US3867297A - Lube containing alkyl ammonium thiocyanate - Google Patents

Lube containing alkyl ammonium thiocyanate Download PDF

Info

Publication number
US3867297A
US3867297A US329505A US32950573A US3867297A US 3867297 A US3867297 A US 3867297A US 329505 A US329505 A US 329505A US 32950573 A US32950573 A US 32950573A US 3867297 A US3867297 A US 3867297A
Authority
US
United States
Prior art keywords
thiocyanate
mixture
amine
ammonium thiocyanate
carbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US329505A
Inventor
John W Nebzydoski
Harry Brockway
Edwin L Patmore
Frederick G Oberender
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Inc
Original Assignee
Texaco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Inc filed Critical Texaco Inc
Priority to US329505A priority Critical patent/US3867297A/en
Priority to US05/504,635 priority patent/US3952059A/en
Application granted granted Critical
Publication of US3867297A publication Critical patent/US3867297A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M3/00Liquid compositions essentially based on lubricating components other than mineral lubricating oils or fatty oils and their use as lubricants; Use as lubricants of single liquid substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/025Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with condensed rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/284Esters of aromatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/285Esters of aromatic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
    • C10M2217/023Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group the amino group containing an ester bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/108Phenothiazine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • C10N2040/13Aircraft turbines

