US3861512A - Label-making machine - Google Patents

Label-making machine Download PDF

Info

Publication number
US3861512A
US3861512A US279702A US27970272A US3861512A US 3861512 A US3861512 A US 3861512A US 279702 A US279702 A US 279702A US 27970272 A US27970272 A US 27970272A US 3861512 A US3861512 A US 3861512A
Authority
US
United States
Prior art keywords
index
indicium
members
reciprocating
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US279702A
Inventor
Peter Coriasco
Heinz Haselbarth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Supreme Equipment and Systems Corp
Original Assignee
Supreme Equipment and Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Supreme Equipment and Systems Corp filed Critical Supreme Equipment and Systems Corp
Priority to US279702A priority Critical patent/US3861512A/en
Application granted granted Critical
Publication of US3861512A publication Critical patent/US3861512A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K1/00Methods or arrangements for marking the record carrier in digital fashion
    • G06K1/12Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching
    • G06K1/121Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching by printing code marks

Definitions

  • the machine has a basic cycle of indexing and reciprocation of a print-character drum (or wheel) and anvil, with respect to each other, the label web between drum and anvil being incrementally advanced or indexed, as necessary, between character-marking reciprocations.
  • Novel means tracking the instantaneous rotary-indexed position of the drum, and evaluating the same in relation to the prescribed next digit to be printed, is operative to reposition the drum with utmost efficiency and speed during the period between successive print contacts with the web, thus assuring against delay between successive print contacts and against uncertainty in the correctness of the newly indexed rotary position of the drum.
  • the invention will be described in connection with a machine in which the end product (a suitably marked label) is destined for a machine-reading application which relies upon reflected light to evaluate an en coded label, through response to the pattern of light intensity, in the course of a scanning operation.
  • the machine is described in terms of printing, i.e., applying a suitable printed pigment to the surface of a contrasting web surface.
  • the machine is equally applicable to label-encoding devices wherein the machine-readable characters are applied to create a stencil, i.e., to punch-out the web, rather than merely to print the characters thereon.
  • the marking indicia of the plurality n are carried at angularly spaced locations on a drum or wheel, which is sometimes herein referred to as a print drum, but which will, in a stencil or punch-out application, be understood to be one of the male-and-female set of such drums, as may be needed for clean punching of the web.
  • Another object is to provide improved means for effecting character-change, in the period between successive print or other web-marking functions of such a machine.
  • a further object is to provide improved means for automating the production of sequentially and/or randomly indexed indicia in such a machine.
  • a general object is to achieve the above objects with a machine in which utmost flexibility and simplicity are offered to the operator in calling for particular multidigit markings and for sequences thereof, and in which at the same time economy, efficiency and accuracy are achieved to a high degree.
  • FIG. 1 is a simplified view in side elevation showing a label-making machine of the invention
  • FIG. 2 is an enlarged fragmentary sectional view, taken at the vertical plane 22 of FIG. 1;
  • FIG. 3 is a further-enlarged fragmentary view of a part of the apparatus, as seen from the plane 33 in FIG. 2;
  • FIG. 4 is an enlarged front view of an index disc, which appears in side elevation as a part of FIG. 2;
  • FIG. 5 is a front view of the control and display panel for the machine of FIG. 1;
  • FIG. 6 is an electrical diagram schematically showing circuitry operated by and from the panel of FIG. 5',
  • FIG. 7 is a further sucl diagram, schematically showing more detail for certain parts of FIG. 6;
  • FIG. 8 is another schematic diagram illustrating an.
  • the station A accommodates, between upright frame plates 10, separate supply reels 11-12 for the pay-out of label-web stock 13 and of print-pigment web 14, via guide rolls which place the web 14. above the adjacent the web 13, in readiness for pigment transfer at station B.
  • each of the reels 11-12 includes an adjustably.
  • At station B which is also established between upright frame plates 17-17, spaced guide rolls 18-19 es tablish a generally horizontal plane of web support through the printing zone, wherein a printing head 20 and-an anvil2l (FIG. 2) are vertically reciprocated with respect to each other, to effect pigment transfer by squeezing the webs 1314.
  • a printing head 20 and-an anvil2l FIG. 2
  • an upper pair of feed rolls 22 withdraws used pigment web 14 to a takeup reel 23, while a lower pair of feed rolls 24 delivers printed web. 13 straight to the cut-off station c.
