US3866007A - Contact reed with foil-thin intermediate section - Google Patents

Contact reed with foil-thin intermediate section Download PDF

Info

Publication number
US3866007A
US3866007A US404612A US40461273A US3866007A US 3866007 A US3866007 A US 3866007A US 404612 A US404612 A US 404612A US 40461273 A US40461273 A US 40461273A US 3866007 A US3866007 A US 3866007A
Authority
US
United States
Prior art keywords
reed
intermediate section
section
inch
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US404612A
Inventor
Jr Bernard Edward Shlesinger
Charlie D Mariner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US404612A priority Critical patent/US3866007A/en
Priority to CA210,258A priority patent/CA1003013A/en
Priority to AU73796/74A priority patent/AU7379674A/en
Priority to DE19742447319 priority patent/DE2447319A1/en
Priority to GB4338474A priority patent/GB1471568A/en
Priority to FR7434005A priority patent/FR2246956B3/fr
Priority to JP11573174A priority patent/JPS5065854A/ja
Priority to US05/533,223 priority patent/US3943474A/en
Application granted granted Critical
Publication of US3866007A publication Critical patent/US3866007A/en
Priority to US05/611,156 priority patent/US4038620A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • H01H36/0006Permanent magnet actuating reed switches
    • H01H36/0013Permanent magnet actuating reed switches characterised by the co-operation between reed switch and permanent magnet; Magnetic circuits
    • H01H36/0026Permanent magnet actuating reed switches characterised by the co-operation between reed switch and permanent magnet; Magnetic circuits comprising a biasing, helping or polarising magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/28Relays having both armature and contacts within a sealed casing outside which the operating coil is located, e.g. contact carried by a magnetic leaf spring or reed
    • H01H51/287Details of the shape of the contact springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/24Contacts characterised by the manner in which co-operating contacts engage by abutting with resilient mounting
    • H01H2001/247Contacts characterised by the manner in which co-operating contacts engage by abutting with resilient mounting using an elastic hinge, the contact being composed of rigid parts connected by thinned flexible hinge parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing

Definitions

  • ABSTRACT A reed for a reed switch which comprises a body of conductive material having a contact section, an intermediate spring section, and a support section with the intermediate section being foil-thin and a contact section being substantially rigid and non-flexible and thicker than the intermediate section, and the intermediate section comprises a leaf spring having a flexibility permitting one end of the leaf spring to flex a substantial distance through an arc with-respect to the other end of the leaf spring without exceeding the elastic limits of the spring, and the intermediate section being cold-worked to a point where said conductive material assumes a substantial change in physical characteristics, and said intermediate section is substantially harder, less ductile, and more dense than the contact section, and the body of said reed being of magnetic material.
  • the invention also includes a reed switch in which the reed is mounted in association with a second conductive non-magnetic material reed and further is intended to include a magnetic operator for moving the magnetic reed into contact with the non-magnetic reed.
  • This invention relates to reeds and reed switches, and more specifically to more compact and higher capacity reed devices.
  • Another object of this invention is to provide a reed for a reed switch which has great durability and which can take severe strain and stresses. 7
  • Yet a further object of this invention is to provide a reed switch which provides for little or no contact bounce.
  • Yet another object of this invention is to provide a reed switch which incorporates therein a magnetic conductive reed and a non-magnetic conductive reed thereby providing for rapid make and break unachievable with prior reed switches in which the reeds are both of magnetic conductive material.
  • Still a further object of this invention is to provide a reed switch which has incorporated in itself a fuse feature for controlling overloads without causing damage to electrical components used in conjunction therewith by providing a highly audible signal at the moment of disintegration.
  • a still further object of this invention is to provide a reed switch which has little or no capacitance effect so necessary in utilization with integrated circuits and the like.
  • Yet another object of this invention is to provide a reed switch in which the spring element of the reed has been cold-worked so as to completely change the crystalline structure of the metal in the area of the cold work to provide a spring which is durable and extremely flexable.
  • Yet another object of this invention is to provide a reed switch in which the flex of the are at the end of the reed may exceed as much as
  • a further object of this invention is to provide a reed switch having contacts at the same end of the capsule thereby permitting substantial reduction in size.
  • Yet another object of this invention is to provide a reed switch in which the magnetic operator has different modes or phases of operation merely by rotating the axis of the magnetic operator with respect to the reeds.
  • Another object of this invention is to provide a reed switch in which the operator by repositioning can be made to close the switch or leave the switch in open position when moved through the same path.
  • a further object of this invention is to provide a reed switch in which the operator includes magnetic reenforcing means to increase the snap action of the switch.
  • Yet another object of this invention is to provide a reed switch which has a strong snap action so as to crunch or otherwise break through any oxide build-up thereby increasing the longevity of the switch and eliminating malfunction due to carbon build-up.
  • Yet a further object of this invention is to provide a reed for a reed switch which slams hard into its mating contact so as to give improved conductivity character-' istics with use.
  • a further object of this invention is to provide a reed for a reed switch in which the spring principle can be adapted to many shapes and forms for various configurations of reed switches.
  • Still a further object of this invention is to provide a reed switch which has a past-dead-center mechanism so as to afford a two position reed.
  • Yet a further object of this invention is to provide a reed switch which can flex in more than one direction and which can even assume a flex in 360 although the reeds themselves may be flat,
  • Yet another object of this invention is to provide a reed switch which has a fuse member therein which fuse member can be modified for different current capacities.
  • a still further object of this invention is to provide a reed switch in which the non-magnetic conductive reed is provided with a flattened end portion for providing better contact and better current carrying capabilities.
  • Another object of this invention is to provide a reed switch in which the operator is in the form of a cap which sits on top of the reed envelope thereby providing for reduced profile.
  • this invention is directed to reed switches having greater durability and greater carrying capacity and these and other objects of this invention will be apparent from the following description and claims.
  • FIG. 1 is a side elevational view of the invention with the ends shown fragmentary on one end and broken away on the other end to show indeterminate length;
  • FIG. 2 is a right end view thereof
  • FIG. 3 is a left end view thereof
  • FIG. 4 is a bottom plan view thereof
  • FIG. 5 is a top plan view thereof
  • FIGS. 6 and 7 are bottom plan views of other modifications of this invention in which the ends are shown fragmentary on one end and broken away at the other end to show indeterminate length;
  • FIGS. 8 and 9 are side elevational views of further embodiments of the invention in which the ends are shown fragmentary on one end and broken away at the other end to show indeterminate length;
  • FIG. 10 is an end view of the embodiment shown in FIG. 9;
  • FIG. 1 l is a side elevational view of a further embodiment of the invention with the ends being shown frag- FIG. 13;
  • FIGS. 15, l6, l7 and 18 are side elevational views of further embodiments of the invention with the ends shown fragmentary at one end and broken away at the 1 7 other end to show indeterminate length;
  • FIG. 19 is a top plan view of a further modification of the invention with the ends shown fragmentary;
  • FIG. 20 is a fragmentary cross sectional view of the embodiment shown in FIG. 19 taken along the lines 20-20 and viewed in the direction of the arrows;
  • FIG..2I is a side elevational view showing one reed in closed position in solid lines and in open position in phantom lines with the ends of the reeds fragmentated;
  • FIG. 22 is a cross sectional view of the embodiment shown in FIG. 21 and viewed in the direction of the arrows; I
  • FIGS. 23 and 23A are further embodiments of the non-magnetic reed showing an L-shaped reed and a goosenecked-shaped reed respectively;
  • FIG. 24 is a side elevational view of yet another embodiment of the invention.
  • FIG. 25 is a top plan view of the embodiment shown in FIG. 24;
  • FIGS. 26 and 27 are diagrammatic views illustrating the reeds and magnetics of the device illustrated in FIGS. 24 and 25.
  • FIGS. 1 THROUGH 5 show in detail one form of the reed used in conjunction with the reed switch subsequently istics of the metal of the wire to produce a spring and steel substantially different crystalline structure than the original non-worked metal. It has been found that slightly working the metal to reduce the thickness of the wire by flattening does not by itself produce the desired spring characteristics. A slight reduction does give some flex at the intermediate point, but it is relatively negligible. Even reduction down to a relatively thin cross section is not sufficient to change the characteristics of the metal to produce a spring steel of great flexibility and long life.
  • the flat, planer surface 8 is angularly disposed to the base or support section 2, as well as to the contact section 6.
  • the metal at the intermediate section 4 tends to draw at either end of the intermediate section 4 in such a manner as to swing the ends towards the area of reduction and the concave surface 10.
  • the wire 2 is laid against a flat surface and the die which produces the curved surface 10 is struck thereinto. The ends of the wire tend to lift up from the flat surface on either side thereof once the die has been released..
  • the reed can be manufactured so that the ends and the intermediate section are all in alignment by overstressing if necessary.
  • the area of reduction at the intermediate section 4 should be of some substantial length and preferably the length of the intermediate section should be about four or more times the thickness of the wire.
  • This provides the intermediate section with a hinge of sufficient length to flex large increments. At least 25 of flex must be achieved in order to provide good switching action. Above 30 as preferred for switches in which the capacitance effect is not too much of a problem. At least 60 of flex is desired for certain compact spacing arrangements with a substantial reduction in capacitances. 90 of flex affords much greater spacing characteristics with further reduction as to capacitance problems. l20 of flex allows for sufficient spacing to eliminate capacitances for all practical purposes.
  • flex 150 of flex permits the reed to be utilized for special design concepts in switching and a flex of 180 or more permits additional unique switch design configurations heretofor unobtainable with existing reed developments.
  • arc of flex is much greater than any prior arc development and for all practical purposes, the switch in which the reed is never used requires a maximum flex of the reed.
  • the reed therefore operates substantially below its maximum capabilities which thus enhances the life of the reed.
  • the normal arc for which the reed may move in a particular switch might be 60 whereas the maximum normal flex of the reed used in that particular switch might be 120. The reed thus never exceeds or even approaches its capabilities as far as flex is concerned.
  • FIGS. 6 THROUGH 14 the reed R differs only from the reed of FIGS. 1-5 in that portions of the flanges 12 and 14 have been clipped to provide flat straight edges 16 and 18. It has been found that the reed may be used as a fuse and circuit breaker and calibration of the carrying capacities of the reed would depend upon the amount of clipping of the sides 16 and 18.-In FIG. 7, the sides of 20 and 22 have been clipped flushto the wire stock diameter. When used as a fuse, the reed parts at the intermediate section with a loud report similar to a firecracker.
  • FIG. 8 shows a reed R manufactured from rod stock having flat sides 24 and 26.
  • the intermediate section 28 spreads out in much the same manner as the intermediate section 4 of FIGS. 1+5.
  • FIGS. 9 and show the intermediate section 30 with a flat central portion 32 as having a flat surface 34 in the concavity between the curved surfaces 36. It will be obvious that any one of the reeds previously or subsequently referred to may include a flat central protion 32 as illustrated in FIGS. 9 and 10.
  • FIGS. 11 and 12 show the reed R configured from both sides so that there are two concavities 38 and 40. This arrangement provides a hinge which will flip equally in both directions from the center point, whereas the developments shown in FIGS. 1-5 permit the magnetic reed to be offset substantially from its mating reed even though the contact portion may be in close proximity thereto.
  • the reed R in FIGS. 11 and 12 is concave-concave in configuration whereas the reed in FIGS. l-5 are plano-concave in configuration.
  • FIGS. 13 and 14 show a reed R having an intermediate portion 42 with a concave surface 44 and a convex surface 46 giving it a concave-convex appearance.
  • FIGS. THROUGH 18 FIG. 15 shows a modified reed R having been struck from opposite directions to produca a flat S- configuration 48.