Definitions

  • ABSTRACT A method of producing an alkyl amine salt of thiocyanic acid having enhanced load-carrying properties when employed in synthetic ester lubricating oils comprising contacting an alkyl amine with ammonium thiocyanate or monoalkyl ammonium thiocyanate at an elevated temperature while continuously blowing the reaction mixture with an oxygen containing gas and recovering the formed alkyl ammonium thiocyanate salt, the oxygen containing gas being introduced into the reaction mixture in a total amount of between about 0.2 and 5.0 moles per equivalent weight of amine; and synthetic ester oil compositions containing a load-carrying additive amount of the alkyl ammonium thiocyanate prepared by said method.
  • alkyl ammonium thiocyanate and alkyl amine encompass alkylene diammonium dithiocyanates and alkylene diamines respectively as well as their monothiocyanate and monoamine counterparts.
  • alkyl ammonium thiocyanates of enhanced load-carrying ability often characterized by the formula
  • SCN' and 'Ncs 2 are prepared by the method comprising forming a mixture of alkyl amine selected from the group consisting of R1 a R R-N and N-A-N I I I R R2 R2 where R is alkyl of from 6 to 30 carbons, R and R are hydrogen or alkyl of from 1 to 10 carbons and A is alkylene of from 2 to 4 carbons and thiocyanate reactant of the formula MSCN where M is a monovalent radical selected from the group consisting of ammonium and monoalkyl ammonium of from 2 to 7 carbons in a ratio of equivalent weight of amine to mole of thiocyanate reactant of between about 121.2 and 09:1, preferably between 111.05 and 1:1, heating and maintaining the resultant mixture at a temperature between and 130C, preferably between and C., while continuously and simultaneously passing an oxygen containing gas therethrough in a mole ratio of oxygen to initial amine equivalent weight of between about 5:1 and 0.2:1, preferably between 2:1 and 05:
  • reaction is continued until at least a substantial portion if not all the reactants have been consumed. This takes place usually in a period of between about 2 and 24 hours.
  • ammonium thiocyanate the preferred thiocyanate reactant
  • the heating and oxygen gas blowing is continued until there is essentially no odor of ammonia by-product.
  • the product may be puritied, if desired, by standard means such as by diluting with a volatile inert solvent, e.g., heptane, utilizing a solvent quantity of between about 0.5 and 3.0 volume per volume reaction mixture and adding filter aid, e.g., between about 10 and 40 wt. basis the reaction mixture, filtering the resultant product, followed by distilling off the volatile solvent, and recovering the purified alkyl ammonium thiocyanate product as residue.
  • a volatile inert solvent e.g., heptane
  • filter aid e.g., between about 10 and 40 wt. basis the reaction mixture
  • inert diluent may be employed advantageously in amounts of between about 20 and 100 wt. of the reaction mixture.
  • suitable inert diluent is alkanol of from 1 to 6 carbons such as methanol, ethanol, isopropanol, propanol and isobutanol.
  • agitation of the reaction mixture is desirable.
  • passage of the oxygen containing gas through the reaction mixture is sufficient, however, supplemental agitation can be employed, if necessary, such as stirring.
  • amine reactants include hexyl amine, octyl amine, lauryl amine, octadecyl amine, 2-ethylhexyl amine, eicosyl amine, tricosyl amine, dimethyhZ-ethylhexyl amine, di-t-octyl ethylene diamine and dipentyl-l,4-butylene diamine.
  • a mines are the primary monoamines in which the alkyl groupis tertiary alkyl having to 24 carbons.
  • Particularly preferred amines are certain commercially available mixtures of tertiary monoalkyl primary amines.
  • One of these preferred tertiary primary alkyl amine mixtures is one in which the alkyl moieties are of from 11 to 14 carbons and is known as Primene 8l-R.
  • Another preferred mixture of tertiary alkyl primary amines are those where the alkyl moieties are of 18 to 24 carbons and is known as Primene JM-T.
  • thiocyanate reactants contemplated herein are ammonium thiocyanate, methyl ammonium I thiocyanate, ethyl ammonium thiocyanate and hexyl ammonium thiocyanate.
  • oxygen containing gas examples include air, oxygen synthetic mixtures of oxygen and an inert gas such as between about 10 and 90 volume inert gas, e.g., nitrogen.
  • alkyl amine thiocyanate salts contemplated herein are t-C -C alkyl ammonium thii 20 ammonium thiocyanate, 2-ethylhexyl ammonium thioocyanate, t-C 1gC2.
  • compositions of the invention comprise a synthetic ester base oil containing the improved thiocyanate additive product prepared by the method of the invention, said additive present in an amount sufficient to increase the load-carrying ability of the base oils.
  • Appropriate additive concentrations are generally in the range of from about 0.01 to about 5 wt. 7:, preferably between 0.05 to 3 wt. of the final lubricating mixture. Lower amounts may be used, but the resulting increase in EP properties is generally insufficient to justify addition of the thiocyanate. Higher amounts are also operable but may cause ancillary problems such as corrosion.
  • the base fluid component of the lubricant of the invention is an ester-base fluid prepared from a pentaerythritol or trimethylolpropane and a mixture of hydrocarbyl monocarboxylic acids.
  • the pentaerythritol class includes the polypentaerythritols, such as dipentaerythritol, tripentaerythritol and tetrapentaerythritol as suitable components of the ester base oil.
  • the hydrocarbon monocarboxylic acids which are used to form the ester-base fluid include the straightchain and branched-chain aliphatic acids, cycloaliphatic acids and aromatic acids as well as mixtures of these acids.
  • the acids employed have from about 2- and 18 carbon atoms per molecule, thepreferredm mbers having from 5 to l0carbon atoms.
  • suitable acids are acetic, propionic, butyric, valeric, isovaleric, caproic, decanoic, cyclohexanoic, naphthenic, benzoic acid, phenylacetic, tertiary-bu'tylacetic acid and 2- ethylhexanoic acid.
  • the acids are reacted in proportions leading to a completely esterified pentaerythritol or trimethylolpropane with the preferred ester bases being the pentaerythritol tetraesters.
  • the preferred ester bases being the pentaerythritol tetraesters.
  • commercially available tetraesters include pentaerythritol tetracaproate, which is prepared from purified pentaerythritol and crude caproic acid containing other C -C monobasic acids.
  • Another suitable tetraester is prepared from a technical grade pentaerythritol and a mixture of acids comprising 38 wt. valeric, 13 wt. '7:
  • Another effective ester is the triester of trimethylolpropane in which the trimethylolpropane is esterified with a monobasic acid mixture consisting of 2 wt. valeric, 9 wt. caproic, 13 wt. heptanoic, 7 wt. octanoic, 3 wt. caprylic, 65 wt. pelargonic and 1 wt. capric acids.
  • Trimethylolpropane triheptanoate, trimethylolpropane tripentanoate and trimethylolpropane trihexanoate are also suitable ester bases.
  • base oils contemplated herein are pentaerythritol tetrabutyrate, pentaerythritol tetravalerate, pentaerythritol butyrate caproate divalerate, pentaerythritol butyrate trivalerate, pentaerythritol butyrate tricaproate, pentaerythritol tributyrate caproate, mixed C -C saturated fatty acids of pentaerythritol, dipentaerythritol hexavalerate, dipentaerythritol hexacaproate, dipentaerythritol hexaheptoate, dipentaerythritol hexacaproate, dipentaerythritol tributyrate tricaproate, dipentaerythritol trivalerate trinonylate, dipentaerythritol,
  • the ester base oils comprise the major portion of the fully formulated synthetic ester base lubricating oil composition.
  • the ester base normally constitutes at least wt. of the lubricating oil composition and generally will comprise from about 90 to 98 wt. of the lubricant.
  • supplementary additives are usually included such as metal deactivators, antioxidants, antiwear agents, antifoamants, VI improvers and supplementary load-carrying improving agents.
  • antioxidants which may be employed are the alkaryl and diaryl amines such as di-toctyldiphenyl amine, N-(4-cumylphenyl)-6-cumyl-2- naphthylamine, phenyl-alpha-naphthylamine, phenylbeta-naphthylamine, phenothiazine, etc.
  • the antioxidants are usually present in an amount from about 0.2 to about 5 wt. of the final composition.
  • Metal deactivators which may be employed are quinizarin, l,4-dihydroxyanthraquinone, l,5-dihydroxyanthaquinone, l,2,4-trihydroxyanthraquinone, and 1,2,5- ,8-tetrahydroxyanthraquinone, etc. Metal dactivators are normally employed in amounts between about 0.04 and 2.0 wt.
  • Anti-wear agents which may be utilized are tricresyl phosphate, triphenyl phosphate. cresyl diphenyl phosphate, tri(2-ethylhexyl)-phosphate, tributyl phosphate, etc. These anti-wear agents are normally utilized in amounts of between about 0.5 and 5.0 wt. of the final composition.
  • Antifoarnants which can beemployedare the silicone polymers such as dimethyl silicone polymers iri amounts of between about and 1000 ppm.
  • V1 improvers one widely used class of V1 improvers are the acrylate and methacrylate polymers of monohydric alcohols of from 1 to 30 carbons of a molecular weight of between about 100,000 and 10,000,000.
