provided by other features, such as any alternating current power failure which exceeds a selected number of hours. The output of the timer 22 is applied to the other input of the OR gate 24 and also to the other input of the OR gate 16. The output of the timer 22 is also applied to a driver circuit 23.,When the driver circuit 23 receives a logic 1 from the timer 22, it causes the switch S1 to move from the-lower contact as shown to the upper contact. The lower contact is connected to the junction of the resistors R1, RT, and the upper contact is connected to the junction of the resistors R2, R1. The movable element of the switch S1 is connected to the control input of the voltage regulator 11. When switch S1 is in the lower position, the voltage V1 causesthe voltage regulator 11 to provide a normal charging voltage, and when the switch S1 is in the upper position in response to activation ofthe driver 23, the voltage V2 causes the voltage regulator 11 to supply a higher or equalizing charging voltage. v t
As an example for explaining the operation of our inventi on, we have assumed that an 80 ampere-hour,
lead-acid storage battery having a nominal voltage of 48 volts is the battery 13 in our charging circuit. The actual terminal voltageof such a battery at a typical temperatureof 77F is 50.4 volts. We have also assumed a normal charge voltage of 55.4 volts at 4 amperes and a heavy or equalizing charge of 56.8 volts at 4 amperes are -to be provided. With such a battery in place, the switch path SP is normally open. Unless the battery is supplying power to the equipment, it is losing its charge-at a rate dependent upon the internal leakage of the battery. At the time determined by the timer 20,
a pulse is produced to cause the latching circuit 17 to supply a logic 1 to the OR gate 24. This logic 1 is supplied to the ANd gate 18. However, the AND gate 18 does not produce a logic 1 to the driver 19 unles the op- 5 erational amplifier OA supplies a logic 1. The operational amplifier OA will produce a logic 1 only if the voltage V1 at the divider exceeds the voltage of the battery 13 being charged. If the battery voltage is sufficiently low, a logic 1 will be supplied by the amplifier OA and passed through the OR gate 16 so that the AND gate 18 provides a logic 1 to the driver 19. This causes the switch path SP to close so that the battery 13 receives a charge. At this point, it should be pointed out that if the AC fail and restore circuit 21 had produced a logic 1 in response to a power failure and subsequent restoral, then the operation just described would occur. In either case, if the battery voltage is sufficiently low, it receives a charge. As the battery becomes charged, its terminal voltage rises until, at some point determined by the voltage V1, the voltage at the negative input of the operational amplifier OA exceeds the voltage at the positive input so that the operational amplifier OA produces a logic 0. This causes. the OR gate 16 to produce a logic 0. The AND gate produces a logic 0 so that the driver 19 opens the switch path SP. At this time, the same logic 0 from the operational amplifier OA opens the latch 17 and resets it so that a subsequent logic 1 from the timer 20 or the'AC fail restore circuit 21 can cause the latch 17 to close again. Thus, our circuit as described thus far provides a normal or lower charging voltage in response to the timer 20 or the AC failure and restore circuit 21. And, this charge is at the lower voltage because of the voltage V1 supplied by the switch'Sl to the voltage regulator 11.
Persons familiar with storage batteries recognize that such batteries receive severe or deep discharges under extended load periods. Even though a normal charge brings the battery terminal voltage back to its rated magnitude, such batteries are not fully charged to their complete ampere hour capacity. In order to bring such batteries back to their full capacity, it is necessary that an equalizing or heavycharge be provided. In accordance without invention, such an equalizing charge is provided by the 20 hour timer 22 which, when manually operated either at or remotely from the charging circuit or in response to a discharge of selected minimum time, produces a logic 1. This logic 1 is applied to both OR gates 24, 16 which cause the AND gate 18 and the driver 19 to close the switch path SP. This same logic 1 causes the driver 23 to operate the switch S1 to its upper position so that the higher voltage V2 is supplied to the voltage regulator 11. This causes the voltage regulator 11 to' supply the higher equalizing charging voltage of 56. 8 volts and the battery 13 receives this equalizing charging voltage. This charge continues regardless of the battery terminal voltage,since the logic 1 supplied by the timer 22 insures that the driver 19 remains operative. The timer 22 continues for the selected duration, this being 20 hours in the assumed example. After this time, the timer 22 is deenergized and produces a logic 0 so that the normal condition 'of charge can take place either in response to the 7 day timer 20 or the AC fail and restore circuit 21.
