US3866491A - Stamping knife - Google Patents

Stamping knife Download PDF

Info

Publication number
US3866491A
US3866491A US42985774A US3866491A US 3866491 A US3866491 A US 3866491A US 42985774 A US42985774 A US 42985774A US 3866491 A US3866491 A US 3866491A
Authority
US
United States
Prior art keywords
knife
teeth
stamping
hardness
hrc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Gustav Marchard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gebrueder Boehler and Co AG
Original Assignee
Gebrueder Boehler and Co AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US28975272 external-priority patent/US3824887A/en
Application filed by Gebrueder Boehler and Co AG filed Critical Gebrueder Boehler and Co AG
Priority to US42985774 priority Critical patent/US3866491A/en
Application granted granted Critical
Publication of US3866491A publication Critical patent/US3866491A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/44Cutters therefor; Dies therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F2210/00Perforating, punching, cutting-out, stamping-out, severing by means other than cutting of specific products
    • B26F2210/12Perforating, punching, cutting-out, stamping-out, severing by means other than cutting of specific products of fabrics
    • B26F2210/16Perforating, punching, cutting-out, stamping-out, severing by means other than cutting of specific products of fabrics the cutting machine comprising a cutting die
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/929Tool or tool with support
    • Y10T83/9454Reciprocable type