  • the tetrapolymer of butyl methacrylate, dodecyl methacrylate, octadecyl methacrylate and dimethylaminoethyl methacrylate in a weight ratio of 4/10/5/1 and the tripolymer of butyl, dodecyl and octadecyl methacrylates are the acrylate and methacrylate polymers of monohydric alcohols of from 1 to 30 carbons of a molecular weight of between about 100,000 and 10,000,000.
  • One of the preferred lubricant composition embodiments of the invention encompasses the combination of amine thiocyanate product contemplated herein in an amount of 0.01 to 2.5 wt. in combination with 0.04 to 2.0 wt. 70 of a polyhydroxy-substituted anthraquinone represented by the formula:
  • the mixture was heated to reflux (98C.), cooled, filtered through filter aid and subjected to concentration under a reduced pressure of mm Hg. to 100C. to afford a 70 gram residual product identified as Primene JM-T ammonium thiocyanate having a Neut. No. of 151 (calc. 150). a nitrogen content of 7.7 wt. (calc. 7.5) and a sulfur content of 8.9 (calc. 8.6).
  • Example 2 To a 3 necked flask as described in Example 1 there was charged 38.2 (0.2 mole) grams of Primene 81-R (TBN 246) and 15.2 (0.21 mole) grams of ammonium thiocyanate. Stirring and the blowing of the reaction mixture with air at a rate of 1 liter per hour was initiated and the reaction mixture was heated to and maintained at l 10C. until the evolution of ammonia ceased (10 hours). It was calculated that a total of 0.5 moles of oxygen per mole of initial amine were introduced into the reaction mixture. The reaction mixture was cooled, diluted with mls. of heptane and 10 grams of inert amorphous silica filter aid were added. The mixture was heated to reflux, cooled.
  • EXAMPLE 111 This example further illustrates the method of the invention and the improved alkyl ammonium thiocyanate.
  • Example 2 To a 3 necked flask as described in Example 1 there was charged 38.7 grams (0.3 mole) to t-octylamine and 22.8 grams (0.3 mole) of ammonium thiocyanate. Stirring and air blowing at a rate of 1 liter per hour was initiated and the reaction mixture was heated to and maintained at 100C. for an 8 hour period as air was bubbled through the stirred reactants. It was calculated a total of 0.25 mole of oxygen per mole of initial amine was introduced into the reaction mixture.
  • EXAMPLE IV This example sets forth a comparative procedure utilizing nitrogen blowing rather than oxygen blowing to produce an alkyl ammonium thiocyanate product which will be subsequently demonstrated (Example Vlll) as inferior in respect to load-carrying properties in lubricating oil to the corresponding representative product of Example 1.
  • Example I To the apparatus as described in Example I there was charged 18.1 (0.26 mole) grams of ammonium thiocyanate and 75 (0.24 mole) of Primene .lM-T. The stirrer and nitrogen gas blowing of the reaction mixture at a rate of 2 liters per hour were initiated and the reaction mixture was heated to and maintained at C. with continued stirring and nitrogen blowing until the evolution of ammonia ceased (16 hours). At the end of the 16 hour period the stirring and nitrogen blowing was ceased and the reaction mixture was cooled, diluted with mls. of heptane and 15 grams of inert amorphous silica filter aid was added. The resultant mixture was warmed to reflux (95C.) with stirring, cooled to room temperature and filtered through paper.
  • the filtrate was concentrated under reduced pressure (105C. at 20 mm Hg. and then at mm Hg.) to form 68.5 grams of residue determined to be Primene JM-T ammonium thiocyanate having a Neut. No. of 148 (calc. 150), a nitrogen content of 7.2 wt. (calc. 7.5 wt. and a sulfur content of 8.7 wt. (calc. 8.6 wt.
  • EXAMPLE V This is a comparative procedure to demonstrate the production of an alkyl ammonium thiocyanate product of inferior load-carrying properties (See Example V111) in comparison to representative corresponding product of Example 11.
  • the viscous oil was identified as the Primene 81-R ammonium thiocyanate having a Neut. No. of 224 (calc. 219), a sulfur content of 12.9 wt. (calc. 12.8 wt. 7:) and a nitrogen content of 1 1.6 wt. (calc. 11.3 wt.
  • EXAMPLE VI This example is directed to a comparative procedure for producing alkyl ammonium thiocyanate in which. the oxygen containing gas blowing takes place after To a 1000 mls. 3 necked flask as described in Example 1 there was charged 76 grams (1 mole) of ammonium thiocyanate and 315 grams 1.1 mole) of Primene JM-T (TBN 177). As a stream of nitrogen was bubbled through mls./minute) the stirred reaction mixture, the temperature was gradually raised to 110C. (230F.). The reaction mixture was maintained at this temperature together with stirring and nitrogen blowing until the evolution of ammonia ceased (about 12 hours). The reactor was cooled to 50C. (122F.) and 400 mls.
  • Example 1 The Example 1 procedure was repeated twice and the comparative Example IV procedure once.
  • the final product was analyzed for nitrogen content. sulfur. Neut. No., infrared andultraviolet analysis and the following was found:
  • the lubricant is employed to lubricate two spur gears in a Pratt & Whitney Gear and Lubricant Tester.
  • the tester is operated at a gear speed of 10,000 rpm using an oil inlet temperature of F.
  • the load in the gear is increased in increments of 5 psi until 22.5% of the total two face area on the driving gear has been scuffed, the load applied in the Ryder Gear Test being considered the scuff load.
  • the tooth load is then calculated in lbs. inch (ppi) of tooth width. The greater the ppi the greater loadcarrying ability of the test formulation.
  • compositions A and B prepared by the representa- 4 tive method when compared to comparative composi tions C, D and E prepared by comparative methods have load-carrying capacities about greater than the comparative compositions.
  • a synthetic ester lubricating oil composition of improved load-carrying properties comprising a major portion of an aliphatic ester base oil formed from the reaction of a pentaerythritol or trimethylolpropane and an organic monocarboxylic acid having from 2 to 18 carbons per molecule and between about 0.01 and 5 wt. 7: of an alkyl ammonium thiocyanate salt product, said salt product prepared by the method of forming a mixture of a thiocyanate reactant of the formula MSCN where M is a member selected from the group consisting of ammonium and monoalkyl ammonium of from 2 to 7 carbons and an alkyl amine of from 6 to carbons of the formula:
  • R R R R-N or N-A-N l I R a R where A is alkene of from 2 to 6 carbons, R is alkyl of from 6 to 30 carbons, R and R are hydrogen or alkyl of from 1 to 10 carbons utilizing a ratio of equivalent 50 ppm weight of said amine to mole ratio of said thiocyanate reactant of between about 1:12 and 09:1, heating the resultant mixture to a temperature of between about and C. while continuously introducing into said mixture an oxygen containing gas at a gas rate of between about 40 and 200 volumes gas per hour per volume said mixture and maintaining said temperature and gas introduction until between about 5 and 0.2 mole oxygen per equivalent weight of initial amine has been introduced.
  • a synthetic ester lubricating oil composition comprising a major portion of an aliphatic ester base oil formed from the reaction of a pentaerythritol or trimethylolpropane and an organic monocarboxylic acid having from about 2 to l8 carbon atoms per molecule, between about 0.04 and 2 wt, of a polyhydroxy sub stituted anthraquinone represented by the formula:
  • X, Y and Z each represent hydrogen or hydroxyl and at least one of these is a hydroxyl group, and between about 0.01 and 2.5 wt. of an alkyl ammonium thiocyanate salt product, said salt product prepared by the method of forming a mixture of a thiocyanate reactant of the formula MSCN where M is a member selected from the group consisting of ammonium and monoalkyl ammonium of from 2 to 7 carbons and an alkyl amine of from 6 to 30 carbons of the formula:
  • R R R I I I R-N or N?A-N I1 I l a a R where A is alkylene of from 2 to 6 carbons, R is alkyl of from 6 to 30 carbons, R and R are hydrogen or alkyl of from 1 to 10 carbons utilizing a ratio of equivalent weight of said amine to mole of said thiocyanate reactant of between about 111.2 and 0,911, heating the resultant mixture to a temperature of between about 90 and 130C. while continuously introducing into said mixture an oxygen containing gas at a gas rate of between about 40 and 200 volumes gas per hour per volume said mixture and maintaining said temperature and gas introduction until between and 0.2- mole oxygen per equivalent weight of initial amine has been introduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method of producing an alkyl amine salt of thiocyanic acid having enhanced load-carrying properties when employed in synthetic ester lubricating oils comprising contacting an alkyl amine with ammonium thiocyanate or monoalkyl ammonium thiocyanate at an elevated temperature while continuously blowing the reaction mixture with an oxygen containing gas and recovering the formed alkyl ammonium thiocyanate salt, the oxygen containing gas being introduced into the reaction mixture in a total amount of between about 0.2 and 5.0 moles per equivalent weight of amine; and synthetic ester oil compositions containing a load-carrying additive amount of the alkyl ammonium thiocyanate prepared by said method.