It will thus be seen that we have. provided a new and improved charging circuit which provides many desired charging characteristics not previously found in charging circuits, namely: a normal charge at fixed intervals,
regardless of whether the battery has been discharged by a load or not; a normal charge in response to a power failure and restoral; and an equalizing charge when desired or in response to a selected condition. While we have shown only one embodiment, persons skilled in the art will appreciate that modifications may be made. For example, the switch path SP may, in actuality', be a feature that renders either the current regulator 12 or the voltage regulator 11 inoperative or operative in response to the driver 19. Another feature is, of course, that the timer and the timer 22 may be varied in their timing intervals. Another feature is that the operational amplifier OA may have a fixed reference voltage rather than a temperature sensing voltage. The latch 17 may be omitted, and the timer 20 and the AC fail and restore circuit 21 may provide fixed duration outputsignals to the OR gate 24 so that these signals determine the maximum length of time a battery will receive a charge, rather than the operational amplifier OA determining the amount of charge. And finally, our circuit can provide visual or audible indications of the charging state at any time. Therefore, while our invention has been described with reference to a particular embodiment, it is to be understood that modifications may be made without departing from the spirit of our invention or from the scope of the claims.
What we claim as new and desire to secure by Letters Patent of the United States is:
1. An improved circuit for charging a battery from a charging source, comprising:
a. a voltage regulator adapted to be connected to the charging source, said voltage regulator having a control input for selectively causing said voltage regulator to produce an upper regulated voltage and a lower regulated voltage at its output;
b. a current regulator connected to said voltage regulator circuit;
c. a normally open charging path having an input connected to said current regulator, having an output, and having a control input;
d. means connected to said charging path output and adapted to be connected to the battery to be charged;
e. a voltage comparator having an input adapted to be connected to said battery to be charged for producing a first charging signal in response to a battery voltage below a selected voltage reference level;
f. a first timer for producing a second charging signal.
at selected predetermined intervals;
g. a power fail and restore circuit for producing a third charging signal in response to failure and subsequent restoral of primary power;
h. a second timer for producing a fourth charging signal of a selected duration in response to a selected operation; t
i. means connected between said voltage comparator, said first timer, said power fail and restore circuit, and said second timer andbetween said charging path control input for closing said charging path in response to the simultaneous presence of said first charging signal and either of said second and third charging signals, and in response to said fourth charging signal;
j. and means connected between said second timer and said voltage regulator control input for causing said voltage regulator to produce said upper regulated voltage in the presenceof said fourth charging signal and for causing said voltage regulator to produce said lower regulated voltage in the absence of said fourth charging signal.
2. The improved circuit of claim 1 wherein said selected voltage reference level varies inversely as a function of the ambient temperature surrounding said improved circuit.
3. The improved circuit of claim 1, and further comprising a latch circuit connected to said first timer and to said power fail and restore circuit for producing a continuous second charging signal and a continuous third charging signal in response to said second charging signal and said third charging signal respectively, and means connected between said voltage comparator and said latch circuit for disabling said latch circuit and stopping said second and third continuous charging signals in response to the absence of said first charging signal.
4. .The improved circuit of claim 1, and further comprising means connected to said second timer for causing said second timer to produce said fourth charging signal in response to a battery discharge of selected duration.
5. The improved circuit of claim 1, and further comprising a latch circuit connected to said first timer and to said power fail and restore circuit for producing a continuous second charging signal and a continuous third charging signal in response to said second charging signal and said third charging signal respectively, means connected between said voltage comparator and said latch circuit for disabling said latch circuit and stopping said second and third continous charging signals in response to the absence of said first charging signal, and means connected to said second timer for causing said second timer to produce said fourth charging signal in response to a battery discharge of selected duration.