  • the feed rolls 24 are spaced substantially a label length L from the print zone, and are also spaced substantially the distance L from the cut-off point at C, as shown by legend in FIG. 1.
  • the printing head 20 is a drum rotatably mounted in vertical slides 25-25, and the procedureciprocation cycle involves vertical descent of the slides toward, and withdrawal from, coaction with the anvil 21, all as guided by vertical ways 26 in the frame.
  • Slides 25-25' are bridge-connected at 27, above drum 20, for attachment to the actuating rod 28 of doubleacting fluid-pressure operated means 29, the latter being frame-mounted on a saddle or table 30 which connects the front and back plates 17-17.
  • Increments of web-feeding drive to the respective pairs of feed rolls 22-24 are picked off the indicated vertical-reciprocation cycle of the printing head 20, via a bracket 31 secured to one of the slides 25-25.
  • the bracket 31 has spaced horizontal mounting slots to enable a range of horizontal adjustment of the position at which it is secured, as by bolt means 32, to the front vertical slide 25,'thus enabling a substantially radial adjustment for the point at which a feed pin 33 (forming part of bracket 31) engages a radial slot in a feed crank 34.
  • a one-way-engaging rotary clutch 35 engages crank 34 to a transverse shaft 36, which carries a drive sprocket or toothed wheel 37 for endless-chain or toothed-belt means 38, suitably tensed at 38, and meshing with sprockets 22'-24 forming part of the respective feed-roll pairs 22-24.
  • the direction of oneway-engagement at 35 is such as to disengage during the descending stroke of slides 25-25' and to engage during the return or withdrawal stroke thereof.
  • the pick-off sprockets at 22'-24 should be of the same pitch diameter to assure uniform transport of both webs 13-14 through the printing zone, and that the pitch diameter of drive sprocket 37 should be so proportioned to that of the sprockets at 22-24 as to assure one full character or digit-position index of the web for each print-reciprocation cycle; the horizontal adjustment for securing bracket 31 to slide 25 enables precise control of such digit-position indexing of the webs l314.
  • An auxiliary pick off 39 form the described web-indexing means enables suitable drive of the take-up reel through slip-clutch means, as will be understood Turning now more particularly to FIG.
  • the drum or printing head 20 is seen to comprise an annulus 40 with n equally spaced mounting flats or pedestals 41 about the periphery, each being suitably devised to accurately mount a different one of the n different character or indicium pieces (a, b, c, etc. in FIG. 1) in a plane that is strictly tangential to a cylindrical locus of character or type-face centers.
  • the upper and lower sections for annulus 40 appear different because n, in the form shown, happens to be an odd number, being selected as eleven, in order to accommodate one decade of machine-readable indicia of decimal quantities, plus a machine-readable indicium which is distinguishable for machine-recognition of the direction in which a fully encoded label should be scanned.
  • Flanged hubs 42-43 close the ends of annulus 40 and are bushed at 44 to the respective vertical slides 25-25.
  • the counterbore 45 of the rear hub 43 is keyed to a drive shaft 46, which also fixedly carries drumposition indicator or index plate 47, to be described later, in connection with FIG. 4 and the control and positioning means of FIGS. to 7.
  • the drum For each of its n possible indexed positions, the drum carries a locating pin 48, typified by the one shown in side elevation in FIG. 2, and fitted to the flange of the rear hub 43. As best seen in FIG. 3, upon attainment of a given indexed position of drum 20, the lowermost index-locating pin 48 is poised above a locating fork 49 which presents a funnel-mouthed locating slot for accurate positioning and retention of drum 20 dur ing a printing stroke; the located down position of this stroke is suggested by phantom outline 48.
  • the fork 49 is shown to have a degree of guided freedom for vertical adjustment, being anchored by means 49 in a guide groove milled in the inner face of the back frame plate 17'.
  • the drive train from motor 54 is shown to include reduction-gear means 55 to a vertical shaft 56, journalled by means 57 and having an upwardly projecting splined or keying end 58, for axially slidable but non-rotatable engagement to one of the meshing (Ill) pinions in a shaftconnecting gear assembly 59; another of the pinions of assembly 59 is also keyed to the similarly finished reduced end 60 of shaft 46.
  • the rotary connection from motor 54 to drum 20 is thus closely maintained in spite of the vertical reciprocation cycle of drum 20.
  • drum 20 establishes a hollow interior, for accommodation of heater means 61 carried by a tubular rod 62, bushed at 63 to hub 43, passing in clearance relation through the bore of hub 42, and clamped by means 64 on the front face of slide 25.