Description

United States Patent [191 Nebzydoski et al.
[451 Feb. 18,1975
LUBE CONTAINING ALKYL AMMONIUM THIOCYANATE Inventors: John W. Nebzydoski, Fishkill; Harry Brockway, Beacon; Edwin L. Patmore, Fishkill; Frederick G. Oberender, Wappingers Falls, all of NY.
Assignee: Texaco Inc., New York, NY.
Filed: Feb. 5, 1973 Appl. No.: 329,505
US. Cl 252/47.5, 252/47, 260/583 K Int. Cl Cl0m 1/38 Field of Search 252/47.5, 47; 260/583 R References Cited UNITED STATES PATENTS Oberender et al 1 252/47.5 Dundy 252/475 X 57] ABSTRACT A method of producing an alkyl amine salt of thiocyanic acid having enhanced load-carrying properties when employed in synthetic ester lubricating oils comprising contacting an alkyl amine with ammonium thiocyanate or monoalkyl ammonium thiocyanate at an elevated temperature while continuously blowing the reaction mixture with an oxygen containing gas and recovering the formed alkyl ammonium thiocyanate salt, the oxygen containing gas being introduced into the reaction mixture in a total amount of between about 0.2 and 5.0 moles per equivalent weight of amine; and synthetic ester oil compositions containing a load-carrying additive amount of the alkyl ammonium thiocyanate prepared by said method.
6 Claims, N0 Drawings LUBE CONTAINING ALKYL AMMONIUM THIOCYANATE BACKGROUND OF INVENTION Hereinbefore and hereinafter the terms alkyl ammonium thiocyanate and alkyl amine encompass alkylene diammonium dithiocyanates and alkylene diamines respectively as well as their monothiocyanate and monoamine counterparts.
In the lubricating oil field such as in the area of gear oils, transmission fluids, marine oils and, particularly, in gas turbine engine oils, extensive efforts are being made to develop lubricating oil compositions of everincreasing load-carrying ability without sacrificing wear, corrosion resistance and oxidation resistance. One class of materials found to impart improved loadcarrying properties, that is, extreme pressure (EP) properties to lubricating oil compositions without detrimentally affecting other properties are the hydrocarbyl amine salts of thiocyanic acid. These salts and their use in lubricating compositions as load-carrying improvement additives are described in US. Pat. No. 3,330,763. Although the amine thiocyanates described therein are effective EP improving agents, there is a continuing search due to the high load demands on modern day lubricant oils to further improve the effectiveness of these salts. One means would be to utilize the amine thiocyanate in conjunction with a second additive substance which would result in a synergistic enhancement of the load-carrying properties of the thiocyanate salt as described in coassigned copending applications, Ser. No. 160,192, filed July 6, 1971, now US. Pat. No. 3,756,952, issued Sept. 4, 1973, and Ser. No. 190,310, filed Oct. 18, 1971, now US. Pat. No.
3,767,573, issued Oct. 23, 1973. However, in view of the fact the high additive contents in lubricating oils are today reaching a point which is adversely affecting the lubricating properties of the oils and the more additive materials and quantities introduced into the lubricant oils the greater the cost, there is a need for an alternative means of enhancing the load-carrying properties of the alkyl ammonium thiocyanate additive per unit additive weight.
SUMMARY OF INVENTION We have discovered and this constitutes one embodiment of our invention that in the manufacture of alkyl ammonium thiocyanate via contacting an alkyl amine with a thiocyanate reactant, the continual introduction of an oxygen containing gas into the reaction mixture unexpectedly enhances the load-carrying (EP) properties in lubricating oils of the formed thiocyanate salt. Another embodiment of the invention pertains to synthetic ester lubricating oil compositions containing the alkyl ammonium thiocyanate salts prepared via the method of the first embodiment.
DETAlLED DESCRIPTION OF THE INVENTION More specifically, the alkyl ammonium thiocyanates of enhanced load-carrying ability often characterized by the formula;
SCN' and 'Ncs 2 are prepared by the method comprising forming a mixture of alkyl amine selected from the group consisting of R1 a R R-N and N-A-N I I I R R2 R2 where R is alkyl of from 6 to 30 carbons, R and R are hydrogen or alkyl of from 1 to 10 carbons and A is alkylene of from 2 to 4 carbons and thiocyanate reactant of the formula MSCN where M is a monovalent radical selected from the group consisting of ammonium and monoalkyl ammonium of from 2 to 7 carbons in a ratio of equivalent weight of amine to mole of thiocyanate reactant of between about 121.2 and 09:1, preferably between 111.05 and 1:1, heating and maintaining the resultant mixture at a temperature between and 130C, preferably between and C., while continuously and simultaneously passing an oxygen containing gas therethrough in a mole ratio of oxygen to initial amine equivalent weight of between about 5:1 and 0.2:1, preferably between 2:1 and 05:1, advantageously utilizing an oxygen containing gas rate of be tween about 40 and 200 volumes, preferably between 50 and 100 volumes, per volume reaction mixture per hour. The reaction is continued until at least a substantial portion if not all the reactants have been consumed. This takes place usually in a period of between about 2 and 24 hours. When ammonium thiocyanate, the preferred thiocyanate reactant, is employed the heating and oxygen gas blowing is continued until there is essentially no odor of ammonia by-product.
At the end of the reaction, the product may be puritied, if desired, by standard means such as by diluting with a volatile inert solvent, e.g., heptane, utilizing a solvent quantity of between about 0.5 and 3.0 volume per volume reaction mixture and adding filter aid, e.g., between about 10 and 40 wt. basis the reaction mixture, filtering the resultant product, followed by distilling off the volatile solvent, and recovering the purified alkyl ammonium thiocyanate product as residue.
To facilitate contact of the thiocyanate reactant, alkyl amine and oxygen containing gas, inert diluent may be employed advantageously in amounts of between about 20 and 100 wt. of the reaction mixture. An example of suitable inert diluent is alkanol of from 1 to 6 carbons such as methanol, ethanol, isopropanol, propanol and isobutanol.
To further facilitate ingredient contact, agitation of the reaction mixture is desirable. Usually the passage of the oxygen containing gas through the reaction mixture is sufficient, however, supplemental agitation can be employed, if necessary, such as stirring.
Specific examples of the amine reactants include hexyl amine, octyl amine, lauryl amine, octadecyl amine, 2-ethylhexyl amine, eicosyl amine, tricosyl amine, dimethyhZ-ethylhexyl amine, di-t-octyl ethylene diamine and dipentyl-l,4-butylene diamine. The
prefer red a mines are the primary monoamines in which the alkyl groupis tertiary alkyl having to 24 carbons. Particularly preferred amines are certain commercially available mixtures of tertiary monoalkyl primary amines. One of these preferred tertiary primary alkyl amine mixtures is one in which the alkyl moieties are of from 11 to 14 carbons and is known as Primene 8l-R. Another preferred mixture of tertiary alkyl primary amines are those where the alkyl moieties are of 18 to 24 carbons and is known as Primene JM-T.
Examples of the thiocyanate reactants contemplated herein are ammonium thiocyanate, methyl ammonium I thiocyanate, ethyl ammonium thiocyanate and hexyl ammonium thiocyanate.
Examples of the oxygen containing gas are air, oxygen synthetic mixtures of oxygen and an inert gas such as between about 10 and 90 volume inert gas, e.g., nitrogen.
Examples of the formed alkyl amine thiocyanate salts contemplated herein are t-C -C alkyl ammonium thii 20 ammonium thiocyanate, 2-ethylhexyl ammonium thioocyanate, t-C 1gC2.| alkyl ammonium thiocyanate, octyl cyanate, eicosyl ammonium thiocyanate, dibutyl octyl ammonium thiocyanate, N,N'-di(t-octyl)-1,2-ethane diammonium dithiocyanate, N,N'-di-(t-C ,,-C alkyl)- l,4-butane diammonium dithiocyanate, dimethyl-2- ethylhexyl ammonium thiocyanate and di-t-octyl ammonium thiocyanate.
The mechanism of how the oxygen gas blowing of the reaction mixture enhances load-carrying properties to the amine thiocyanate product is not presently under- I stood. It is to be noted analysis results of representative amine thiocyanate salts resulting from oxygen gas blown reaction mixture and analysis results of non oxygen blown corresponding salts in respect to infrared and ultraviolet spectra, nitrogen and sulfur contents and neutralization number (Neut. No.) are essentially the same. This latter fact demonstrates the unexpectedness of the discovery of improved load-carrying ability by oxygen blowing via the method contemplated herein.
In respect to the compositions of the invention, they comprise a synthetic ester base oil containing the improved thiocyanate additive product prepared by the method of the invention, said additive present in an amount sufficient to increase the load-carrying ability of the base oils. Appropriate additive concentrations are generally in the range of from about 0.01 to about 5 wt. 7:, preferably between 0.05 to 3 wt. of the final lubricating mixture. Lower amounts may be used, but the resulting increase in EP properties is generally insufficient to justify addition of the thiocyanate. Higher amounts are also operable but may cause ancillary problems such as corrosion.