Definitions

  • a cutting edge is carried by a knife body and formed [62] Division of SE NO 289352 Sept 15' [972 PM with a series of teeth, each of which has a root merg- 3334337 ing into said knife body and a tip spaced from said knife body. Adjacent ones of said tips are spaced [52] US. Cl. 76/101 R, 83/697 millimeters 1
  • Each of Said teeth has 11 depth 51 Int. Cl 323p 15/28 Of p to 5 millimeters. measured from its p to its 5 Fi f Search 7 /101 R 107 R 107 C root.
  • Each of said teeth increases in hardness from its 7 /112; 33/335 97 tip to its root.
  • Each of said teeth has at its root at least the same hardness as the adjacent portion of said [56] References Cited tooth y- UNITED STATES PATENTS 3 Claims, 4 Drawing Figures 1,669,623 5/1928 Messer 1. 83/679 PATENTEB FEB] 8 I975 PosC 35-47HRC STAMPING KNIFE This is a division of application Ser. No. 289,752 filed Sept. 15, 1972, now U.S. Pat. No. 3,824,887.
  • This invention relates to stamping knives which have a serrated cutting edge and are used for punching parts of any desired configuration out of textile fabrics, plas tics materials, leather, rubber, paper, carton, cellulose and the like.
  • Stamping knives having a straight cutting edge are usually made from sheet steel which consists of 0.404% C, 0.25-0.60% Si, 0.25-1% Mn, up to 1% chromium, up to 1% Ni, up to 0.60% Mo and/or W and/or V, balance iron and inevitable impurities.
  • Stamping knives of this kind are made with different hardness values, and the back of the knife has a lower hardness than the cutting edge of the knife. Suitable hardening processes have been adopted to impart a hardness of HRC 50-55 to the cutting edges and a hardness of only HRC 35-45 to the remaining part of the knife.
  • stamping knives having optimum flexibility characteristics have been provided by the use of favorable cross-sectional shapes of the knife and by a localized hardening of the cutting edges.
  • stamping knives having an extremely high cutting performance and edge life are required to process plastics material fibers such as Perlon, Dralon, nylon, etc.
  • a knife has a good cutting performance ifa relatively small stamping pressure will cause the knife to cut entirely through the material to be cut.
  • the knife In a stamping operation using a conventional stamping knife, which has a straight cutting edge, the knife first compresses the material to be stamped and then cuts through the same as the pressure applied by the knife against the backing is increased. During this operation, the stamping knife penetratesmore or less into the backing to form a groove therein. During the next stamping operation, the presence of this groove gives rise to the undesired effect that the material to be stamped is no longer cut through entirely in that groove unless the knife penetrates into the backing to an even larger depth. As a result. the stamping pressures required for satisfactory cuts become progressively higher. These stresses increase the ear of the stamping knife and result in a premature destruction of the backing by the formation of new and progressively deeper grooves so that the backing becomes useless.
  • Serrated cutting knives have been used to cut reed and cane, and to cut wood, e.g., to machine wood and to sever plates and boards.
  • FIG. 1 is a diagrammatic view showing the tooth shape of three teeth of a stamping knife.
  • FIG. 2 shows another stamping knife according to the invention.
  • FIG. 3 is a transverse sectional view along line A-B showing a portion of a preferred stamping knife cmbodying the invention.
  • FIG. 4 ia a disgrammatic view showing the change of the hardness in a stamping knife according to the invention.
  • FIG. 1 shows the tooth shape of stamping knives types I, II, and III (see following definitions) according to the invention.
  • the tooth tip spacing defined as the distance between adjacent tooth tips is designated t and the depth of the tooth is designated h in FIG. 1
  • Stamping knife I had a tooth tip spacing of 1.5 millimeters and a tooth depth of 0.75 millimeter.
  • Stamping knife II had a tooth tip spacing of 2 millimeters and a tooth depth of l millimeter.
  • Stamping knife III had a tooth tip spacing of 3 millimeters and a tooth height of l millimeter.
  • All knives were hardened to a body hardness of HRC 38-40.
  • the tooth tips were locally hardened to HRC 49-51.
  • the knives were made as square knives having a size length of 100 millimeters and a radius of about 2 millimeters at the corners.
  • stamping knives described hereinbefore were used in a test under production conditions using a conventional hydraulic press, which was provided with a device for measuring the required punching pressure under extreme conditions. To provide extreme operating conditions, the knives were usedto stamp tubing made of crimped Perlon filaments. Before the tests, it had been possible to stamp these textile products only with restrictions and in small quantities and if the backing was continually renewed.
  • Knife 1 62-67 kg per cm of length of knife Knife II: -75 kg per cm of length of knife Knife III: 74-80 kg per cm of length of knife.
  • stamping pressures between and 1 1O kilograms per centimeter of the length of the knife had to be used to obtain cuts having the same quality.
  • Knife I after 927 stamping operations, with Knife II after 1,008 stamping operations and with Knife III after 1,234 stamping operations.
  • a stamping knife having the geometrical configuration described hereinbefore and the same tooth pattern as knife I but had been hardened to a hardness of HRC 46 at the tips and a hardness of HRC 51 at the roots of the teeth could be used for 2,500 stamping operations on the same material without exhibiting any substantial wear. After 2,500 stamping operations, the experiment was terminated to save time.
  • stamping knives according to the invention are also shown in FIG. 2. With stamping knives of this general kind, best results were obtained if the teeth had 21 diamond-shaped cross-section in their upper one-third, as is shown in FIG. 3.
  • the hardness pattern in a stamping knife according to the invention is shown in FIG. 4.
  • the hardness increases from the tip to the root of each tooth.
  • Part A of FIG. 4 is a sectional view taken through a tooth tip, which had been hardened to a hardness of HRC 43, which increases toward the root of the tooth to HRC 47 and in the transitional region between the tooth and the knife body reaches a value of HRC 48 and may even increase there up to HRC 55. This is indicated in Part B of FIG. 4.
  • Part B of FIG. 4 is a sectional view taken through the knife body which has been hardened to the pattern according to the invention.
  • the hardened zone comrpises the tooth of the root and the transitional region between the tooth and the tooth body. This hardened zone is designated Pos. C. in Part B of FIG. 4.
  • any desired known hardening process may be used in making the stamping knives according to the invention.
  • the hardening process itself is significant only inasmuch as the specified hardness pattern must be obtained.
  • such knives may be made by flame hardening, induction hardening, plasma hardening or electron beam hardening.
  • the invention provides stamping knives having a serrated cutting edge for punching parts of any desired configuration from textile fabrics, plastics materials, leather, rubber, paper, cellulose and the like, and the invention resides in that the cutting edge is provided with teeth having a tip spacing of 0.5-5 millimeters, each tooth has a depth of at most 5 millimeters and the knives are hardened so that the hardness of each tooth increases from its tip to its root and decreases or remains constant from the root of each tooth to the body of the knife.
  • the tips of the teeth may be faceted in various ways, like the cutting edges of conventional stamping knives.
  • a process of manufacturing a stamping knife which comprises a knife body and a cutting edge which is carried by said knife body and formed with a series of teeth, each of which has a root merging into said knife body and a tip spaced from said knife body. adjacent ones of said tips being spaced 0.5-5 millimeters apart, each of said teeth having a depth of up to 5 millimeters, measured from its tip to its root, each of said teeth increasing in hardness from its tip to its root, each of said teeth having at its root at least the same hardness as the adjacent portion of said tooth body, which process comprises hardening said knife to impart to said teeth a hardness of HRC 43-46 at their tips and of HRC 48-55 at their roots, and

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

A cutting edge is carried by a knife body and formed with a series of teeth, each of which has a root merging into said knife body and a tip spaced from said knife body. Adjacent ones of said tips are spaced 0.5-5 millimeters apart. Each of said teeth has a depth of up to 5 millimeters, measured from its tip to its root. Each of said teeth increases in hardness from its tip to its root. Each of said teeth has at its root at least the same hardness as the adjacent portion of said tooth body.