  • Heater 61 will be understood to be supplied and controlled via the clamped open end of rod 62, as may be required for appropriate for the particular pigment of web 14.
  • the cut-off station C comprises an upstanding frame 65, mounting fixed and movable shear elements 66-67, and controlled by double-acting fluid-pressure means 68.
  • a limit switch 69 responds to the shear up" or open" position, for electrical synchronizing purposes.
  • a further such switch 70 is carried by a fixed standard 71 (see FIG. 2) to respond to an up' position of drum 20, again for electrical synchronizing purposes.
  • the index plate 47 is seen as a rotatable mask, having successive concentric loci (I, II, III, IV, V) on which apertures are provided, in uniquely and radially coded array, for each of the n indexible positions of the drum 20 to which plate 47 is clamped, via drive shaft 46.
  • Light-phantom radial strobes indicate the code alignment for each of the indexible positions, and as already indicated, there are eleven such positions, equally spaced; in FIG. 4, each such strobe is marked with a decimal digit, 0, I, 2 ...9.
  • the eleventh position is designated S, to signify the index position for which an indicium is printed at one end of the label, e.g., the start position, so that machine-reading can be unambiguous, by starting to scan only at the correct end of the coded succession of indicia.
  • the loci'I to IV accommodate the four respective digit positions for the successive binary equivalents of the single decimal decade here employed; the apertures 72 for this purpose are of relatively large diameter.
  • the apertures 72 for this purpose are of relatively large diameter.
  • much smaller apertures 73, at intersection with all radial-strobe alignments, enable a much finer pin-pointing of the particular strobe for a given indexed position.
  • the light-source support arm 50 (FIG. 2) directs light from five sources on alignments normal to plate 47 and intersecting the respective loci I, II ...V, as suggested by legends I, II', III, IV and V in FIG. 2; and for each of these alignments a separate photocell, contained in the photocellreader arm 51, will be understood to develop an independent electrical output.
  • the apertures 72 of the four-bit binary codes at loci I to IV serve a high-speed indexing rotation of drum 20, and the apertures 73 at locus V serve to mark passage of each indexable position and to end a subsequently programmed, reversed, slowspeed drive back to a drive-stop function, at the se lected indexed position.
  • CONTROL RELATIONSHIPS By way of general overview, there are three principal aspects regarding control for the instant label-making machine. First, the numerical identity of the labels to be produced must be entered into electronic storage. Secondly, digital circuit operations (e.g., digit shifting, next-number fetching and the like) must isolate and serially supply to the printing apparatus the digits forming each label. Finally, for printing of each digit, and in accordance with one aspect of the present invention, a logical decision must be made to determine the shortest direction of rotation (i.e., clockwise or counterclockwise) for the printing drum and the index plate 47 to enable printing of the next digit. Considering first the entry of label-numerical information, attention is directed to the operator'console panel of FIG.
  • an operator serially depresses numerical keys on a keyboard 80 (FIG. 5) corresponding to the decimal digits of the beginning label number of a label sequence, that is, a series of consecutive label numbers to be produced by the labeling machine of the present invention.
  • a keyboard 80 FIG. 5
  • the number stored in the register 90 is supplied to a decoder-display 84 and is visually displayed on the operator console (see FIG. 5).
  • the working register 95 stores the full digital number corresponding to the current (or next) label to be produced; in this aptions, depression of any key produces a unique encoding on a plurality of keyboard-output conductors, and also generates a signal on a control line to indicate that a key has been actuated.
  • the keyboard output-data lines comprise inputs to spaced sections of a buffer shift register 88 (or inputs to a plurality of differing shift registers), and the control output line from the keyboard 80 comprises a clock input for the register 88, to shift data down each register section.
  • an enter beginning number identifyingcontrol key 81 (FIG. 5) is depressed on the console to transfer'data present at the output terminals of the shift-register (88) stages into a plural-stage register or latch 89, and via a gate 94 enabled by the key 81 into a working register 95.
  • depression of the key 81 may simply energize a control input port 92 of the register 89 to momentarily render that register operative in a data-receiving (sample) mode.
  • End stages of the register 95 permanently store a special character which is printed at the beginning of each label to facilitate automated reading (retrieval) thereof, and an internal end of label-control character considered below.