The base fluid component of the lubricant of the invention is an ester-base fluid prepared from a pentaerythritol or trimethylolpropane and a mixture of hydrocarbyl monocarboxylic acids. It is understood that the pentaerythritol class includes the polypentaerythritols, such as dipentaerythritol, tripentaerythritol and tetrapentaerythritol as suitable components of the ester base oil.
The hydrocarbon monocarboxylic acids which are used to form the ester-base fluid include the straightchain and branched-chain aliphatic acids, cycloaliphatic acids and aromatic acids as well as mixtures of these acids. The acids employed have from about 2- and 18 carbon atoms per molecule, thepreferredm mbers having from 5 to l0carbon atoms. Examples of suitable acids are acetic, propionic, butyric, valeric, isovaleric, caproic, decanoic, cyclohexanoic, naphthenic, benzoic acid, phenylacetic, tertiary-bu'tylacetic acid and 2- ethylhexanoic acid.
In general, the acids are reacted in proportions leading to a completely esterified pentaerythritol or trimethylolpropane with the preferred ester bases being the pentaerythritol tetraesters. Examples of commercially available tetraesters include pentaerythritol tetracaproate, which is prepared from purified pentaerythritol and crude caproic acid containing other C -C monobasic acids. Another suitable tetraester is prepared from a technical grade pentaerythritol and a mixture of acids comprising 38 wt. valeric, 13 wt. '7:
2-methyl pentanoic, 32 wt. octanoic and I7 wt.
pelargonic acids. Another effective ester is the triester of trimethylolpropane in which the trimethylolpropane is esterified with a monobasic acid mixture consisting of 2 wt. valeric, 9 wt. caproic, 13 wt. heptanoic, 7 wt. octanoic, 3 wt. caprylic, 65 wt. pelargonic and 1 wt. capric acids. Trimethylolpropane triheptanoate, trimethylolpropane tripentanoate and trimethylolpropane trihexanoate are also suitable ester bases.
Further examples of the base oils contemplated herein are pentaerythritol tetrabutyrate, pentaerythritol tetravalerate, pentaerythritol butyrate caproate divalerate, pentaerythritol butyrate trivalerate, pentaerythritol butyrate tricaproate, pentaerythritol tributyrate caproate, mixed C -C saturated fatty acids of pentaerythritol, dipentaerythritol hexavalerate, dipentaerythritol hexacaproate, dipentaerythritol hexaheptoate, dipentaerythritol hexacaproate, dipentaerythritol tributyrate tricaproate, dipentaerythritol trivalerate trinonylate, dipentaerythritol mixed hexaesters of C C fatty acids and trimethylolpropane heptylate.
The ester base oils comprise the major portion of the fully formulated synthetic ester base lubricating oil composition. The ester base normally constitutes at least wt. of the lubricating oil composition and generally will comprise from about 90 to 98 wt. of the lubricant.
In the finished lubricating oil compositions contemplated herein supplementary additives are usually included such as metal deactivators, antioxidants, antiwear agents, antifoamants, VI improvers and supplementary load-carrying improving agents.
Typical examples of antioxidants which may be employed are the alkaryl and diaryl amines such as di-toctyldiphenyl amine, N-(4-cumylphenyl)-6-cumyl-2- naphthylamine, phenyl-alpha-naphthylamine, phenylbeta-naphthylamine, phenothiazine, etc. The antioxidants are usually present in an amount from about 0.2 to about 5 wt. of the final composition.
Metal deactivators which may be employed are quinizarin, l,4-dihydroxyanthraquinone, l,5-dihydroxyanthaquinone, l,2,4-trihydroxyanthraquinone, and 1,2,5- ,8-tetrahydroxyanthraquinone, etc. Metal dactivators are normally employed in amounts between about 0.04 and 2.0 wt.
Anti-wear agents which may be utilized are tricresyl phosphate, triphenyl phosphate. cresyl diphenyl phosphate, tri(2-ethylhexyl)-phosphate, tributyl phosphate, etc. These anti-wear agents are normally utilized in amounts of between about 0.5 and 5.0 wt. of the final composition.
Antifoarnants which can beemployedare the silicone polymers such as dimethyl silicone polymers iri amounts of between about and 1000 ppm.
In regard to V1 improvers, one widely used class of V1 improvers are the acrylate and methacrylate polymers of monohydric alcohols of from 1 to 30 carbons of a molecular weight of between about 100,000 and 10,000,000. For example, the tetrapolymer of butyl methacrylate, dodecyl methacrylate, octadecyl methacrylate and dimethylaminoethyl methacrylate in a weight ratio of 4/10/5/1 and the tripolymer of butyl, dodecyl and octadecyl methacrylates.
One of the preferred lubricant composition embodiments of the invention encompasses the combination of amine thiocyanate product contemplated herein in an amount of 0.01 to 2.5 wt. in combination with 0.04 to 2.0 wt. 70 of a polyhydroxy-substituted anthraquinone represented by the formula:
Z 0 0H I '1 i I n I X 0 g X EXAMPLE I This example illustrates the method of the invention and the improved alkyl ammonium thiocyanate product resulting therefrom.
To a 3 necked flask fitted with a thermometer, stirrer, condenser, gas inlet and exit tubes there was charged 75 grams (0.24 mole) of Primene JM-T (TBN 177) and 18.1 grams (0.24 mole) ofammonium thiocyanate. The stirrer and air blowing of the mixture at a rate of 10 liter per hour were initiated and the reaction mixture was heated to and maintained at 110C. until the evolution of ammonia ceased (13 hours). At the end of the 13 hour reaction period, air blowing and stirring were terminated. The reaction mixture was cooled to room temperature, diluted with 150 mls. of heptane and grams of inert amorphous silica filter aid were added to the mixture. The mixture was heated to reflux (98C.), cooled, filtered through filter aid and subjected to concentration under a reduced pressure of mm Hg. to 100C. to afford a 70 gram residual product identified as Primene JM-T ammonium thiocyanate having a Neut. No. of 151 (calc. 150). a nitrogen content of 7.7 wt. (calc. 7.5) and a sulfur content of 8.9 (calc. 8.6).
EXAMPLE I] This example further illustrates the method of the invention and the improved alkyl ammonium thiocyanate product prepared therefrom.
To a 3 necked flask as described in Example 1 there was charged 38.2 (0.2 mole) grams of Primene 81-R (TBN 246) and 15.2 (0.21 mole) grams of ammonium thiocyanate. Stirring and the blowing of the reaction mixture with air at a rate of 1 liter per hour was initiated and the reaction mixture was heated to and maintained at l 10C. until the evolution of ammonia ceased (10 hours). It was calculated that a total of 0.5 moles of oxygen per mole of initial amine were introduced into the reaction mixture. The reaction mixture was cooled, diluted with mls. of heptane and 10 grams of inert amorphous silica filter aid were added. The mixture was heated to reflux, cooled. filtered through filter paper and concentrated under reduced pressure of 10 20 mm Hg. to 100C. to afford 45.5 grams of product identified as the Primene 8l-R ammonium thiocyanate having a Neut. No. of211 (calc. 219), a nitrogen content of 1 1.7 wt. 7r (calc. 11.3) and a sulfur content of 12.7 (calc. 12.8).
EXAMPLE 111 This example further illustrates the method of the invention and the improved alkyl ammonium thiocyanate.
To a 3 necked flask as described in Example 1 there was charged 38.7 grams (0.3 mole) to t-octylamine and 22.8 grams (0.3 mole) of ammonium thiocyanate. Stirring and air blowing at a rate of 1 liter per hour was initiated and the reaction mixture was heated to and maintained at 100C. for an 8 hour period as air was bubbled through the stirred reactants. It was calculated a total of 0.25 mole of oxygen per mole of initial amine was introduced into the reaction mixture. At the end of the 8 hour period the evolution of ammonia had ceased and the reaction mixture was cooled to room temperature, slurried with 0.1 liter of heptane, and the solid product was filtered off to yield 53.1 grams of product identified as the t-octyl ammonium thiocyanate having a Neut. No. of 285 (calc. 300), a nitrogen content of 15.1 wt. (calc. 14.9) and a sulfur content of 16.5 wt. (calc. 17.0 wt. 7:).
EXAMPLE IV This example sets forth a comparative procedure utilizing nitrogen blowing rather than oxygen blowing to produce an alkyl ammonium thiocyanate product which will be subsequently demonstrated (Example Vlll) as inferior in respect to load-carrying properties in lubricating oil to the corresponding representative product of Example 1.
To the apparatus as described in Example I there was charged 18.1 (0.26 mole) grams of ammonium thiocyanate and 75 (0.24 mole) of Primene .lM-T. The stirrer and nitrogen gas blowing of the reaction mixture at a rate of 2 liters per hour were initiated and the reaction mixture was heated to and maintained at C. with continued stirring and nitrogen blowing until the evolution of ammonia ceased (16 hours). At the end of the 16 hour period the stirring and nitrogen blowing was ceased and the reaction mixture was cooled, diluted with mls. of heptane and 15 grams of inert amorphous silica filter aid was added. The resultant mixture was warmed to reflux (95C.) with stirring, cooled to room temperature and filtered through paper. The filtrate was concentrated under reduced pressure (105C. at 20 mm Hg. and then at mm Hg.) to form 68.5 grams of residue determined to be Primene JM-T ammonium thiocyanate having a Neut. No. of 148 (calc. 150), a nitrogen content of 7.2 wt. (calc. 7.5 wt. and a sulfur content of 8.7 wt. (calc. 8.6 wt.