Description

United States Patent Marchard Feb. 18, 1975 STAMPING KNIFE 2,422.561 6/1949 Pavitt .1 76/1 12 Y 3,277,764 l(l/l96( H 1 83 (97 r [75] Inventor: Gustav Marchard, Wmdhoten/Ybbs- 3,677.11] 7/1973 02:00 .1 7o/11 1i R Austr1a i 1 Assignee: -3 Vienna Primary Examiner-Donald R. Schran Austria [22] Filed: Jan. 2, 1974 21 Appl. No: 429,857 [57] ABSTRACT Related US. Application Data A cutting edge is carried by a knife body and formed [62] Division of SE NO 289352 Sept 15' [972 PM with a series of teeth, each of which has a root merg- 3334337 ing into said knife body and a tip spaced from said knife body. Adjacent ones of said tips are spaced [52] US. Cl. 76/101 R, 83/697 millimeters 1 Each of Said teeth has 11 depth 51 Int. Cl 323p 15/28 Of p to 5 millimeters. measured from its p to its 5 Fi f Search 7 /101 R 107 R 107 C root. Each of said teeth increases in hardness from its 7 /112; 33/335 97 tip to its root. Each of said teeth has at its root at least the same hardness as the adjacent portion of said [56] References Cited tooth y- UNITED STATES PATENTS 3 Claims, 4 Drawing Figures 1,669,623 5/1928 Messer 1. 83/679 PATENTEB FEB] 8 I975 PosC 35-47HRC STAMPING KNIFE This is a division of application Ser. No. 289,752 filed Sept. 15, 1972, now U.S. Pat. No. 3,824,887.
This invention relates to stamping knives which have a serrated cutting edge and are used for punching parts of any desired configuration out of textile fabrics, plas tics materials, leather, rubber, paper, carton, cellulose and the like.
Stamping knives having a straight cutting edge are usually made from sheet steel which consists of 0.404% C, 0.25-0.60% Si, 0.25-1% Mn, up to 1% chromium, up to 1% Ni, up to 0.60% Mo and/or W and/or V, balance iron and inevitable impurities.
Stamping knives of this kind are made with different hardness values, and the back of the knife has a lower hardness than the cutting edge of the knife. Suitable hardening processes have been adopted to impart a hardness of HRC 50-55 to the cutting edges and a hardness of only HRC 35-45 to the remaining part of the knife.
In addition to the quality of the steel being used, the configuration of the cutting edge has a considerable influence on the cutting performance ofa stamping knife.
Another important characteristic of a stamping tool is'its flexibility. Stamping knives having optimum flexibility characteristics have been provided by the use of favorable cross-sectional shapes of the knife and by a localized hardening of the cutting edges.
The development of novel material in the garment industry has created a need for processing tools meeting increasingly high requirements. Stamping knives having an extremely high cutting performance and edge life are required to process plastics material fibers such as Perlon, Dralon, nylon, etc.
A knife has a good cutting performance ifa relatively small stamping pressure will cause the knife to cut entirely through the material to be cut. In a stamping operation using a conventional stamping knife, which has a straight cutting edge, the knife first compresses the material to be stamped and then cuts through the same as the pressure applied by the knife against the backing is increased. During this operation, the stamping knife penetratesmore or less into the backing to form a groove therein. During the next stamping operation, the presence of this groove gives rise to the undesired effect that the material to be stamped is no longer cut through entirely in that groove unless the knife penetrates into the backing to an even larger depth. As a result. the stamping pressures required for satisfactory cuts become progressively higher. These stresses increase the ear of the stamping knife and result in a premature destruction of the backing by the formation of new and progressively deeper grooves so that the backing becomes useless.
It has been attempted to improve the cutting performance by using knives having cutting edges which are harder and have a specially selected cutting angle. These attempts have not given satisfactory results because the stamping pressures required for a given stamping performance are only slightly decreased. The improvement has been observed only during the first few cuts and when the backing was repeatedly replaced.
Serrated cutting knives have been used to cut reed and cane, and to cut wood, e.g., to machine wood and to sever plates and boards.
The experience made with serrated machine knives of this kind have led to experiments in which textile fabrics were'cut with stamping knives provided with serrations.
For use in experiments in which fabrics were stamped which consisted of synthetic fibers and were severable only with difficulty, three stamping knives having different serrations were made.
In the accompanying drawings,
FIG. 1 is a diagrammatic view showing the tooth shape of three teeth of a stamping knife.
FIG. 2 shows another stamping knife according to the invention.
FIG. 3 is a transverse sectional view along line A-B showing a portion of a preferred stamping knife cmbodying the invention.
FIG. 4 ia a disgrammatic view showing the change of the hardness in a stamping knife according to the invention.
FIG. 1 shows the tooth shape of stamping knives types I, II, and III (see following definitions) according to the invention. The tooth tip spacing defined as the distance between adjacent tooth tips is designated t and the depth of the tooth is designated h in FIG. 1
Stamping knife I had a tooth tip spacing of 1.5 millimeters and a tooth depth of 0.75 millimeter.
Stamping knife II had a tooth tip spacing of 2 millimeters and a tooth depth of l millimeter.
Stamping knife III had a tooth tip spacing of 3 millimeters and a tooth height of l millimeter.
All knives were hardened to a body hardness of HRC 38-40. The tooth tips were locally hardened to HRC 49-51. The knives were made as square knives having a size length of 100 millimeters and a radius of about 2 millimeters at the corners.
The stamping knives described hereinbefore were used in a test under production conditions using a conventional hydraulic press, which was provided with a device for measuring the required punching pressure under extreme conditions. To provide extreme operating conditions, the knives were usedto stamp tubing made of crimped Perlon filaments. Before the tests, it had been possible to stamp these textile products only with restrictions and in small quantities and if the backing was continually renewed.