  • the number stored in the register 89 is supplied to a decoder-display 83 which decodes the stored-data format (assumed to be binary-coded decimal, or BCDto x of n form for actuating any commonly available plural-digit display structure, such as cold-cathode tubes, plural-segment light-emitting diodes, or the like.
  • the first label number is displayed on the operator console panel, at the display 83 shown in FIG. 5, for the duration of the label-producing sequence of operation.
  • the characters on the keyboard are next the register thereby retaining the last number of the paratus-initiating situation, it is the first or beginningof-sequence number that is initially loaded into the reg isters 88 and 89. That number, i.e., the contents of the register 95, is loaded in parallel form into a further shift register 98 via a gate 102, the latter being enabled by the key 81 by way of an OR gate 103.
  • the current operand content of the register 98 is decoded and displayed on the operator console by structure 85.
  • the FIG. 6 electrical apparatus has thus completed its data-entry mode of operation, and is next applied to the process of iteratively printing labels, printing being effected on a digit-by-digit basis for each label in turn.
  • the pluraldigit binary-digit word identifying each decimal digit in the label number (e.g., four bits for BCD coding) is supplied to print-wheel control apparatus (FIG. 7) from the end stage of each register portion.
  • print-wheel control apparatus FIG. 7
  • the printing drum 20 and index plate 47 are rotated until a digit comparator 101 (shown in both FIG. 6 and FIG. 7) detects a match between the number to be printed, and the operative print-drum positioning signaled by the plate 47 and the light detectors associated therewith.
  • the web 13 is imprinted with decimal information in the manner already discussed above.
  • the actuated hydraulic cylinder 29 and anvil 21 produce an electrical completion-of-digit printing signal,'e.g., optically or via a travel-sensing limit switch.
  • the end-of-digit signal serves as'aclock pulse for the shift register 98 to step the information contained therein one stage to the right for each of the assumed four. register sections, such that the binary-coded decimal information for the nextfollowing decimal digit in the label number is then present at the register-output reading positions.
  • a delay circuit 99 e.g., a monostable multivibrator
  • this next number to be printed is communicated to the mechanical printing apparatus via a plural-lead buss 104.
  • the special end-of-label code supplied to the register 98 when that register is loaded through gate 102, is present at the output stages of the shift register 98.
  • This special character is de tected by a match output of an end-of-character test circuit 100, e.g., a comparator having its other inputs loaded with the BCD special end-of-character" (i.e., end-of-label) binary word.
  • this endof-label signal may be produced by simply counting a predetermined number of end-of-digit" pulses, for the known number of digits in the given label-marking assignment.
  • the label number stored in the register is supplied to an adder 97 which is continuously available to provide a +1 add function, i.e., the label unumber plus one.
  • the successive outputs of the adder 97 comprise a label number having a value one greater than the previous label number; each such output at 97 thus represents the next label number to be printed.
  • this next label number present at the output of the adder 97 is gated into the register 95 via a gate 96, and also loaded in parallel into the shift register 98 through gate 102 enabled by gate 103.
  • the end-ofcharacter signal comprises information required to sig nal the FIG. 1 apparatus that the previous label is completed, and may be severed at C from the label web 13 for collection at D.
  • a further digital comparator 91 signals that all labels in the sequence have been produced when a match is detected between the contents of the register 90 and 95.
  • circuitry to move through the shortest are between its current position (initially corresponding to the last-decimal digit printed) and its next required position (corresponding to the next digit to be printed).
  • the motor initially turns rapidly and, accordingly, overshoots the requisite position slightly. It then reverses in a slow rotational mode until properly positioned, at which point the motor 54 stops.
  • the drum 20 has eleven radial orientations (corresponding to the decimal characters 9 and one special position the special character being identified as a decimal l0, binary 1010).
  • the drum can be no more than five index stations away (in the shorter direction) from its nextcommanded position.
  • the apparatus of FIG. 7 operates to determine the clockwise or counterclockwise'direction for which the next number is within five positions from its present position.
  • the directional sensing means of the invention includes means for selectively adding one of the quantities +x or x to reader output and for comparing the added output with the instantaneous command, for supply to logic means to be described, for developing the correct direction of shortest rotary displacement to the commanded-digit position.
  • the decimal equivalent of the present print-drum (20) position PRESENT
  • the decimal value of the present position is between zero and five, and decremented by five for values between six and eleven, the augmented or decremented present-position quantity being identified as the SUM" quantity.
  • the motor will be directed to turn in a first direction, e.g., clockwise. Otherwise, the motor will be directed to turn in an opposite direction.