EXAMPLE V This is a comparative procedure to demonstrate the production of an alkyl ammonium thiocyanate product of inferior load-carrying properties (See Example V111) in comparison to representative corresponding product of Example 11.
To an apparatus as described in Example I there was charged 38.2 grams (0.2 mole) of Primene 81-R (TBN,
246) and 15.5 grams (0.22 mole) of ammonium thiocyanate. Stirring and nitrogen blowing at a rate of 2 liters per hour were initiated and the temperature was increased to and maintained at 1 10C. with stirring and nitrogen purging continued until the evolution of ammonia ceased (8 hours). The reaction mixture was cooled. diluted with heptane and inert amorphous silica filter aid was added to the mixture. The mixture was heated to reflux (95C.), cooled to room temperature,
filtered through paper and concentrated under reduced pressure (100C. at mm Hg). to afford a viscous oil residue. The viscous oil was identified as the Primene 81-R ammonium thiocyanate having a Neut. No. of 224 (calc. 219), a sulfur content of 12.9 wt. (calc. 12.8 wt. 7:) and a nitrogen content of 1 1.6 wt. (calc. 11.3 wt.
EXAMPLE VI This example is directed to a comparative procedure for producing alkyl ammonium thiocyanate in which. the oxygen containing gas blowing takes place after To a 1000 mls. 3 necked flask as described in Example 1 there was charged 76 grams (1 mole) of ammonium thiocyanate and 315 grams 1.1 mole) of Primene JM-T (TBN 177). As a stream of nitrogen was bubbled through mls./minute) the stirred reaction mixture, the temperature was gradually raised to 110C. (230F.). The reaction mixture was maintained at this temperature together with stirring and nitrogen blowing until the evolution of ammonia ceased (about 12 hours). The reactor was cooled to 50C. (122F.) and 400 mls. of heptane and 30 grams of inert amorphous silica filter aid were added. The mixture was cooled to 10C. (50F.), and filtered through filter aid. The filtrate was concentrated at 155160C/2030 mm Hg. for 1 hour and at 155l60C./24 mm Hg. for 1 hour resulting in a residue product in the form of a brown viscous oil which was identified as Primene JM-T ammonium thiocyanate. The recovered Primene JM-T ammonium thiocyanate was heated to C. and air was passed therethrough at a rate of 10 liters per hour for a period of 16 hours. Analysis of the Primene JM-T ammonium thiocyanate before and after air blowing Theory EXAMPLE V11 This example aids in illustrating one of the unexpected aspects of employing an oxygen containing gas 1 as a puring gas in the procedure of the invention. The following analysis indicates that the products from the a procedure of the invention and those prepared by comparative procedure give essentially the same product analysis in respect to infrared and ultraviolet light spec tra, neutralization number, sulfur and nitrogen content. Therefore, the difference in load-carrying capacity between the representative products and comparative product does not appear attributable to a difference based on this type product analysis.
The Example 1 procedure was repeated twice and the comparative Example IV procedure once. The final product was analyzed for nitrogen content. sulfur. Neut. No., infrared andultraviolet analysis and the following was found:
Theory 1 50 EXAMPLE V111 This example illustrates the substantial enhancement of load-carrying ability which the method of the invention imparts to the alkyl ammonium thiocyanate product. In addition, the example illustrates representative compositions of the invention containing the alkyl am monium thiocyanate of enhanced load-carrying proper t ies p repare dthe method of the invention.
Oil compositions respectively containing the representative products of Examples 1 and 11 and the comparative products of Examples 1V, V and V1 had their load-carrying properties measured by the Ryder Gear Test (Federal Test Method 6058). In this test the lubricant is employed to lubricate two spur gears in a Pratt & Whitney Gear and Lubricant Tester. The tester is operated at a gear speed of 10,000 rpm using an oil inlet temperature of F. The load in the gear is increased in increments of 5 psi until 22.5% of the total two face area on the driving gear has been scuffed, the load applied in the Ryder Gear Test being considered the scuff load. The tooth load is then calculated in lbs. inch (ppi) of tooth width. The greater the ppi the greater loadcarrying ability of the test formulation.
The formulations tested are as follows:
TABLE In o Weight 7:
Ingredients A B C D Pentaerythritol 95.3 95.33 95.3 95.33
Tetraester of mixture of C C alkanoic acids p.pdi-tert.octyl l l l l diphenylamine N(4-cumylphenyl)- 6-cumyl-2-naphthyl amine Tricrcsylphosphate 2 2 Quinizarin Metliylsiliconc polymer 50 ppm 50 ppm 50 ppm 50 ppm Example Vl JM-T Sal! The above formulations were tested in the Ryder Gear Test with the following results:
* 2 Run Average Air blowing final product only As can be seen from the foregoing table, representative compositions A and B prepared by the representa- 4 tive method when compared to comparative composi tions C, D and E prepared by comparative methods have load-carrying capacities about greater than the comparative compositions.
We claim:
1. A synthetic ester lubricating oil composition of improved load-carrying properties comprising a major portion of an aliphatic ester base oil formed from the reaction of a pentaerythritol or trimethylolpropane and an organic monocarboxylic acid having from 2 to 18 carbons per molecule and between about 0.01 and 5 wt. 7: of an alkyl ammonium thiocyanate salt product, said salt product prepared by the method of forming a mixture of a thiocyanate reactant of the formula MSCN where M is a member selected from the group consisting of ammonium and monoalkyl ammonium of from 2 to 7 carbons and an alkyl amine of from 6 to carbons of the formula:
R R R R-N or N-A-N l I R a R where A is alkene of from 2 to 6 carbons, R is alkyl of from 6 to 30 carbons, R and R are hydrogen or alkyl of from 1 to 10 carbons utilizing a ratio of equivalent 50 ppm weight of said amine to mole ratio of said thiocyanate reactant of between about 1:12 and 09:1, heating the resultant mixture to a temperature of between about and C. while continuously introducing into said mixture an oxygen containing gas at a gas rate of between about 40 and 200 volumes gas per hour per volume said mixture and maintaining said temperature and gas introduction until between about 5 and 0.2 mole oxygen per equivalent weight of initial amine has been introduced.
2. A synthetic ester lubricating oil composition comprising a major portion of an aliphatic ester base oil formed from the reaction of a pentaerythritol or trimethylolpropane and an organic monocarboxylic acid having from about 2 to l8 carbon atoms per molecule, between about 0.04 and 2 wt, of a polyhydroxy sub stituted anthraquinone represented by the formula:
2 0 OH I n l n I Y O X in which X, Y and Z each represent hydrogen or hydroxyl and at least one of these is a hydroxyl group, and between about 0.01 and 2.5 wt. of an alkyl ammonium thiocyanate salt product, said salt product prepared by the method of forming a mixture of a thiocyanate reactant of the formula MSCN where M is a member selected from the group consisting of ammonium and monoalkyl ammonium of from 2 to 7 carbons and an alkyl amine of from 6 to 30 carbons of the formula:
R R R I I I R-N or N?A-N I1 I l a a R where A is alkylene of from 2 to 6 carbons, R is alkyl of from 6 to 30 carbons, R and R are hydrogen or alkyl of from 1 to 10 carbons utilizing a ratio of equivalent weight of said amine to mole of said thiocyanate reactant of between about 111.2 and 0,911, heating the resultant mixture to a temperature of between about 90 and 130C. while continuously introducing into said mixture an oxygen containing gas at a gas rate of between about 40 and 200 volumes gas per hour per volume said mixture and maintaining said temperature and gas introduction until between and 0.2- mole oxygen per equivalent weight of initial amine has been introduced.
- 3. A composition in accordance with claim 1 wherein said base oil is the tetraester of pentaerythritol and a mixture of C -C alkanoic acids, said thiocyanate reactant is ammonium thiocyanate and said amine is a mixture of tertiary alkyl primary monoamines in which the tertiary alkyl moiety is of l l to 14 carbons.
4. A composition in accordance with claim 1 wherein said base oil is a pentaerythritol tetraester of a mixture of C -C alkanoic acids, said thiocyanate reactant is ammonium thiocyanate and said amine is a mixture of tertiary alkyl primary monoamines in which the tertiary alkyl moiety is of 18 to 24 carbons.
5. A composition in accordance with claim 2 wherein said base oil is the tetraester of pentaerythritol and a mixture of C -C alkanoic acids, said thiocyanate reactant is ammonium thiocyanate, said amine is a mixture of tertiary alkyl primary monoamines in which the tertiary alkyl moiety is of 11 to 14 carbons and said an-