The use of the novel knives permitted of a considerable decrease of the stamping pressure. Besides, the life of the backing was much increased because contrary to stamping knives having straight cutting edges the stamping knives according to the invention did not form notchlike grooves in the backing but resulted only in a punctiform penetration into the backing.
These advantages were observed to the same extent with all three knives. For a given cutting operation, the following stamping pressures were to be applied to the three knives:
Knife 1: 62-67 kg per cm of length of knife Knife II: -75 kg per cm of length of knife Knife III: 74-80 kg per cm of length of knife.
Where stamping knives having straight cutting edges were used, stamping pressures between and 1 1O kilograms per centimeter of the length of the knife had to be used to obtain cuts having the same quality.
All stamping operations were carried out on a cast nylon backing.
The knives became useless because the tips of the teeth were bent and broken. This was observed with Knife I after 927 stamping operations, with Knife II after 1,008 stamping operations and with Knife III after 1,234 stamping operations.
Even these improved performance figures are not sufficient for an economical mass production in the textile industry.
Additional experiments involved a variation of the hardness of the tooth tips and produced the surprising result that knives in which the teeth were softer at the tips than at the roots had edge lives which were a multiple of those of knives which had been conventionally hardened.
For instance, a stamping knife having the geometrical configuration described hereinbefore and the same tooth pattern as knife I but had been hardened to a hardness of HRC 46 at the tips and a hardness of HRC 51 at the roots of the teeth could be used for 2,500 stamping operations on the same material without exhibiting any substantial wear. After 2,500 stamping operations, the experiment was terminated to save time.
Stamping knives according to the invention are also shown in FIG. 2. With stamping knives of this general kind, best results were obtained if the teeth had 21 diamond-shaped cross-section in their upper one-third, as is shown in FIG. 3.
The ability of these knives to bend around very small radii of 1-2 millimeters was improved by the provision of a festoon-shaped edge portion between the roots of adjacent teeth.
-This festoon-shaped edge portion between adjacent teeth is designated in FIG. 2.
The hardness pattern in a stamping knife according to the invention is shown in FIG. 4. The hardness increases from the tip to the root of each tooth.
Part A of FIG. 4 is a sectional view taken through a tooth tip, which had been hardened to a hardness of HRC 43, which increases toward the root of the tooth to HRC 47 and in the transitional region between the tooth and the knife body reaches a value of HRC 48 and may even increase there up to HRC 55. This is indicated in Part B of FIG. 4.
Part B of FIG. 4 is a sectional view taken through the knife body which has been hardened to the pattern according to the invention. The hardened zone comrpises the tooth of the root and the transitional region between the tooth and the tooth body. This hardened zone is designated Pos. C. in Part B of FIG. 4.
Any desired known hardening process may be used in making the stamping knives according to the invention. For the performance of the stamping knives according to the invention, the hardening process itself is significant only inasmuch as the specified hardness pattern must be obtained. For instance, such knives may be made by flame hardening, induction hardening, plasma hardening or electron beam hardening.
Thus, the invention provides stamping knives having a serrated cutting edge for punching parts of any desired configuration from textile fabrics, plastics materials, leather, rubber, paper, cellulose and the like, and the invention resides in that the cutting edge is provided with teeth having a tip spacing of 0.5-5 millimeters, each tooth has a depth of at most 5 millimeters and the knives are hardened so that the hardness of each tooth increases from its tip to its root and decreases or remains constant from the root of each tooth to the body of the knife.
The tips of the teeth may be faceted in various ways, like the cutting edges of conventional stamping knives.
Although the invention is illustrated and described with reference to a plurality of preferred embodiments thereof, it is to be expressly understood that it is in no way limited to the disclosure of such a plurality of preferred embodiments, but is capable of numerous modifications within the scope of the appended claims.
What is claimed is:
l. A process of manufacturing a stamping knife which comprises a knife body and a cutting edge which is carried by said knife body and formed with a series of teeth, each of which has a root merging into said knife body and a tip spaced from said knife body. adjacent ones of said tips being spaced 0.5-5 millimeters apart, each of said teeth having a depth of up to 5 millimeters, measured from its tip to its root, each of said teeth increasing in hardness from its tip to its root, each of said teeth having at its root at least the same hardness as the adjacent portion of said tooth body, which process comprises hardening said knife to impart to said teeth a hardness of HRC 43-46 at their tips and of HRC 48-55 at their roots, and
tempering said knife after it has thus been hardened.
2. A process as set forth in claim 1, which comprises hardening said knife to impart to said teeth a hardness of HRC 43-46 at their tips and of HRC 48-55 at their roots and to impart to said body a hardness of HRC 30-40, and
tempering said knife after it has thus been hardened.
3. A process as set forth in claim 1, which comprises hardening said knife to impart to said teeth a hardness of HRC 43-46 at their tips and of HRC 48-55 at their roots and to impart to said body a hardness of HRC 48-55, and
tempering said knife after it has thus been hardened.