  • FIG. 7 The manner in which the above mode of processing is implemented is shown in FIG. 7.
  • the present position of the print wheel 20 (PRESENT) is stored in a first register 121.
  • the identity of the next digit to be printed i.e., the digits supplied by the shift register 98 on buss 104 in FIG. 6, is loaded into a COMMAND" register 122.
  • the present-position information is compared with the literal binary number +6 in a digital comparator 110, and one of two input control ports of a combinatorial circuit 113 is energized by an OR gate III or by the inverse thereof (generated by an invertor 112), depending upon whether or not the quantity presently stored in the register 121 is between 0 and 5, or between 6 and 10, respectively.
  • the combinatorial circuit 113 responds to one of the two possible enabling input signals by supplying binary equivalents of one of the decimal numbers +5 or 5, as an addend to an adder 114 which also receives the present rotational location information from the register 121.
  • the adder 114 thus serves to produce the quantity SUM described above.
  • SUM is compared with COMMAND" in a comparator I15 to produce output signals descriptive of the relative magnitudes of the quantities COMMAND and SUM.”
  • the comparator 101 examines the digital quantities stored in PRESENT register 121 and COM- MAND register 122 and appropriately signals the two possible inequalities th'erebetween, and also provides an output signal via a lead to an AND gate 123 when the signals PRESENT and COMMAND are equal, i.e., when the printing drum 20 is adjusted such that the proper character is disposed in an operative print locatron.
  • gating elements 116417-11- 8-119 operate on the quantities developed by the FIG. 7 circuitry to generate a signal CW which activates the motor 54 for clockwise rotation in accordance with the above described algorithm, and for otherwise rotating the motor in a counterclockwise direction via an appropriate signal at an output terminal CCW which is the inverse of the potential at the output terminal CW, as implemented by an inverter 120.
  • the FIG. 7 circuitry operates to actuate the motor 54 for rotation in the preferred, shortest direction to properly position the print drum 20.
  • both inputs of the AND gate 123 will be actuated, the read" signal being developed by the light-sensing transducer at the outer track V of FIG. 4.
  • a divide-by-two counter 125 registers a count of one therein to energize a counteroutput terminal 124. This causes the motor 54 to reverse direction to obviate the overshoot which occurred when the desired radial orientation was first encountered and traversed.
  • the gate 1123 again switches, advancing the counter 125 to its other state (a count of 2) thereby energizing its other output port 126 to stop the motor, and thereby also providing a print-enabling command.
  • the invention is not to be limited to the implementation of the algorithm set forth above; other tests may be made to determine the preferred direction of rotation of the motor 54.
  • a conceptually simple approach is to determine the larger of PRESENT and COMMAND, and to compute the absolute value of the difference COMMAND-PRESENT. If PRES- ENT exceeds COMMAND and the difference value is at least 6, or ifCOMMAND exceeds PRES- ENT and the difference is less than 6, the motor 54 is turned in one direction. If neither of these conditions obtains, the motor turns in the reverse direction.
  • the foregoing may be implemented by supplying PRES- ENT and COMMAND to a digital subtractor, and
  • the described circuitry may be implemented by inexpensive, reliable and wellunderstood and available components and, regardless of theFIG. 7 or FIG. 8 approach used, the circuit arrangement shown will position the print wheel 20 in the most advantageous manner for rapid label printing, such printing being implemented by the mechanical and electrical circuitry discussed hereinabove.
  • the-anvil 21 is a removably inserted block of yieldable-plastic having a good memory characteristic, such as relatively stiff polyurethane, retained in a suitable cavity within the bed structure 21' (FIG. 2) of the frame between plates 17-17.
  • the cavity is an elongate horizontal dovetail groove and the anvil 21 is of similar section for slidable reception in the groove; removable plate means 21" is secured to bed 21 and retains the inserted longitudinal position of anvil 21, in registry beneath the currently indexed operative pedestal 41 (and the type face or indicium piece mounted thereon).
  • the plastic anvil 21 will be seen as particularly useful when indicia are to be nonreflectively printed on the reflective side of a web 13 of glass-beaded reflective tape.
  • the local compliant yield-ability of the anvil material adapts the pigment web 14 to surface undulations and irregularities of the beaded surface, causing full penetration of pigment into the interstices,recesses and follicles of the bead surface.
  • the parts are adjusted to assure locally compressed indentation of the anvil for each print stroke, the extent of interference being at least equal to substantially the maximum amplitude of surface irregularity of the glass-bead surface.