  • FIG. 16 shows a modified version of FIG. 15 in which the reed R is of a looped S-configuration 50.
  • FIG. 17 shows a reed R with two intermediate connecting sections 52 and 54 set at right angles to each other. This particular configuration of the reed permits the reed to rotate about its axis 360.
  • FIG. 18 shows a reed R having two concavo-convex areas 56 and 58 with an intermediate contact section 60.
  • the reed of this configuration can be supported at ends 62 and 64 so that the contact area 60 flexes back and forth under the influence of a magnetic field, the contact section being supported by the spring sections 56 and 58.
  • FIGS. 19 AND 20 In FIGS. 19 and 20 the reed 4 is provided with an intermediate spring section 66 which has a button 68 struck in the reverse direction.
  • the button 68 acts as a past-dead-center mechanism to permit the reed to lodge in either position A or B.
  • the operation is similar to crickets or noise makers. This development is particularly advantageous where the magnetic field is withdrawn and contact is desired to be maintained.
  • FIGS. 21 AND 22 show a reed switch 70 having a base 72 and an envelope 74 which may be plastic or glass and provided with an inert atmosphere or a vacuum as desired. Reeds 76 and 78 are mounted in the base 72.
  • Reed 76 is of non-magnetic conductive material such as copper or aluminum or the like.
  • Reed 78 is of magnetic conductive material such as soft steel.
  • the intermediate foil spring section 80 extends substantially from the base 72 to the contact section 82.
  • Mounted on the envelope 74 is a cap 84 which is rotatable thereon.
  • the cap 84 is provided with opposing magnets 86 and 88.
  • Cap 70 may be constructed so that the magnets 86 and 88 need not be positioned directly opposite each other and magnet 89 is a replacement position for magnet 86. If reference is now made to FIG. 22, it will be noted when the magnets 86 and 88 are moved 90 to the positions shown in dash lines, the switch remains open. When the cap is rotated another 90 in either direction, the switch is closed again.
  • the magnetic reed 78 is mounted in the same half of the capsule 70. The reason is that the magnets 86 and 88 reenforce each other and tend to cause' the contact 82 to move rapidly towards the reed 76.
  • the reed 78 may be mounted in the other half of the capsule providing that the contact portion 82 extends into the same half in which the reed 76 is positioned. The magnetic influence therefore is operating primarily on the mass of the contact section 82 to drive it into contact with the nonmagnetic conductive reed 76.
  • FIGS. 23 AND 23A FIG. 23 shows the magnetic reed 90 engaging the.
  • non-magnetic reed 92 The non-magnetic reed 92 is L- shaped and is provided with a flattened contact surface area 94. This flattened contact area gives better conduction and action.
  • the reed 92 which is provided with a flattened area 94' similar to FIG. 23 has a hook-shaped configuration rather than an L- shaped configuration as illustrated in FIG. 23.
  • the advantages of these type reeds are that they reduce capacitance in that the mass as of the reeds can be spaced in considerable distance from each other.
  • FIGS. 24 THROUGH 27 the reed switch 70 is mounted in a housing or support 96 which has a cruciform slot 98 in which is mounted a magnet 100.
  • the magnet is round in configuration (although other forms may be used) and is slotted to be movable in the cruciform slot 98. It will now be observed with reference to FIG. 26, that as the magnet 100 is moved to the left in the direction of arrow C, contact will be made between the reeds as the magnet 10.0 is passed from one end of the cruciform slot 98 to the other as long as the axis of the lines of flux are transverse to the planes of the reeds.
  • the magnet 100 with its poles oriented as illustrated is positioned above the reeds 76 and 78 and is shifted in the downward direction of arrow D, and if the magnet is sufficiently offset to the right, the reed 78 will be drawn towards the reed 76.
  • the magnet 100 is rotated slightly on its axis and placed at the top of the cruciform slot 98, and then shifted in the direction of the arrow E downwardly, the magnet'will permit operation of the switch in that the polar field ofthe magnet is not exactly 90 to the planes of the magnet,'but is at an angle thereto which permits the magnet 100 to operate the reed 78.
  • the magnetic field should be in the direction of the magnetic reed78 in order to begin to move it away from non-magnetic reed 76 prior to its snapping closed when the magnet 100 is continued to move past the reeds 76 and 78 to permit the magnetic reed 78 to snap back on reed 76.
  • the reed and switches in which i the reeds can be utilized provide substantial reduction in size for the reed R.
  • the reeds R need. only be mounted so that the spring contact section is projecting from the base support. This allows very compact reed switch mechanisms to be built.
  • the intermediate section should have a length of between /a to l/32 inch.
  • the thickness of the intermediate section may be uniform throughout substantially its entire length by utilization of certain type dies which may be of box-type configuration rather than arcuate or arcuate with flat surfaces.
  • the overall length of the intermediate and contact sections should not exceed /z inch.
  • the capsules need not exceed /2 inch in length nor A in width.
  • a reed for a reed switch comprising:
  • a body of conductive material having a contact section, an intermediate spring section, and a support section
  • said intermediate section being foil-thin and having a cross sectionalthickness of less than 0.003 inch
  • said intermediate section comprising a leaf spring having a flexibility permitting one end of said leaf spring to flex a substantial distance through an arc of at least 25 with respect to the other end of said leaf spring without exceeding the elastic limits of said spring,
  • said intermediate section being substantially harder, less ductile, and more dense than said contact section and having a substantially higher tensile strength than said contact section.
  • said conductive material is soft steel.
  • said support section is substantially rigid and nonflexible and substantially thicker than said intermediate section
  • said intermediate section being substantially harder, less ductile, and more dense than said sup port section and having a substantially higher tensile strength than said support section.
  • said sections are integral and formed of asingle piece.
  • said intermediate section has a maximum flex of at least 25 of are for a length of between A; to l/32 inch.
  • said intermediate section has a maximum flex of at least 30 of arc for a length of between /8 to l/32 inch.
  • said intermediate section has a maximum flex of at least 60 of are for a length of between A; to l/32 inch.
  • said intermediate section has a maximum flex of at least of are for a length of between /a to l/32 inch.
  • said intermediate section has a maximum flex of at least of are for alength of between about Vs to l/32 inch.
  • said intermediate section has a maximum flex of at least of are for a length of between about A; to l/32 inch.
  • said intermediate section has a maximum flex of at least 180 of arc for a length of between about /a to 1/32 inch.
  • said intermediate section has substantial uniform thickness throughout its length.
  • said intermediate section is concavo-concave.
  • said intermediate section is planoconcave.
  • said intermediate section is concave-convex.
  • said contact section is angularly disposed with respect to said support section.
  • each of said sections are angularly disposed to each other.
  • said intermediate section includes outwardly projecting side flanges.
  • said side flanges have arcuate edges.
  • said side flanges include a straight central edge terminating in curved edges.
  • said intermediate section has its sides coincident with said contact and support section sides.
  • said intermediate section includes flat and curved surfaces.
  • said second intermediate section is immediately adjacent said first mentioned intermediate section and lies in a plane 90 to said first mentioned intermediate section.
  • said contact section lies between said intermediate sections.
  • said first and second intermediate sections abut each other and are arcuate and face in obverse directions from each other to form an S- configuration.
  • said intermediate section includes a past-deadcenter mechanism.
  • said past-dead-center mechanism is a dimple in said intermediate section.
  • the overall length of said intermediate section and said contact section does not exceed about /2 inch.
  • a reed for a reed switch comprising:
  • a body of conductive material having a contact section, an intermediate spring section, and a support section
  • said intermediate section being foil-thin and having a cross sectional thickness not exceeding .001 inch
  • said support section being substantially rigid and non-flexible
  • said intermediate section comprising a leaf spring having a flexibility permitting one end of said leaf spring to flex, a substantial distance through an arc of at least 25 with respect to the other end of said leaf spring without exceeding the elastic limits of said spring,
  • said intermediate section being substantially harder, less ductile, and more dense than said contact section and having a substantially higher tensile strength than said contact section.
  • said conductive material is soft steel
  • said support section in substantially rigid and nonflexible and substantially thicker than said intermediate section, and Y b. said intermediate section being substantially harder, less ductile, and more dense than said support section and having a substantially higher tensile strength than said support section.
  • said sections are integral and formed of a single piece.
  • said intermediate section has a maximum flex of at least 25 of arc for a length of between to l/32 inch.
  • said intermediate section has a maximum flex of at least 30 of arc for a length of between V8 to l/32 inch.
  • said intermediate section has a maximum flex of a least 60 of are for a length of between A; to l/32 inch.
  • said intermediate section has a maximum flex of at least of arc for a length of between Vs to l/32 inch.
  • said intermediate section has a maximum flex of at least of arc for a length of between about /8 to 1/32 inch.
  • said intermediate section has a maximum flexof at least of are for a length of between about A; to l/32 inch.
  • said intermediate section has a maximum flex of at least of arc for a length of between about Vs to 1/32 inch.
  • said intermediate section has substantial uniform thickness throughout its length.
  • said intermediate section is concave-concave.
  • said intermediate Section is planoconcave.
  • said intermediate section is concavo-convex.
  • said contact section is angularly disposed with respect to said support section.
  • each of said sections are angularly disposed to each other.
  • said intermediate section includes outwardly projecting side flanges.
  • said side flanges have arcuate edges.
  • said side flanges include a straight central edge terminating in curved edges.
  • said intermediate section includes flat and curved surfaces.
  • said second intermediate section is immediately adjacent said first mentioned intermediate section and lies in a plane to said first mentioned intermediate section
  • said contact section lies between said intermediate sections.
  • said first and second intermediate sections abut each other and are arcuate and face in obverse directions from each other.
  • said intermediate section includes a past-deadcenter mechanism.
  • said past-dead-center mechanism is a dimple in said intermediate section.
  • the overall length of said intermediate section and said contact section does not exceed about /2 inch.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • Contacts (AREA)