Claims (6)

1. A SYNTHETIC ESTER LUBRICATING OIL COMPOSITION OF IMPROVED LOAD-CARRYING PROPERTIES COMPRISING A MAJOR PORTION OF AN ALIPHATIC ESTER BASE OIL FROM THE REACTION OF A PENTAERYTHRITOL OR TRIMETHYLOLPROPANE AND AN ORGANIC MONOCARBOXYLIC ACID HAVING FROM 2 TO 18 CARBONS PER MOLECULE AND BETWEEN ABOUT 0.01 AND 5 WT. % OF AN ALKYL AMMONIUM THIOCYANATE SALT PRODUCT, SAID SALT PRODUCT PREPARED BY THE METHOD OF FORMING A MIXTURE OF A THIOCYANATE REACTANT OF THE FORMULA MSCN WHERE M IS A MEMBER SELECTED FROM THE GROUP CONSISTING OF AMMONIUM AND MONOALKYL AMMONIUM OF FROM 2 TO 7 CARBONS AND AN ALKYL AMINE OF FROM 6 TO 30 CARBONS OF THE FORMULA:
2. A synthetic ester lubricating oil composition comprising a major portion of an aliphatic ester base oil formed from the reaction of a pentaerythritol or trimethylolpropane and an organic monocarboxylic acid having from about 2 to 18 carbon atoms per molecule, between about 0.04 and 2 wt. % of a polyhydroxy substituted anthraquinone represented by the formula:
3. A composition in accordance with claim 1 wherein said base oil is the tetraester of pentaerythritol and a mixture of C5-C9 alkanoic acids, said thiocyanate reactant is ammonium thiocyanate and said amine is a mixture of tertiary alkyl primary monoamines in which the tertiary alkyl moiety is of 11 to 14 carbons.
4. A composition in accordance with claim 1 wherein said base oil is a pentaerythritol tetraester of a mixture of C5-C9 alkanoic acids, said thiocyanate reactant is ammonium thiocyanate and said amine is a mixture of tertiary alkyl primary monoamines in which the tertiary alkyl moiety is of 18 to 24 carbons.
5. A composition in accordance with claim 2 wherein said base oil is the tetraester of pentaerythritol and a mixture of C5-C9 alkanoic acids, said thiocyanate reactant is ammonium thiocyanate, said amine is a mixture of tertiary alkyl primary monoamines in which the tertiary alkyl moiety is of 11 to 14 carbons and said anthraquinone is quinizarin.
6. A composition in accordance with claim 2 wherein said base oil is a pentaerythritol tetraester of a mixture of C5-C9 alkanoic acids, said inorganic thiocyanate is ammonium thiocyanate, said amine is a mixture of tertiary alkyl primary amines in which the tertiary alkyl moiety is of 18 to 24 carbons, and said anthraquinone is quinizarin.
US329505A 1973-02-05 1973-02-05 Lube containing alkyl ammonium thiocyanate Expired - Lifetime US3867297A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US329505A US3867297A (en) 1973-02-05 1973-02-05 Lube containing alkyl ammonium thiocyanate
US05/504,635 US3952059A (en) 1973-02-05 1974-09-09 Alkyl ammonium thiocyanate manufacture and lube containing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US329505A US3867297A (en) 1973-02-05 1973-02-05 Lube containing alkyl ammonium thiocyanate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/504,635 Division US3952059A (en) 1973-02-05 1974-09-09 Alkyl ammonium thiocyanate manufacture and lube containing same