  • the plastic anvil During the momentum of the pigment-impression part of the stroke, the plastic anvil allows fully pressurized imbedding of the exposed portions of the glass beads, creating a uniformly printed (pigment-coated) surface; in the rest intervals between print strokes, the urethane anvil is self-restoring to its original shape.
  • the anvil 21 was a %-inch thick block of K- Prene urethane, being a trademark product of Hondaille Industries, the web l3was a glass-beaded tape (No.
  • the web 14 carried a heat-responsive pigment on a plastic-film backing, calling for maintenance of the drum 20 at a temperature of 250 Fahrenheit; the impression stroke was adjusted to achieve a 0.020-inch compression of the anvil, namely in the range of 2.5 to 5 percent (preferably substantially 3.5 percent of anvil thickness), which, for the indicated materials, involved a maximum impression force of substantially 1,000 psi.
  • Printing means comprising a rotatably indexible member having a series of different indicia at each of a plurality of angularly spaced index locations thereon, multiple-speed reversible rotary-drive means for said member, an anvil member, a frame including guide ways, a slide on said ways and supporting one of said members-for movement to and'away from coaction with the other member for a given indicium location, means for supporting web material between said members, reciprocating 'means connected to drive said members into and away from indicium-marking relation with said web, mechanicalindex-position locating mechanism coacting between said indexible member and said frame, such mechanism being enterable into index-locating relationship in the course of reciprocating approach of said members into indicium-marking relation and becoming free of index-locating relationship in the course of reciprocating retreat of said membe'rs from indicium-marking relation, said .indexlocating mechanism having a predetermined indexangle acceptance tolerance and including'cam means operative to home said members to precision-location of indexed
  • a label-making machine for automatically preparing a label card of n-digits of machine-readable characters, said machine comprising a fixed frame including elongate guide means for the progressive guidance of card stock advanced through said machine, stocksupply means at one end of said guide means, a printing station at a location along said guide means and near said supply means, said station comprising on one side of said guide means a rotatably indexible member having a series of different machine-readable printing indicia at each of a plurality of angularly spaced index locations thereon, an anvil member on the other side of said guide means, frame-based structure including guide ways transverse to the direction of said guide means, a slide on said ways and supporting one of said members for movement to and away from coaction with the other member for a given indicium location, reciprocating means connected to drive said members into and away from indicium-marking relation with card stock therebetween, mechanical index-position locating mechanism coacting between said indexible member and said frame, such mechanism being enterable into index-locating relationship in the
  • said stock-supply means includes a reel accommodating continuous card stock for advance through the printing station, and in which said lastdefined means includes cut-off mechanism having a cut-off initiating actuating connection to said last-defined means.
  • Printing means comprising a rotatably indexible member having a series of different indicia at each of a plurality of angularly spaced index locations thereon, an anvil member, a fixed frame including guide ways, a slide on said ways and supporting one of said members for movement to and away from coaction with the other member for a given indicium location, means for supporting web material between said members, reciprocating means connected to drive said members into and away from indicium-marking relation with said web, mechanical index-position locating mechanism coacting between said indexible member and said frame, such mechanism being enterable into index locating relationship in the course of reciprocating approach of said members into indicium-marking relation and becoming free of index-locating relationship in the course of reciprocating retreat of said members from indicium-marking relation, said index-locating mechanism having a predetermined index-angle acceptance tolerance and including cam means operative to home said members to precision-location of indexed position during the course of such reciprocating approach and prior to achievement of indicium-marking relation, code-wheel means
  • said web-supporting means including means for supporting first web material to face said rotatable member, and means for supporting a second and pigmented web material between the first web material and said rotatable member, said anvil comprising a block of stiffly compliant plastic material backed by a part of said frame, the parts relation being such that at the indicium-marking end of the reciprocating stroke, said webs are compressed against each other and into at least some compressive deformation of said anvil; whereby, for first web material having a glass-beaded surface supported to face said rotatable member, and for pigment of the second web facing the glass-beaded surface, pigment will be caused to penetrate into and be retained within the interstices, recesses and follicles of the beaded surface.
  • Printing means including heater means in said drum establishing a predetermined temperature level above ambient; whereby, for a given thermosetting pigment in the second web, and for a given heating of thedrum, consistent with the thermosetting character of the pigment, the transferred pigment may be locally set and bonded to the beaded surface in its penetrated condition.