Abstract

A reed for a reed switch which comprises a body of conductive material having a contact section, an intermediate spring section, and a support section with the intermediate section being foil-thin and a contact section being substantially rigid and non-flexible and thicker than the intermediate section, and the intermediate section comprises a leaf spring having a flexibility permitting one end of the leaf spring to flex a substantial distance through an arc with respect to the other end of the leaf spring without exceeding the elastic limits of the spring, and the intermediate section being cold-worked to a point where said conductive material assumes a substantial change in physical characteristics, and said intermediate section is substantially harder, less ductile, and more dense than the contact section, and the body of said reed being of magnetic material. The invention also includes a reed switch in which the reed is mounted in association with a second conductive nonmagnetic material reed and further is intended to include a magnetic operator for moving the magnetic reed into contact with the non-magnetic reed.

Description

United States Patent 1191 [111 3,866,007 1451 Feb. 11, 1975 Shlesinger, Jr. et al.
1 1 CONTACT REED WITH FOIL-THIN INTERMEDIATE SECTION [76] Inventors: Bernard Edward Shlesinger, Jr.,
- 9411 Macklin Ct., Alexandria, Va. 22309; Charlie D. Mariner, 121 Garrison St., Bolling Air Force Base, Washington, DC. 20336 22 Filed: on. 9, 1973 21 App]. No.: 404,612
[52] U.S. Cl 200/283, 29/630 C, 335/151 [51] Int. Cl. H0lh l/26 [58] Field of Search 200/283, 246, 247;
' [56] References Cited UNITED STATES PATENTS 3,015,876 1/1962 Hutt 29/630 C 3,168,634 2/1965 200/283 X 3,242,295 3/1966 Holzer 200/283 3,258,557 6/1966 Scheepstra et al 335/154 3,283,274 11/1966 DeFalco 335/206 3,525,060 8/1970 Scheidig 200/283 X 3,808,390 4/1974 Hammell et al. 200/246 Primary Examiner-Robert K. Schae fer Assistant Examiner-William J. Smith Attorney, Agent, or Firm-Shlesinger, Arkwright, Garvey & Dinsmore [57] ABSTRACT A reed for a reed switch which comprises a body of conductive material having a contact section, an intermediate spring section, and a support section with the intermediate section being foil-thin and a contact section being substantially rigid and non-flexible and thicker than the intermediate section, and the intermediate section comprises a leaf spring having a flexibility permitting one end of the leaf spring to flex a substantial distance through an arc with-respect to the other end of the leaf spring without exceeding the elastic limits of the spring, and the intermediate section being cold-worked to a point where said conductive material assumes a substantial change in physical characteristics, and said intermediate section is substantially harder, less ductile, and more dense than the contact section, and the body of said reed being of magnetic material. The invention also includes a reed switch in which the reed is mounted in association with a second conductive non-magnetic material reed and further is intended to include a magnetic operator for moving the magnetic reed into contact with the non-magnetic reed.
62 Claims, 28 Drawing Figures PATENTEDFEBHIQYB I %.8'68.007
sumaurs mgmgg FEB 1 1 19. 5
' sum 30F 3 CONTACT REED WITH FOIL-THIN INTERMEDIATE SECTION FIELD OF INVENTION This invention relates to reeds and reed switches, and more specifically to more compact and higher capacity reed devices.
HISTORICAL BACKGROUND Reduced areas in reed switches are noted in such patents as Scheepstra et al. US. Pat. No. 3,258,557, Gomperts et al. US. Pat. No. 3,218,406, DeFalco US. Pat. No. 3,283,274 and Bianco et al. US. Pat. No. 3,059,074. Such flattened portions have been devised to aid in making the reed elements flexible as mentioned in DeFalco or to provide a limited pivot for an armature as illustrated in Gomperts et al. Gomperts in general provided a thin or flat piece of resilient metal attached to the armature and attached to the reed. This particular patent suggests a scheme from which the spring and reed could be made from one piece but it does not include the armature. Scheepstra et al. teaches the flattening of the reed to 0.15 mil. by pressure in order to obtain additional flexibility to his reeds. In general, however, the prior art failed to achieve any major reduction in size in reed switches. DeFalco and Van Wagener et al. US. Pat: No. 3,247,343 developed reed switches in'which the reeds were mounted in the envelope at one end thereof only; however, no major OBJECTS AND SUMMARY It is therefore an object of this invention to provide a reed and a reed switch therefor which allows for greater reduction in size and an increase in load carrying capacity substantially greater than heretofor.
It is a further object of this invention to provide a reed for a reed switch assembly which can be inexpensively and readily manufactured.
Another object of this invention is to provide a reed for a reed switch which has great durability and which can take severe strain and stresses. 7
Yet a further object of this invention is to provide a reed switch which provides for little or no contact bounce.
Yet another object of this invention is to provide a reed switch which incorporates therein a magnetic conductive reed and a non-magnetic conductive reed thereby providing for rapid make and break unachievable with prior reed switches in which the reeds are both of magnetic conductive material.
Still a further object of this invention is to provide a reed switch which has incorporated in itself a fuse feature for controlling overloads without causing damage to electrical components used in conjunction therewith by providing a highly audible signal at the moment of disintegration.
A still further object of this invention is to provide a reed switch which has little or no capacitance effect so necessary in utilization with integrated circuits and the like.
It is a further object of this invention to provide a reed switch which has an extremely rapid closing time.
Yet another object of this invention is to provide a reed switch in which the spring element of the reed has been cold-worked so as to completely change the crystalline structure of the metal in the area of the cold work to provide a spring which is durable and extremely flexable.
Yet another object of this invention is to provide a reed switch in which the flex of the are at the end of the reed may exceed as much as A further object of this invention is to provide a reed switch having contacts at the same end of the capsule thereby permitting substantial reduction in size.
Yet another object of this invention is to provide a reed switch in which the magnetic operator has different modes or phases of operation merely by rotating the axis of the magnetic operator with respect to the reeds.
Another object of this invention is to provide a reed switch in which the operator by repositioning can be made to close the switch or leave the switch in open position when moved through the same path.
A further object of this invention is to provide a reed switch in which the operator includes magnetic reenforcing means to increase the snap action of the switch. I
Yet another object of this invention is to provide a reed switch which has a strong snap action so as to crunch or otherwise break through any oxide build-up thereby increasing the longevity of the switch and eliminating malfunction due to carbon build-up.
Yet a further object of this invention is to provide a reed for a reed switch which slams hard into its mating contact so as to give improved conductivity character-' istics with use.
A further object of this invention is to provide a reed for a reed switch in which the spring principle can be adapted to many shapes and forms for various configurations of reed switches.
Still a further object of this invention is to provide a reed switch which has a past-dead-center mechanism so as to afford a two position reed.
Yet a further object of this invention is to provide a reed switch which can flex in more than one direction and which can even assume a flex in 360 although the reeds themselves may be flat,
Yet another object of this invention is to provide a reed switch which has a fuse member therein which fuse member can be modified for different current capacities.
A still further object of this invention is to provide a reed switch in which the non-magnetic conductive reed is provided with a flattened end portion for providing better contact and better current carrying capabilities.
Another object of this invention is to provide a reed switch in which the operator is in the form of a cap which sits on top of the reed envelope thereby providing for reduced profile.
In summary therefore, this invention is directed to reed switches having greater durability and greater carrying capacity and these and other objects of this invention will be apparent from the following description and claims.
In the accompanying drawing which illustrates by way of example various embodiments of this invention:
FIG. 1 is a side elevational view of the invention with the ends shown fragmentary on one end and broken away on the other end to show indeterminate length;
FIG. 2 is a right end view thereof;
FIG. 3 is a left end view thereof;
FIG. 4 is a bottom plan view thereof;
FIG. 5 is a top plan view thereof;
FIGS. 6 and 7 are bottom plan views of other modifications of this invention in which the ends are shown fragmentary on one end and broken away at the other end to show indeterminate length;
FIGS. 8 and 9 are side elevational views of further embodiments of the invention in which the ends are shown fragmentary on one end and broken away at the other end to show indeterminate length;
FIG. 10 is an end view of the embodiment shown in FIG. 9;
FIG. 1 l is a side elevational view of a further embodiment of the invention with the ends being shown frag- FIG. 13;
FIGS. 15, l6, l7 and 18 are side elevational views of further embodiments of the invention with the ends shown fragmentary at one end and broken away at the 1 7 other end to show indeterminate length;
FIG. 19 is a top plan view of a further modification of the invention with the ends shown fragmentary;
FIG. 20 is a fragmentary cross sectional view of the embodiment shown in FIG. 19 taken along the lines 20-20 and viewed in the direction of the arrows;
FIG..2I is a side elevational view showing one reed in closed position in solid lines and in open position in phantom lines with the ends of the reeds fragmentated;
FIG. 22 is a cross sectional view of the embodiment shown in FIG. 21 and viewed in the direction of the arrows; I
FIGS. 23 and 23A are further embodiments of the non-magnetic reed showing an L-shaped reed and a goosenecked-shaped reed respectively;
FIG. 24 is a side elevational view of yet another embodiment of the invention;
FIG. 25 is a top plan view of the embodiment shown in FIG. 24;
FIGS. 26 and 27 are diagrammatic views illustrating the reeds and magnetics of the device illustrated in FIGS. 24 and 25.