Claims (5)

1. An improved circuit for charging a battery from a charging source, comprising: a. a voltage regulator adapted to be connected to the charging source, said voltage regulator having a control input for selectively causing said voltage regulator to produce an upper regulated voltage and a lower regulated voltage at its output; b. a current regulator connected to said voltage regulator circuit; c. a normally open charging path having an input connected to said current regulator, having an output, and having a control input; d. means connected to said charging path output and adapted to be connected to the battery to be charged; e. a voltage comparator having an input adapted to be connected to said battery to be charged for producing a first charging signal in response to a battery voltage below a selected voltage reference level; f. a first timer for producing a second charging signal at selected predetermined intervals; g. a power fail and restore circuit for producing a third charging signal in response to failure and subsequent restoral of primary power; h. a second timer for producing a fourth charging signal of a selected duration in response to a selected operation; i. means connected between said voltage comparator, said first timer, said power fail and restore circuit, and said second timer and between said charging path control input for closing said charging path in response to the simultaneous presence of said first charging signal and either of said second and third charging signals, and in response to said fourth charging signal; j. and means connected between said second timer and said voltage regulator control input for causing said voltage regulator to produce said upper regulated voltage in the presence of said fourth charging signal and for causing said voltage regulator to produce said lower regulated voltage in the absence of said fourth charging signal.
2. The improved circuit of claim 1 wherein said selected voltage reference level varies inversely as a function of the ambient temperature surrounding said improved circuit.
3. The improved circuit of claim 1, and further comprising a latch circuit connected to said first timer and to said power fail and restore circuit for producing a continuous second charging signal and a continuous third charging signal in response to said second charging signal and said third charging signal respectively, and means connected between said voltage comparator and said latch circuit for disabling said latch circuit and stopping said second and third continuous charging signals in response to the absence of said first charging signal.
4. The improved circuit of claim 1, and further comprising means connected to said second timer for causing said second timer to produce said fourth charging signal in response to a battery discharge of selected duration.
5. The improved circuit of claim 1, and further comprising a latch circuit connected to said first timer and to said power fail and restore circuit for producing a continuous second charging signal and a continuous third charging signal in response to said second charging signal and said third charging signal respectively, means connected between said voltage comparator and said latch circuit for disabling said latch circuit and stopping said second and third continous charging signals in response to the absence of said first charging signal, and Means connected to said second timer for causing said second timer to produce said fourth charging signal in response to a battery discharge of selected duration.
US452804A 1974-03-20 1974-03-20 Battery charging circuit Expired - Lifetime US3867681A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US452804A US3867681A (en) 1974-03-20 1974-03-20 Battery charging circuit
CA217,504A CA993044A (en) 1974-03-20 1975-01-07 Battery charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US452804A US3867681A (en) 1974-03-20 1974-03-20 Battery charging circuit

Publications (1)

Publication Number Publication Date
US3867681A true US3867681A (en) 1975-02-18

Family

ID=23798005

Family Applications (1)

Application Number Title Priority Date Filing Date
US452804A Expired - Lifetime US3867681A (en) 1974-03-20 1974-03-20 Battery charging circuit

Country Status (2)

Country Link
US (1) US3867681A (en)
CA (1) CA993044A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941507A (en) * 1974-04-12 1976-03-02 Niedermeyer Karl O Safety supervisor for sump pumps and other hazards
US4082097A (en) * 1976-05-20 1978-04-04 Pacesetter Systems Inc. Multimode recharging system for living tissue stimulators
US4097792A (en) * 1976-12-09 1978-06-27 Lester Electrical Of Nebraska, Inc. Battery charger control circuit
US4218644A (en) * 1978-09-19 1980-08-19 Gould Inc. Time controlled battery charger
US4313078A (en) * 1979-12-05 1982-01-26 Rca Corporation Battery charging system
US4383211A (en) * 1981-01-02 1983-05-10 Atlantic Richfield Company Electrical charging and discharging control apparatus and method, and solar to electrical energy conversion apparatus incorporating such apparatus
US4383212A (en) * 1978-06-12 1983-05-10 Ballman Gray C Battery charger control device with D-C disconnect and A-C interrupt
US4453119A (en) * 1980-01-21 1984-06-05 Terry Staler Electrical charging control apparatus and method, and solar to electrical energy conversion apparatus incorporating such charging control apparatus
US4554500A (en) * 1983-03-31 1985-11-19 Anton/Bauer, Inc. Battery charging apparatus and method
US4647834A (en) * 1984-12-17 1987-03-03 Castleman Cordell V Battery charger
US4670703A (en) * 1985-05-06 1987-06-02 General Electric Company Battery charger with three different charging rates
US4849682A (en) * 1987-10-30 1989-07-18 Anton/Bauer, Inc. Battery charging system
US4965738A (en) * 1988-05-03 1990-10-23 Anton/Bauer, Inc. Intelligent battery system
US5214369A (en) * 1991-12-30 1993-05-25 The Charles Machine Works, Inc. Universal battery charger
US5420494A (en) * 1994-01-31 1995-05-30 Lu; Chao-Cheng Battery charger device
US5497067A (en) * 1994-02-18 1996-03-05 Shaw; Donald E. Battery charger with timer-controlled charging, shut-off and reset operations
US5734253A (en) * 1996-07-26 1998-03-31 Telxon Corporation Multiple station charging apparatus with stored charging algorithms
US5744939A (en) * 1996-09-05 1998-04-28 Telxon Corp. Temperature compensation monitoring circuit for a battery pack charging apparatus
US5780991A (en) * 1996-07-26 1998-07-14 Telxon Corporation Multiple station charging apparatus with single charging power supply for parallel charging
US20040100225A1 (en) * 2002-11-20 2004-05-27 Neil Robert Miles Cooling and control system for battery charging