Claims (3)

1. A process of manufacturing a stamping knife which comprises a knife body and a cutting edge which is carried by said knife body and formed with a series of teeth, each of which has a root merging into said knife body and a tip spaced from said knife body, adjacent ones of said tips being spaced 0.5-5 millimeters apart, each of Said teeth having a depth of up to 5 millimeters, measured from its tip to its root, each of said teeth increasing in hardness from its tip to its root, each of said teeth having at its root at least the same hardness as the adjacent portion of said tooth body, which process comprises hardening said knife to impart to said teeth a hardness of HRC 43-46 at their tips and of HRC 48-55 at their roots, and tempering said knife after it has thus been hardened.
2. A process as set forth in claim 1, which comprises hardening said knife to impart to said teeth a hardness of HRC 43-46 at their tips and of HRC 48-55 at their roots and to impart to said body a hardness of HRC 30-40, and tempering said knife after it has thus been hardened.
3. A process as set forth in claim 1, which comprises hardening said knife to impart to said teeth a hardness of HRC 43-46 at their tips and of HRC 48-55 at their roots and to impart to said body a hardness of HRC 48-55, and tempering said knife after it has thus been hardened.
US42985774 1972-09-15 1974-01-02 Stamping knife Expired - Lifetime US3866491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US42985774 US3866491A (en) 1972-09-15 1974-01-02 Stamping knife

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28975272 US3824887A (en) 1971-10-22 1972-09-15 Stamping knife
US42985774 US3866491A (en) 1972-09-15 1974-01-02 Stamping knife

Publications (1)

Publication Number Publication Date
US3866491A true US3866491A (en) 1975-02-18

Family

ID=26965826

Family Applications (1)

Application Number Title Priority Date Filing Date
US42985774 Expired - Lifetime US3866491A (en) 1972-09-15 1974-01-02 Stamping knife

Country Status (1)