FIGS. 1 THROUGH 5 FIGS. 1 through 5 show in detail one form of the reed used in conjunction with the reed switch subsequently istics of the metal of the wire to produce a spring and steel substantially different crystalline structure than the original non-worked metal. It has been found that slightly working the metal to reduce the thickness of the wire by flattening does not by itself produce the desired spring characteristics. A slight reduction does give some flex at the intermediate point, but it is relatively negligible. Even reduction down to a relatively thin cross section is not sufficient to change the characteristics of the metal to produce a spring steel of great flexibility and long life. It has been found that a'reduction of the metal to a thickness of less than 0.003 inch totally reconstitutes the metal into a fine, hair-spring leaf. The cold working makes the spring intermediate section 4 extremely hard and flexible. In the process of cold-working, the metal that is worked flows laterally to produce side flanges I2 and I4. In thepreferred embodiments of this invention, a thinness of 0.001 inch or less is created in order to obtain the maximum flex. Even 0.003 inch is one-half the thickness of previous known developments such as Scheepstra US. Pat. No. 3,258,557 who mentions reduction to 0.15 mm which is approximately 0.006 inch. It has been found that unless a foil-thinness is achieved, the spring-like characteristics desired for operation of a switch is unachievable. Only slight flex is achieved by reduction to the thinness set out by Scheepstraand this is still to thick to give real fine, hair-spring characteristics. The resulting spring made by the cold-working for all practical purposes-will not wear out and tests show substantial life even after 2 billion contact operations. It has been found that thickness of the initial wire has no bearing on flex since the wire must be reduced .at the point of flex to the criticalities aforementioned.
In FIGS.-l5, it will be noted that the flat, planer surface 8 is angularly disposed to the base or support section 2, as well as to the contact section 6. In normal formation, the metal at the intermediate section 4 tends to draw at either end of the intermediate section 4 in such a manner as to swing the ends towards the area of reduction and the concave surface 10. In actual production of the reeds, the wire 2 is laid against a flat surface and the die which produces the curved surface 10 is struck thereinto. The ends of the wire tend to lift up from the flat surface on either side thereof once the die has been released..The reed can be manufactured so that the ends and the intermediate section are all in alignment by overstressing if necessary.
It should be noted that the area of reduction at the intermediate section 4 should be of some substantial length and preferably the length of the intermediate section should be about four or more times the thickness of the wire. This provides the intermediate section with a hinge of sufficient length to flex large increments. At least 25 of flex must be achieved in order to provide good switching action. Above 30 as preferred for switches in which the capacitance effect is not too much of a problem. At least 60 of flex is desired for certain compact spacing arrangements with a substantial reduction in capacitances. 90 of flex affords much greater spacing characteristics with further reduction as to capacitance problems. l20 of flex allows for sufficient spacing to eliminate capacitances for all practical purposes. 150 of flex permits the reed to be utilized for special design concepts in switching and a flex of 180 or more permits additional unique switch design configurations heretofor unobtainable with existing reed developments. It is to be noted that the advantage of this particular reed development is that that arc of flex is much greater than any prior arc development and for all practical purposes, the switch in which the reed is never used requires a maximum flex of the reed. The reed therefore operates substantially below its maximum capabilities which thus enhances the life of the reed. For example, the normal arc for which the reed may move in a particular switch might be 60 whereas the maximum normal flex of the reed used in that particular switch might be 120. The reed thus never exceeds or even approaches its capabilities as far as flex is concerned.
FIGS. 6 THROUGH 14 In FIG. 6, the reed R differs only from the reed of FIGS. 1-5 in that portions of the flanges 12 and 14 have been clipped to provide flat straight edges 16 and 18. It has been found that the reed may be used as a fuse and circuit breaker and calibration of the carrying capacities of the reed would depend upon the amount of clipping of the sides 16 and 18.-In FIG. 7, the sides of 20 and 22 have been clipped flushto the wire stock diameter. When used as a fuse, the reed parts at the intermediate section with a loud report similar to a firecracker.
FIG. 8 shows a reed R manufactured from rod stock having flat sides 24 and 26. The intermediate section 28 spreads out in much the same manner as the intermediate section 4 of FIGS. 1+5.
FIGS. 9 and show the intermediate section 30 with a flat central portion 32 as having a flat surface 34 in the concavity between the curved surfaces 36. It will be obvious that any one of the reeds previously or subsequently referred to may include a flat central protion 32 as illustrated in FIGS. 9 and 10.
FIGS. 11 and 12 show the reed R configured from both sides so that there are two concavities 38 and 40. This arrangement provides a hinge which will flip equally in both directions from the center point, whereas the developments shown in FIGS. 1-5 permit the magnetic reed to be offset substantially from its mating reed even though the contact portion may be in close proximity thereto. The reed R in FIGS. 11 and 12 is concave-concave in configuration whereas the reed in FIGS. l-5 are plano-concave in configuration.
FIGS. 13 and 14 show a reed R having an intermediate portion 42 with a concave surface 44 and a convex surface 46 giving it a concave-convex appearance.
FIGS. THROUGH 18 FIG. 15 shows a modified reed R having been struck from opposite directions to produca a flat S- configuration 48.
FIG. 16 shows a modified version of FIG. 15 in which the reed R is of a looped S-configuration 50.
FIG. 17 shows a reed R with two intermediate connecting sections 52 and 54 set at right angles to each other. This particular configuration of the reed permits the reed to rotate about its axis 360.
FIG. 18 shows a reed R having two concavo- convex areas 56 and 58 with an intermediate contact section 60. The reed of this configuration can be supported at ends 62 and 64 so that the contact area 60 flexes back and forth under the influence of a magnetic field, the contact section being supported by the spring sections 56 and 58.
FIGS. 19 AND 20 In FIGS. 19 and 20 the reed 4 is provided with an intermediate spring section 66 which has a button 68 struck in the reverse direction. The button 68 acts as a past-dead-center mechanism to permit the reed to lodge in either position A or B. The operation is similar to crickets or noise makers. This development is particularly advantageous where the magnetic field is withdrawn and contact is desired to be maintained.
FIGS. 21 AND 22 FIGS. 21 and 22 show a reed switch 70 having a base 72 and an envelope 74 which may be plastic or glass and provided with an inert atmosphere or a vacuum as desired. Reeds 76 and 78 are mounted in the base 72.
Reed 76 is of non-magnetic conductive material such as copper or aluminum or the like. Reed 78 is of magnetic conductive material such as soft steel. The intermediate foil spring section 80 extends substantially from the base 72 to the contact section 82. Mounted on the envelope 74 is a cap 84 which is rotatable thereon. The cap 84 is provided with opposing magnets 86 and 88. Cap 70 may be constructed so that the magnets 86 and 88 need not be positioned directly opposite each other and magnet 89 is a replacement position for magnet 86. If reference is now made to FIG. 22, it will be noted when the magnets 86 and 88 are moved 90 to the positions shown in dash lines, the switch remains open. When the cap is rotated another 90 in either direction, the switch is closed again. It is to be noted that the magnetic reed 78 is mounted in the same half of the capsule 70. The reason is that the magnets 86 and 88 reenforce each other and tend to cause' the contact 82 to move rapidly towards the reed 76. The reed 78 may be mounted in the other half of the capsule providing that the contact portion 82 extends into the same half in which the reed 76 is positioned. The magnetic influence therefore is operating primarily on the mass of the contact section 82 to drive it into contact with the nonmagnetic conductive reed 76.
FIGS. 23 AND 23A FIG. 23 shows the magnetic reed 90 engaging the.
non-magnetic reed 92. The non-magnetic reed 92 is L- shaped and is provided with a flattened contact surface area 94. This flattened contact area gives better conduction and action. In FIG. 23A, the reed 92 which is provided with a flattened area 94' similar to FIG. 23 has a hook-shaped configuration rather than an L- shaped configuration as illustrated in FIG. 23. The advantages of these type reeds are that they reduce capacitance in that the mass as of the reeds can be spaced in considerable distance from each other.
FIGS. 24 THROUGH 27 In FIG. 24, the reed switch 70 is mounted in a housing or support 96 which has a cruciform slot 98 in which is mounted a magnet 100. The magnet is round in configuration (although other forms may be used) and is slotted to be movable in the cruciform slot 98. It will now be observed with reference to FIG. 26, that as the magnet 100 is moved to the left in the direction of arrow C, contact will be made between the reeds as the magnet 10.0 is passed from one end of the cruciform slot 98 to the other as long as the axis of the lines of flux are transverse to the planes of the reeds. It will also be noted that the movement of the magnet 100 in the left direction of the arrow C towards first the non-magnetic reed will first tend to push-the magnetic reed 78 to the left and as the magnet is shifted further, the magnetic reed 78 will suddenly snap from one pole towards the other pole to close magnetic reed 78 on non-magnetic reed 76. The action is of course reversed as soon as themovement of the magnet is shifted to the right as in arrow C. If the magnet 100 with its poles oriented as illustrated, is positioned above the reeds 76 and 78 and is shifted in the downward direction of arrow D, and if the magnet is sufficiently offset to the right, the reed 78 will be drawn towards the reed 76.
With reference to FIG. 27, it will now be noted that if the magnet 100 is rotated slightly on its axis and placed at the top of the cruciform slot 98, and then shifted in the direction of the arrow E downwardly, the magnet'will permit operation of the switch in that the polar field ofthe magnet is not exactly 90 to the planes of the magnet,'but is at an angle thereto which permits the magnet 100 to operate the reed 78. It will be noted that the magnetic field should be in the direction of the magnetic reed78 in order to begin to move it away from non-magnetic reed 76 prior to its snapping closed when the magnet 100 is continued to move past the reeds 76 and 78 to permit the magnetic reed 78 to snap back on reed 76. lt is to be further noted that the positioning of the magnet 100 for movement in the direction of the arrow F with its poles as illustrated so that the magnetic field is parallel to the planes of the reeds 76 and 78, will upon shifting to the right, fail to operate the reeds, since the magnetic field is parallel to the planes of the reeds 76 and 78.