  • Printing means comprising a rotatably indexible member having a series of different indicia at each of a plurality of angularly spaced index locations thereon, an anvil member, a fixed frame including guide ways, a slide on said ways and supporting one of said members for movement to and away from coaction with the other member for a given indicium location, means for supporting web material between said members, reciprocating means connected to drive said members into and away from indicium-marking relation with said web, mechanical index-position locating mechanism coacting between said indexible member and said frame, such mechanism being enterable into indexlocating relationship in the course of reciprocating approach of said members into indicium-marking relation 14 ably indexible member and having markings uniquely identifying each of said spaced locations, code-wheel reader means non-rotatably mounted to track code markings in the course of rotation, command means for selecting a code output corresponding to a selected one of the several indicium locations on said rotatable member, comparator means connected for response to the difference between the command and reader
  • Printing means further including indexing web-advancing means having a synchronizing connection to said reciprocating means for imparting indexed web movement between indiciummarking strokes of said reciprocating means.
  • said locating mechanism comprises a guide element fixed to said frame and having an open guide slot on an alignment parallel to the axis of slide reciprocation, and guidable pin elements fixed to said rotatably indexible member at index-identifying locations, any selected one of said pin elements being enterable in said slot in the course of slide approach to the indicium-marking relation.
  • Printing means wherein the number of indicium locations is n, and wherein a digital threshold x is approximately given by n/2, said directional sensing means comprising means for selectively adding one of +x or x to said reader output, means for comparing the output of said adder means with said command, means for comparing said command and the outputof said reader, and logic means and becoming free of index-locating relationship in the connected to said comparator means for selectively signaling said reversible drive means for driving said rotatable means in a given direction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Record Information Processing For Printing (AREA)

Abstract

The invention contemplates an automatic machine selectively capable of making one or a plurality of machine-readable labels, as for use in item identification, in the filing, search and retrieval operation of existing equipment. The mechanism creates discrete multi-digit machine-readable labels, wherein digit changes between successively created labels are automatically sequenced or otherwise patterned, as needed. The machine has a basic cycle of indexing and reciprocation of a print-character drum (or wheel) and anvil, with respect to each other, the label web between drum and anvil being incrementally advanced or indexed, as necessary, between character-marking reciprocations. Novel means tracking the instantaneous rotaryindexed position of the drum, and evaluating the same in relation to the prescribed next digit to be printed, is operative to reposition the drum with utmost efficiency and speed during the period between successive print contacts with the web, thus assuring against delay between successive print contacts and against uncertainty in the correctness of the newly indexed rotary position of the drum.

Description

1 1 LABEL-MAKING MACHINE [75] Inventors: Peter Coriasco, Brooklyn; Heinz Haselbarth, Glendale, both of NY.
[73] Assignee: Supreme Equipment & Systems Corp., Brooklyn, NY.
22 Filed: Aug. 10, 1972 21 Appl. No.: 279,702
[52] US. Cl 197/55, 197/6.4, 101/21, 101/93 C [51] Int. Cl ..B41jl/46 [58] Field of Search..- 101/93 C, 21, DIG. 4; 197/6.4, 55
[56] References Cited UNITED STATES PATENTS 705,587 7/1902 Howell 197/55 1,714,795 6/1929 Luedtke 101/21 1,727,416 9/1929 Smith l97/6.4
2,250,567 7/1941 Bates 197/6.4 2,833,209 6/1958 Gustafson 101/93 C 3.167003 1/1965 Taylor et a1... 101/93 C 3.196,782 7/1965 Blanchin l0l/93 C 3,215,069 11/1965 McKeag.... 101/93 C 3,306,416 2/1967 Dahlin 197/6.6 3,322,064 5/1967 Sims 101/93 C 3,399,297 8/1968 Miller 101/93 C 3,405,794 10/1968 Means... 197/55 3,527,162 9/1970 Kashio 101/93 C 3,569,815 3/1971 McNaughton 318/601 3,573,589 4/1971 Beery 318/601 3,586,953 6/1971 Markkanen et a1 318/601 3,640,216 2/1972 Piazza 101/93 C 3,650,206 3/1972 Seabury 101/93 C [451 Jan. 21, 1975 3,701,991 10/1972 Livesey 101/93 C 3,707,214 12/1972 Panzano 3,712,212 1/1973 Beery 101/93 C Primary ExaminerRobert E. Bagwill Assistant Examiner-William Pieprz Attorney, Agent, or FirmSandoe, Hopgood and Calimafde 57 ABSTRACT The machine has a basic cycle of indexing and reciprocation of a print-character drum (or wheel) and anvil, with respect to each other, the label web between drum and anvil being incrementally advanced or indexed, as necessary, between character-marking reciprocations. Novel means tracking the instantaneous rotary-indexed position of the drum, and evaluating the same in relation to the prescribed next digit to be printed, is operative to reposition the drum with utmost efficiency and speed during the period between successive print contacts with the web, thus assuring against delay between successive print contacts and against uncertainty in the correctness of the newly indexed rotary position of the drum.