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2305178A (en) * 1941-02-12 1942-12-15 Associated Electric Lab Inc Current supply system
US2385455A (en) * 1944-03-24 1945-09-25 Electric Storage Battery Co System for controlling charging of storage batteries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2305178A (en) * 1941-02-12 1942-12-15 Associated Electric Lab Inc Current supply system
US2385455A (en) * 1944-03-24 1945-09-25 Electric Storage Battery Co System for controlling charging of storage batteries

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941507A (en) * 1974-04-12 1976-03-02 Niedermeyer Karl O Safety supervisor for sump pumps and other hazards
US4082097A (en) * 1976-05-20 1978-04-04 Pacesetter Systems Inc. Multimode recharging system for living tissue stimulators
US4097792A (en) * 1976-12-09 1978-06-27 Lester Electrical Of Nebraska, Inc. Battery charger control circuit
US4383212A (en) * 1978-06-12 1983-05-10 Ballman Gray C Battery charger control device with D-C disconnect and A-C interrupt
US4218644A (en) * 1978-09-19 1980-08-19 Gould Inc. Time controlled battery charger
US4313078A (en) * 1979-12-05 1982-01-26 Rca Corporation Battery charging system
US4453119A (en) * 1980-01-21 1984-06-05 Terry Staler Electrical charging control apparatus and method, and solar to electrical energy conversion apparatus incorporating such charging control apparatus
US4383211A (en) * 1981-01-02 1983-05-10 Atlantic Richfield Company Electrical charging and discharging control apparatus and method, and solar to electrical energy conversion apparatus incorporating such apparatus
US4554500A (en) * 1983-03-31 1985-11-19 Anton/Bauer, Inc. Battery charging apparatus and method
US4647834A (en) * 1984-12-17 1987-03-03 Castleman Cordell V Battery charger
US4670703A (en) * 1985-05-06 1987-06-02 General Electric Company Battery charger with three different charging rates
US4849682A (en) * 1987-10-30 1989-07-18 Anton/Bauer, Inc. Battery charging system
US4965738A (en) * 1988-05-03 1990-10-23 Anton/Bauer, Inc. Intelligent battery system
US5214369A (en) * 1991-12-30 1993-05-25 The Charles Machine Works, Inc. Universal battery charger
US5420494A (en) * 1994-01-31 1995-05-30 Lu; Chao-Cheng Battery charger device
US5497067A (en) * 1994-02-18 1996-03-05 Shaw; Donald E. Battery charger with timer-controlled charging, shut-off and reset operations
US5734253A (en) * 1996-07-26 1998-03-31 Telxon Corporation Multiple station charging apparatus with stored charging algorithms
US5780991A (en) * 1996-07-26 1998-07-14 Telxon Corporation Multiple station charging apparatus with single charging power supply for parallel charging
US5744939A (en) * 1996-09-05 1998-04-28 Telxon Corp. Temperature compensation monitoring circuit for a battery pack charging apparatus
US20040100225A1 (en) * 2002-11-20 2004-05-27 Neil Robert Miles Cooling and control system for battery charging

Also Published As

Publication number Publication date
CA993044A (en) 1976-07-13

Similar Documents

Publication Publication Date Title
US3867681A (en) Battery charging circuit
US4237385A (en) Control of power supply
US4399396A (en) Two level constant voltage float charge rectifier and battery surveillance apparatus
US5237257A (en) Method and apparatus for determining battery type and modifying operating characteristics
US3854082A (en) Battery charging circuit
US4314198A (en) Solar power source for a lighting system
US4084124A (en) Method and apparatus for conditioning of nickel-cadmium batteries
US4435675A (en) Battery charging system
GB1450299A (en) Storage battery chargers
US5321347A (en) Battery charger device and method
US3217225A (en) Battery charger with timing means, current regulation, indicating means, polarity control and battery terminal voltage adaption
GB1568408A (en) Standby power supply systems
CN106786831A (en) A kind of ups power electric quantity acquisition and control system
US3426263A (en) Method and apparatus for battery charge control
JPS6188731A (en) Charge-discharge controller
US4097792A (en) Battery charger control circuit
US3470440A (en) Storage battery charging equipment
CN1230303A (en) Method and arrangement for disconnecting consumers
US3895282A (en) Electric circuits particularly for automatic battery charging apparatus
US4910630A (en) Method and apparatus for energizing an electrical load
US3703675A (en) Floating battery charging network
GB1456737A (en) Device for monitoring the charging current for a battery of storage accumulators
US3421066A (en) Direct current power supply system for emergency lighting systems and the like
US3223913A (en) Battery charger and voltage control means
US4210854A (en) Method and device for charging secondary electric batteries by primary sources