It will be obvious that the reed and switches in which i the reeds can be utilized, provide substantial reduction in size for the reed R. The reeds R need. only be mounted so that the spring contact section is projecting from the base support. This allows very compact reed switch mechanisms to be built. It is anticipated that for maximum flex of between 25 of arc and more than 180 of arc, the intermediate section should have a length of between /a to l/32 inch. The thickness of the intermediate section may be uniform throughout substantially its entire length by utilization of certain type dies which may be of box-type configuration rather than arcuate or arcuate with flat surfaces. In general, even for loads of two amps, the overall length of the intermediate and contact sections should not exceed /z inch. For the most part, the capsules need not exceed /2 inch in length nor A in width.
While this invention has been described, it will be understood that it is capable of further modification, and the application is intended to cover any variations, used and/or adaptations of the invention following in general, the principle of the invention and including such departures from the present disclosure as come within known or customary practice in the art to which the invention pertains, and as may be applied to the essential features hereinbefore set forth, as fall within the scope of the invention or the limits of the appended claims.
What we claim is:
l. A reed for a reed switch comprising:
a. a body of conductive material having a contact section, an intermediate spring section, and a support section,
b. said intermediate section being foil-thin and having a cross sectionalthickness of less than 0.003 inch,
c. said support section being substantially rigid and non-flexible,
d. said contact section being substantially thicker than said intermediate section,
e. said intermediate section comprising a leaf spring having a flexibility permitting one end of said leaf spring to flex a substantial distance through an arc of at least 25 with respect to the other end of said leaf spring without exceeding the elastic limits of said spring,
f. said intermediate section being cold-worked to a point where said conductive material assumes a substantial change in physical characteristics, and
g. said intermediate section being substantially harder, less ductile, and more dense than said contact section and having a substantially higher tensile strength than said contact section.
2. A reed as in claim 1 and wherein:
a. said conductive material is soft steel.
3. A reed as in claim 1 and wherein:
a. said support section is substantially rigid and nonflexible and substantially thicker than said intermediate section, and
b. said intermediate section being substantially harder, less ductile, and more dense than said sup port section and having a substantially higher tensile strength than said support section.
4. A reed as in claim 3 and wherein:
a. said sections are integral and formed of asingle piece.
5. A reed as in claim l and wherein:
a. said intermediate section has a maximum flex of at least 25 of are for a length of between A; to l/32 inch.
6. A reed as in claim 1 and wherein:
a. said intermediate section has a maximum flex of at least 30 of arc for a length of between /8 to l/32 inch.
7. A reed as in claim 1 and wherein:
a. said intermediate section has a maximum flex of at least 60 of are for a length of between A; to l/32 inch.
8. A reed as in claim 1 and wherein:
a. said intermediate section has a maximum flex of at least of are for a length of between /a to l/32 inch.
9. A reed as in claim l and wherein:
a. said intermediate section has a maximum flex of at least of are for alength of between about Vs to l/32 inch.
10. A reed as in claim 1 and wherein:
a. said intermediate section has a maximum flex of at least of are for a length of between about A; to l/32 inch.
11. A reed as in claim 1 and wherein:
a. said intermediate section has a maximum flex of at least 180 of arc for a length of between about /a to 1/32 inch.
12. A reed as in claim 1 and wherein:
a. said intermediate section has substantial uniform thickness throughout its length.
13. A reed as in claim 1 and wherein:
a. said intermediate section thickens towards its ends.
14. A reed as in claim 1 and wherein:
a. said intermediate section is concavo-concave.
15. A reed as in .claim 1 and wherein:
a. said intermediate section is planoconcave.
16. A reed as in claim 1 and wherein:
a. said intermediate section is concave-convex.
17. A reed as in claim 1 and wherein:
a. said sections are axially aligned.
18. A reed as in claim 1 and wherein:
a. said contact section is angularly disposed with respect to said support section.
19. A reed as in claim 1 and wherein:
a. each of said sections are angularly disposed to each other.
20. A reed as in claim 1 wherein:
a. said intermediate section includes outwardly projecting side flanges.
21. A reed as in claim and wherein:
a. said side flanges have arcuate edges.
22. A reed as in claim 20 and wherein:
a. said side flanges include a straight central edge terminating in curved edges.
23. A reed as in claim 1 and wherein:
a. said intermediate section has its sides coincident with said contact and support section sides.
24. A reed as in claim 1 and wherein:
a. said intermediate section includes flat and curved surfaces.
25. A reed as in claim 1 and including:
a. a second intermediate section similar to said first mentioned intermediate section.
26. A reed as in claim and wherein:
a. said second intermediate section is immediately adjacent said first mentioned intermediate section and lies in a plane 90 to said first mentioned intermediate section.
27. A reed as in claim 25 and wherein:
a. said contact section lies between said intermediate sections.
28. A reed as in claim 25 and wherein:
a. said first and second intermediate sections abut each other and are arcuate and face in obverse directions from each other to form an S- configuration.
29. A reed as in claim 1 and wherein:
a. said intermediate section includes a past-deadcenter mechanism.
30. A reed as in claim 29 and wherein:
a. said past-dead-center mechanism is a dimple in said intermediate section.
31. A reed as in claim 1 and wherein:
a. the overall length of said intermediate section and said contact section does not exceed about /2 inch.
32. A reed for a reed switch comprising:
a. a body of conductive material having a contact section, an intermediate spring section, and a support section,
b. said intermediate section being foil-thin and having a cross sectional thickness not exceeding .001 inch,
0. said support section being substantially rigid and non-flexible,
d. said contact section being substantially thicker than said intermediate section,
e. said intermediate section comprising a leaf spring having a flexibility permitting one end of said leaf spring to flex, a substantial distance through an arc of at least 25 with respect to the other end of said leaf spring without exceeding the elastic limits of said spring,
f. said intermediate section being cold-worked to a point where said conductive material assumes a substantial change in physical characteristics, and
g. said intermediate section being substantially harder, less ductile, and more dense than said contact section and having a substantially higher tensile strength than said contact section.
33. A reed as in claim 32 and wherein:
a. said conductive material is soft steel,
34. A reed as in claim 32 and wherein:
a. said support section in substantially rigid and nonflexible and substantially thicker than said intermediate section, and Y b. said intermediate section being substantially harder, less ductile, and more dense than said support section and having a substantially higher tensile strength than said support section.
35. A reed as in claim 34 and wherein:
a. said sections are integral and formed of a single piece.
36. A reed as in claim 33 and wherein:
a. said intermediate section has a maximum flex of at least 25 of arc for a length of between to l/32 inch.
37. A reed as in claim 32 and wherein:
a. said intermediate section has a maximum flex of at least 30 of arc for a length of between V8 to l/32 inch.
38. A reed as in claim 32 and wherein:
a. said intermediate section has a maximum flex of a least 60 of are for a length of between A; to l/32 inch.
39. A reed as in claim 32 and wherein:
a. said intermediate section has a maximum flex of at least of arc for a length of between Vs to l/32 inch.
40. A reed as in claim 32 and wherein:
a. said intermediate section has a maximum flex of at least of arc for a length of between about /8 to 1/32 inch.
41. A reed as in claim 32 and wherein:
a. said intermediate section has a maximum flexof at least of are for a length of between about A; to l/32 inch.
42. A reed as in claim 32 and wherein:
a. said intermediate section has a maximum flex of at least of arc for a length of between about Vs to 1/32 inch.
43. A reed as in claim 32 and wherein:
a. said intermediate section has substantial uniform thickness throughout its length.
44. A reed as in claim 32 and wherein:
a. said intermediate section thickens towards its end.
45. A reed as in claim 32 and wherein:
a. said intermediate section is concave-concave.
46. A reed as in'c'laim 32 and wherein:
a. said intermediate Section is planoconcave.
47. A reed as in claim 32 and wherein:
a. said intermediate section is concavo-convex.
48. A reed as in claim 1 and wherein:
a. said sections are axially aligned.
49. A reed as in claim 32 and wherein:
a. said contact section is angularly disposed with respect to said support section.
50. A reed as in claim 32 and wherein:
a. each of said sections are angularly disposed to each other.
51. A reed as in claim 1 and wherein:
a. said intermediate section includes outwardly projecting side flanges.
52. A reed as in claim 51 and wherein:
a. said side flanges have arcuate edges.
53. A reed as in claim 51 and wherein:
a. said side flanges include a straight central edge terminating in curved edges.
54. A reed as in claim 32 and wherein:
a. said intermediate section has its sides coincident with said contact and support section sides.
55. A reed as in claim 32 and wherein:
a. said intermediate section includes flat and curved surfaces.
56. A reed as in claim 32 andincluding:
a. a second intermediate section similar to said first mentioned intermediate section.
57. A reed as in claim 56 and wherein:
a. said second intermediate section is immediately adjacent said first mentioned intermediate section and lies in a plane to said first mentioned intermediate section,
58. A reed as in claim 56 and wherein:
a. said contact section lies between said intermediate sections.
59. A reed as in claim 56 and wherein:
a. said first and second intermediate sections abut each other and are arcuate and face in obverse directions from each other.
60. A reed as in claim 32 and wherein:
a. said intermediate section includes a past-deadcenter mechanism.
61. A reed as in claim 59 and wherein:
a. said past-dead-center mechanism is a dimple in said intermediate section.
62. A reed as in claim 32 and wherein:
a. the overall length of said intermediate section and said contact section does not exceed about /2 inch.