Publications (1)

Publication Number Publication Date
US3867297A true US3867297A (en) 1975-02-18

Family

ID=23285733

Family Applications (1)

Application Number Title Priority Date Filing Date
US329505A Expired - Lifetime US3867297A (en) 1973-02-05 1973-02-05 Lube containing alkyl ammonium thiocyanate

Country Status (1)

Country Link
US (1) US3867297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4348291A (en) * 1979-07-02 1982-09-07 Stauffer Chemical Company Novel phosphoramides, lubricating compositions and method of improving wear and extreme pressure characteristics of lubricating oil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2362890A (en) * 1942-10-22 1944-11-14 Du Pont Viscous hydrocarbon oils
US3247111A (en) * 1963-04-08 1966-04-19 Socony Mobil Oil Co High temperature jet lubricant
US3321402A (en) * 1965-06-08 1967-05-23 Texaco Inc Lubricating composition
US3330763A (en) * 1966-01-03 1967-07-11 Shell Oil Co Lubricants containing an amino thiocyanate and a cyclic amine
US3756952A (en) * 1971-07-06 1973-09-04 Texaco Inc Synthetic aircraft turbine oil
US3789075A (en) * 1971-09-17 1974-01-29 Texaco Inc Preparation of hydrocarbylamine salt of thiocyanic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2362890A (en) * 1942-10-22 1944-11-14 Du Pont Viscous hydrocarbon oils
US3247111A (en) * 1963-04-08 1966-04-19 Socony Mobil Oil Co High temperature jet lubricant
US3321402A (en) * 1965-06-08 1967-05-23 Texaco Inc Lubricating composition
US3330763A (en) * 1966-01-03 1967-07-11 Shell Oil Co Lubricants containing an amino thiocyanate and a cyclic amine
US3756952A (en) * 1971-07-06 1973-09-04 Texaco Inc Synthetic aircraft turbine oil
US3789075A (en) * 1971-09-17 1974-01-29 Texaco Inc Preparation of hydrocarbylamine salt of thiocyanic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4348291A (en) * 1979-07-02 1982-09-07 Stauffer Chemical Company Novel phosphoramides, lubricating compositions and method of improving wear and extreme pressure characteristics of lubricating oil

Similar Documents

Publication Publication Date Title
US3224971A (en) Borate esters and lubricant compositions containing said esters
US3720612A (en) Synthetic ester lubricating oil compositions
US5531911A (en) Metal free hydraulic fluid with amine salt
EP0819754A1 (en) Beta-dithiophosphorilated propionic acid in lubricants
SE443368B (en) STORAGE-RESISTANT LUBRIC OIL COMPOSITION CONTAINING A ZINCY DIHYDROCARBYL DITIOSTAT, AN ESTER OF A POLYCARBOXYLIC ACID AND ASH-FREE DISPERSING AGENT
DE3852207T2 (en) Dedicated liquids.
US20040209788A1 (en) Synthetic lubricant base stock formed from high content branched chain acid mixtures
EP0518567B1 (en) Synthetic lubricant base stock formed from high content branched chain acid mixtures
US3849319A (en) Di and tri(hydrocarbylammonium)trithiocyanurate and lubricating oil compositions containing same
US4889648A (en) Cold-rolling oils for steel plates
US3134737A (en) Novel titanium compound and lubricating composition containing said compound
US4392966A (en) Molybdenum-zinc dialkyldithiophosphates as lubricant additives
EP0303569A2 (en) 1,4-Oxathianones and 1,4-oxathiepanones and their use as additives in functional liquids
US3867297A (en) Lube containing alkyl ammonium thiocyanate
DE2806133C2 (en) Use of polyoxyalkylene glycol diethers for the preparation of gear oils
US4096078A (en) Synthetic aircraft turbine oil
US3728260A (en) Additive for lubricating composition
US3330763A (en) Lubricants containing an amino thiocyanate and a cyclic amine
US3422017A (en) Lubricant compositions containing amine salts
US3779919A (en) Synthetic aircraft turbine oil
US3952059A (en) Alkyl ammonium thiocyanate manufacture and lube containing same
US4189388A (en) Synthetic aircraft turbine oil
CA2259187A1 (en) Sulfur-containing carboxylic acid derivatives to reduce deposit forming tendencies and improve antioxidancy of aviation turbine oils
US3901815A (en) Synthetic aircraft turbine oil
DE69100632T2 (en) Carboxyalkylthio substituted N, N-dialkylhydroxylamines and stabilized lubricant compositions.