Country Link
US (1) US3866491A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0058547A1 (en) * 1981-02-17 1982-08-25 Auto-Masters Limited Apparatus for cutting printing plates
US5232430A (en) * 1992-07-27 1993-08-03 Nitsch J Leonard Apparatus for piercing slits in plastic sheet material
US5448873A (en) * 1993-02-05 1995-09-12 New Holland North America, Inc. Net knife for round baler
EP0811470A1 (en) * 1996-06-04 1997-12-10 Karl Marbach Werkzeugbau GmbH Press cutter knife
WO2006000460A1 (en) * 2004-06-29 2006-01-05 Böhler-Uddeholm Precision Strip GmbH & Co. KG Cutting tools or punching tools comprising cutting lines
US20150020671A1 (en) * 2012-02-02 2015-01-22 Robert Bosch Gmbh Rotary Oscillation Cutting Tool for a Machine Tool
US20160257520A1 (en) * 2013-10-15 2016-09-08 Achton Spain Sl Cutting blade of a sheet dispenser
US10206331B2 (en) * 2014-05-12 2019-02-19 Kondex Corporation Cutting blade with hardened regions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1669623A (en) * 1924-04-05 1928-05-15 Goodyear Tire & Rubber Slug-cutting machine for plastic material
US2422561A (en) * 1940-07-26 1947-06-17 Simonds Saw And Steel Co Saw blade
US3277764A (en) * 1964-09-09 1966-10-11 Edward V Hene Apparatus for working corrugated board or the like
US3677111A (en) * 1970-12-03 1972-07-18 Corrugated Finishing Products Method for producing cutting rules

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1669623A (en) * 1924-04-05 1928-05-15 Goodyear Tire & Rubber Slug-cutting machine for plastic material
US2422561A (en) * 1940-07-26 1947-06-17 Simonds Saw And Steel Co Saw blade
US3277764A (en) * 1964-09-09 1966-10-11 Edward V Hene Apparatus for working corrugated board or the like
US3677111A (en) * 1970-12-03 1972-07-18 Corrugated Finishing Products Method for producing cutting rules

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0058547A1 (en) * 1981-02-17 1982-08-25 Auto-Masters Limited Apparatus for cutting printing plates
US5232430A (en) * 1992-07-27 1993-08-03 Nitsch J Leonard Apparatus for piercing slits in plastic sheet material
US5448873A (en) * 1993-02-05 1995-09-12 New Holland North America, Inc. Net knife for round baler
EP0811470A1 (en) * 1996-06-04 1997-12-10 Karl Marbach Werkzeugbau GmbH Press cutter knife
WO2006000460A1 (en) * 2004-06-29 2006-01-05 Böhler-Uddeholm Precision Strip GmbH & Co. KG Cutting tools or punching tools comprising cutting lines
US20150020671A1 (en) * 2012-02-02 2015-01-22 Robert Bosch Gmbh Rotary Oscillation Cutting Tool for a Machine Tool
US20160257520A1 (en) * 2013-10-15 2016-09-08 Achton Spain Sl Cutting blade of a sheet dispenser
US10206331B2 (en) * 2014-05-12 2019-02-19 Kondex Corporation Cutting blade with hardened regions

Similar Documents

Publication Publication Date Title
US3824887A (en) Stamping knife
US3866491A (en) Stamping knife
CA2173483C (en) Improved band saw blade
US2708376A (en) Cutting and abrading tools
US3411208A (en) Cutting strips, cutting die knives, cutting rules and the like
US2522440A (en) Cold punching metal parts
US2976747A (en) Method for forming filing tools
EP0669861B1 (en) Saw blade, and a method and a device for making a saw blade, whereby the tool or blank is angularly displaced between each cut
US2781097A (en) Manufacturing small-hole sieves
US3277764A (en) Apparatus for working corrugated board or the like
DE2152622A1 (en) PUNCH KNIFE WITH SERRATED CUTTING EDGE
US2391560A (en) Felting needle and method of making the same
US3618654A (en) High-speed cutting blade
US4825740A (en) Cutting dies and punches
Ahmad et al. Effect of machining parameters and workpiece shape on a bandsawing process
US3290917A (en) Method of producing a cutting tool
US3321874A (en) Method of making a cutting blade
BR112012018370B1 (en) PUNCTURE TOOL AND PRODUCTION PROCESS FOR A PUNCTURE TOOL
US3492903A (en) Cutting die
US3089352A (en) Manufacture of knife blades
US2648360A (en) Saw with a concaved leading chisel edge and planar offset side surface on each tooth
US2557148A (en) Engraving tool for pantographic jewelry engraving machines
DE2341567A1 (en) Carpet tufting machine looper tool - has hard metal plates with cutting edges soldered into place to lengthen tool life
CN104148506B (en) A kind of progressive die eliminating stamped metal thin plate generation wave transformation
US3411194A (en) Cutting and abrading tools