Claims (62)

1. A reed for a reed switch comprising: a. a body of conductive material having a contact section, an intermediate spring section, and a support section, b. said intermediate section being foil-thin and having a cross sectional thickness of less than 0.003 inch, c. said support section being substantially rigid and nonflexible, d. said contact section being substantially thicker than said intermediate section, e. said intermediate section comprising a leaf spring having a flexibility permitting one end of said leaf spring to flex a substantial distance through an arc of at least 25* with respect to the other end of said leaf spring without exceeding the elastic limits of said spring, f. said intermediate section being cold-worked to a point where said conductive material assumes a substantial change in physical characteristics, and g. said intermediate section being substantially harder, less ductile, and more dense than said contact section and having a substantially higher tensile strength than said contact section.
2. A reed as in claim 1 and wherein: a. said conductive material is soft steel.
3. A reed as in claim 1 and wherein: a. said support section is substantially rigid and non-flexible and substantially thicker than said intermediate section, and b. said intermediate section being substantially harder, less ductile, and more dense than said support section and having a substantially higher tensile strength than said support section.
4. A reed as in claim 3 and wherein: a. said sections are integral and formed of a single piece.
5. A reed as in claim 1 and wherein: a. said intermediate section has a maximum flex of at least 25* of arc for a length of between 1/8 to 1/32 inch.
6. A reed as in claim 1 and wherein: a. said intermediate section has a maximum flex of at least 30* of arc for a length of between 1/8 to 1/32 inch.
7. A reed as in claim 1 and wherein: a. said intermediate section has a maximum flex of at least 60* of arc for a length of between 1/8 to 1/32 inch.
8. A reed as in claim 1 and wherein: a. said intermediate section has a maximum flex of at least 90* of arc for a length of between 1/8 to 1/32 inch.
9. A reed as in claim 1 and wherein: a. said intermediate section has a maximum flex of at least 120* of arc for a length of between about 1/8 to 1/32 inch.
10. A reed as in claim 1 and wherein: a. said intermediate section has a maximum flex of at least 150* of arc for a length of between about 1/8 to 1/32 inch.
11. A reed as in claim 1 and wherein: a. said intermediate section has a maximum flex of at least 180* of arc for a length of between about 1/8 to 1/32 inch.
12. A reed as in claim 1 and wherein: a. said intermediate section has substantial uniform thickness throughout its length.
13. A reed as in claim 1 and wherein: a. said intermediate section thickens towards its ends.
14. A reed as in claim 1 and wherein: a. said intermediate section is concavo-concave.
15. A reed as in claim 1 and wherein: a. said intermediate section is planoconcave.
16. A reed as in claim 1 and wherein: a. said intermediate section is concavo-convex.
17. A reed as in claim 1 and wherein: a. said sections are axially aligned.
18. A reed as in claim 1 and wherein: a. said contact section is angularly disposed with respect to said support section.
19. A reed as in claim 1 and wherein: a. each of said sections are angularly disposed to each other.
20. A reed as in claim 1 wherein: a. said intermediate section includes outwardly projecting side flanges.
21. A reed as in claim 20 and wherein: a. said side flanges have arcuate edges.
22. A reed as in claim 20 and wherein: a. said side flanges include a straight central edge terminating in curved edges.
23. A reed as in claim 1 and wherein: a. said intermediate section has its sides coincident with said contact and support section sides.
24. A reed as in claim 1 and wherein: a. said intermediate section includes flat and curved surfaces.
25. A reed as in claim 1 and including: a. a second intermediate section similar to said first mentioned intermediate section.
26. A reed as in claim 25 and wherein: a. said second intermediate section is immediately adjacent said first mentioned intermediate section and lies in a plane 90* to said first mentioned intermediate section.
27. A reed as in claim 25 and wherein: a. said contact section lies between said intermediate sections.
28. A reed as in claim 25 and wherein: a. said first and second intermediate sections abut each other and are arcuate and face in obverse directions from each other to form an S-configuration.
29. A reed as in claim 1 and wherein: a. said intermediate section includes a past-dead- center mechanism.
30. A reed as in claim 29 and wherein: a. said past-dead-center mechanism is a dimple in said intermediate section.
31. A reed as in claim 1 and wherein: a. the overall length of said intermediate section and said contact section does not exceed about 1/2 inch.
32. A reed for a reed switch comprising: a. a body of conductive material having a contact section, an intermediate spring section, and a support section, b. said intermediate section being foil-thin and having a cross sectional thickness not exceeding .001 inch, c. said support section being substantially rigid and non-flexible, d. said contact section being substantially thicker than said intermediate section, e. said intermediate section comprising a leaf spring having a flexibility permitting one end of said leaf spring to flex, a substantial distance through an arc of at least 25* with respect to the other end of said leaf spring without exceeding the elastic limits of said spring, f. said intermediate section being cold-worked to a point where said conductive material assumes a substantial change in physical characteristics, and g. said intermediate section being substantially harder, less ductile, and more dense than said contact section and having a substantially higher tensIle strength than said contact section.
33. A reed as in claim 32 and wherein: a. said conductive material is soft steel,
34. A reed as in claim 32 and wherein: a. said support section in substantially rigid and non-flexible and substantially thicker than said intermediate section, and b. said intermediate section being substantially harder, less ductile, and more dense than said support section and having a substantially higher tensile strength than said support section.
35. A reed as in claim 34 and wherein: a. said sections are integral and formed of a single piece.
36. A reed as in claim 33 and wherein: a. said intermediate section has a maximum flex of at least 25* of arc for a length of between 1/8 to 1/32 inch.
37. A reed as in claim 32 and wherein: a. said intermediate section has a maximum flex of at least 30* of arc for a length of between 1/8 to 1/32 inch.
38. A reed as in claim 32 and wherein: a. said intermediate section has a maximum flex of at least 60* of arc for a length of between 1/8 to 1/32 inch.
39. A reed as in claim 32 and wherein: a. said intermediate section has a maximum flex of at least 90* of arc for a length of between 1/8 to 1/32 inch.
40. A reed as in claim 32 and wherein: a. said intermediate section has a maximum flex of at least 120* of arc for a length of between about 1/8 to 1/32 inch.
41. A reed as in claim 32 and wherein: a. said intermediate section has a maximum flex of at least 150* of arc for a length of between about 1/8 to 1/32 inch.
42. A reed as in claim 32 and wherein: a. said intermediate section has a maximum flex of at least 180* of arc for a length of between about 1/8 to 1/32 inch.
43. A reed as in claim 32 and wherein: a. said intermediate section has substantial uniform thickness throughout its length.
44. A reed as in claim 32 and wherein: a. said intermediate section thickens towards its end.
45. A reed as in claim 32 and wherein: a. said intermediate section is concavo-concave.
46. A reed as in claim 32 and wherein: a. said intermediate section is planoconcave.
47. A reed as in claim 32 and wherein: a. said intermediate section is concavo-convex.
48. A reed as in claim 1 and wherein: a. said sections are axially aligned.
49. A reed as in claim 32 and wherein: a. said contact section is angularly disposed with respect to said support section.
50. A reed as in claim 32 and wherein: a. each of said sections are angularly disposed to each other.
51. A reed as in claim 1 and wherein: a. said intermediate section includes outwardly projecting side flanges.
52. A reed as in claim 51 and wherein: a. said side flanges have arcuate edges.
53. A reed as in claim 51 and wherein: a. said side flanges include a straight central edge terminating in curved edges.
54. A reed as in claim 32 and wherein: a. said intermediate section has its sides coincident with said contact and support section sides.
55. A reed as in claim 32 and wherein: a. said intermediate section includes flat and curved surfaces.
56. A reed as in claim 32 and including: a. a second intermediate section similar to said first mentioned intermediate section.
57. A reed as in claim 56 and wherein: a. said second intermediate section is immediately adjacent said first mentioned intermediate section and lies in a plane 90* to said first mentioned intermediate section,
58. A reed as in claim 56 and wherein: a. said contact section lies between said intermediate sections.
59. A reed as in claim 56 and wherein: a. said first and second intermediate sections abut each other and are arcuate and face in obverse directions from each other.
60. A reed as in claim 32 and wherein: a. said interMediate section includes a past-dead-center mechanism.
61. A reed as in claim 59 and wherein: a. said past-dead-center mechanism is a dimple in said intermediate section.
62. A reed as in claim 32 and wherein: a. the overall length of said intermediate section and said contact section does not exceed about 1/2 inch.
US404612A 1973-10-09 1973-10-09 Contact reed with foil-thin intermediate section Expired - Lifetime US3866007A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US404612A US3866007A (en) 1973-10-09 1973-10-09 Contact reed with foil-thin intermediate section
CA210,258A CA1003013A (en) 1973-10-09 1974-09-27 Reed and reed switch therefor
AU73796/74A AU7379674A (en) 1973-10-09 1974-09-30 Switch
DE19742447319 DE2447319A1 (en) 1973-10-09 1974-10-03 REED SWITCH AND REED CONTACT FOR THESE
GB4338474A GB1471568A (en) 1973-10-09 1974-10-07 Reed contact units
FR7434005A FR2246956B3 (en) 1973-10-09 1974-10-09
JP11573174A JPS5065854A (en) 1973-10-09 1974-10-09
US05/533,223 US3943474A (en) 1973-10-09 1974-12-16 Reed and reed switch therefor
US05/611,156 US4038620A (en) 1973-10-09 1975-09-08 Magnetic reed switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US404612A US3866007A (en) 1973-10-09 1973-10-09 Contact reed with foil-thin intermediate section
US05/533,223 US3943474A (en) 1973-10-09 1974-12-16 Reed and reed switch therefor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US05/533,223 Division US3943474A (en) 1973-10-09 1974-12-16 Reed and reed switch therefor
US05533233 Division 1975-12-16

Publications (1)

Publication Number Publication Date
US3866007A true US3866007A (en) 1975-02-11

Family

ID=27018698

Family Applications (2)

Application Number Title Priority Date Filing Date
US404612A Expired - Lifetime US3866007A (en) 1973-10-09 1973-10-09 Contact reed with foil-thin intermediate section
US05/533,223 Expired - Lifetime US3943474A (en) 1973-10-09 1974-12-16 Reed and reed switch therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
US05/533,223 Expired - Lifetime US3943474A (en) 1973-10-09 1974-12-16 Reed and reed switch therefor

Country Status (6)

Country Link
US (2) US3866007A (en)
AU (1) AU7379674A (en)
CA (1) CA1003013A (en)
DE (1) DE2447319A1 (en)
FR (1) FR2246956B3 (en)
GB (1) GB1471568A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883556A (en) * 1997-12-15 1999-03-16 C.P. Clare Corporation Reed switch
WO2003017302A1 (en) * 2001-07-23 2003-02-27 Abb Service S.R.L. Circuit breaker for low-voltage currents
US20050016785A1 (en) * 2003-07-21 2005-01-27 Young Grant E. Bicycle with optional power assist
US20050092051A1 (en) * 2003-11-05 2005-05-05 Fridrich Elmer G. One piece foliated leads for sealing in light sources

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3319227A1 (en) * 1983-05-27 1984-11-29 Microtherm Gmbh, 7530 Pforzheim THERMAL SWITCH
KR100745910B1 (en) * 2006-01-23 2007-08-02 주식회사 하이닉스반도체 Method for forming fuse of semiconductor device
GB2511569B (en) 2013-03-08 2015-05-06 Christopher John Stanton Improved switch and associated methods
GB2539366A (en) * 2014-12-19 2016-12-21 The General Electric Company Combined spring

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3015876A (en) * 1957-06-18 1962-01-09 Gen Electric Method of making resilient switch contacts
US3168634A (en) * 1961-06-27 1965-02-02 Holzer Walter Electrical contact device
US3242295A (en) * 1962-10-11 1966-03-22 Holzer Walter Electric contact assembly
US3258557A (en) * 1963-09-01 1966-06-28 Philips Corp Reed for a reed relay
US3283274A (en) * 1963-10-04 1966-11-01 Falco Angelo De Push button reed switch
US3525060A (en) * 1967-05-26 1970-08-18 Int Standard Electric Corp Reed contacts operable by magnetic forces
US3808390A (en) * 1973-04-11 1974-04-30 Amp Inc Switch with swaged leaf-spring contact

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2264746A (en) * 1940-06-27 1941-12-02 Bell Telephone Labor Inc Electromagnetic switch
US2922856A (en) * 1956-12-20 1960-01-26 Siemens Ag Electromagnetic switch
US3359385A (en) * 1966-06-09 1967-12-19 Caterpillar Tractor Co Flow sensing device
US3760312A (en) * 1972-10-20 1973-09-18 B Shlesinger Magnetically actuated reed switch assembly

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3015876A (en) * 1957-06-18 1962-01-09 Gen Electric Method of making resilient switch contacts
US3168634A (en) * 1961-06-27 1965-02-02 Holzer Walter Electrical contact device
US3242295A (en) * 1962-10-11 1966-03-22 Holzer Walter Electric contact assembly
US3258557A (en) * 1963-09-01 1966-06-28 Philips Corp Reed for a reed relay
US3283274A (en) * 1963-10-04 1966-11-01 Falco Angelo De Push button reed switch
US3525060A (en) * 1967-05-26 1970-08-18 Int Standard Electric Corp Reed contacts operable by magnetic forces
US3808390A (en) * 1973-04-11 1974-04-30 Amp Inc Switch with swaged leaf-spring contact

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883556A (en) * 1997-12-15 1999-03-16 C.P. Clare Corporation Reed switch
WO1999031691A1 (en) * 1997-12-15 1999-06-24 Cp Clare Corporation Improved reed switch and method of making same
WO2003017302A1 (en) * 2001-07-23 2003-02-27 Abb Service S.R.L. Circuit breaker for low-voltage currents
US20050016785A1 (en) * 2003-07-21 2005-01-27 Young Grant E. Bicycle with optional power assist
US20050092051A1 (en) * 2003-11-05 2005-05-05 Fridrich Elmer G. One piece foliated leads for sealing in light sources
US7107676B2 (en) * 2003-11-05 2006-09-19 Fridrich Elmer G One piece foliated leads for sealing in light sources

Also Published As

Publication number Publication date
GB1471568A (en) 1977-04-27
CA1003013A (en) 1977-01-04
DE2447319A1 (en) 1975-04-17
AU7379674A (en) 1976-04-01
FR2246956A1 (en) 1975-05-02
FR2246956B3 (en) 1977-07-22
US3943474A (en) 1976-03-09

Similar Documents

Publication Publication Date Title
US3866007A (en) Contact reed with foil-thin intermediate section
US6180899B1 (en) Semi-bifurcated electrical contacts
WO2015089902A1 (en) Micro-jitter electromagnetic relay
US5051552A (en) Slide selector switch mechanism
CA1203275A (en) Electromagnetic relay
US3294932A (en) Wiping contact switch
US4063203A (en) Reed switch
US4339734A (en) Encased miniature relay
US3152237A (en) Electrical switching devices with movable contact engageable with v-shaped contact
US3579158A (en) Armature structure for reed switches
US3194912A (en) Double snap-action magnetically actuated toggle switch
US5083104A (en) Miniature relay
US3060291A (en) Switching assembly
EP0322988A1 (en) A leaf spring system and an electric switch provided with such a leaf spring system
US2235861A (en) Electromagnetic relay
US3270156A (en) Switching devices with contact means which inhibit contact bounce
US3056001A (en) Electric switches
US2153401A (en) Electric switch
CN209913000U (en) Coaxial radio frequency switch with flexible limiting belt
US3170999A (en) Silent magnetically operated snapaction electric switch
US4001744A (en) Electrical switch
US2827529A (en) Double pole electromagnetic switching device
US3253095A (en) Electromagnetic relays
US3319022A (en) Snap switch having an integral over-center snap spring blade
US3639869A (en) Magnetically latched switch assembly