19 Claims, 8 Drawing Figures PATENTEB JANZ 1 I975 SHEET 30F 5 @GKEQK EL LABEL-MAKING MACHINE This invention relates to means for automatically making labels, each of which is characterized by m digit positions, with machine-readable digits, selected from a plurality n, being applied with changes as necessary, from one to the next label-marking function.
The invention will be described in connection with a machine in which the end product (a suitably marked label) is destined for a machine-reading application which relies upon reflected light to evaluate an en coded label, through response to the pattern of light intensity, in the course of a scanning operation. This being the case, the machine is described in terms of printing, i.e., applying a suitable printed pigment to the surface of a contrasting web surface. The machine is equally applicable to label-encoding devices wherein the machine-readable characters are applied to create a stencil, i.e., to punch-out the web, rather than merely to print the characters thereon. In either case, the marking indicia of the plurality n are carried at angularly spaced locations on a drum or wheel, which is sometimes herein referred to as a print drum, but which will, in a stencil or punch-out application, be understood to be one of the male-and-female set of such drums, as may be needed for clean punching of the web.
It is an object of the invention to provide an improved machine of the character indicated.
Another object is to provide improved means for effecting character-change, in the period between successive print or other web-marking functions of such a machine.
A further object is to provide improved means for automating the production of sequentially and/or randomly indexed indicia in such a machine.
It is also an object to achieve the foregoing objects with a machine wherein time is reducedbetween successive print or other marking functions and wherein accuracy is enhanced in the individual indexing movements required of the print drum, from one print cycle to the next.
It is a specific object to provide, in a rotary-indexed machine of the character indicated, means operative in the period between successive print contacts with the web for automatically evaluating the existing drum angle against the next-desired angle, and in the event of a difference, for driving the index mechanism in the particular direction which achieves the desired angle via the shortest route of angular-index displacement.
A general object is to achieve the above objects with a machine in which utmost flexibility and simplicity are offered to the operator in calling for particular multidigit markings and for sequences thereof, and in which at the same time economy, efficiency and accuracy are achieved to a high degree.
Other objects and various further features of novelty and invention will be pointed out or will occur to those skilled in the art from a reading of the following specification, in conjunction with the accompanying drawings. In said drawings, which show, for illustrative purposes only, a preferred form of the invention:
FIG. 1 is a simplified view in side elevation showing a label-making machine of the invention;
FIG. 2 is an enlarged fragmentary sectional view, taken at the vertical plane 22 of FIG. 1;
FIG. 3 is a further-enlarged fragmentary view of a part of the apparatus, as seen from the plane 33 in FIG. 2;
FIG. 4 is an enlarged front view of an index disc, which appears in side elevation as a part of FIG. 2;
FIG. 5 is a front view of the control and display panel for the machine of FIG. 1;
FIG. 6 is an electrical diagram schematically showing circuitry operated by and from the panel of FIG. 5',
FIG. 7 is a further sucl diagram, schematically showing more detail for certain parts of FIG. 6; and
FIG. 8 is another schematic diagram illustrating an.
MECHANICAL RELATIONSHIPS For the printing application shown, the station A accommodates, between upright frame plates 10, separate supply reels 11-12 for the pay-out of label-web stock 13 and of print-pigment web 14, via guide rolls which place the web 14. above the adjacent the web 13, in readiness for pigment transfer at station B. Preferably, each of the reels 11-12 includes an adjustably.
loaded drag feature, suggested at l5l6, respectively.
At station B which is also established between upright frame plates 17-17, spaced guide rolls 18-19 es tablish a generally horizontal plane of web support through the printing zone, wherein a printing head 20 and-an anvil2l (FIG. 2) are vertically reciprocated with respect to each other, to effect pigment transfer by squeezing the webs 1314. Thereafter, an upper pair of feed rolls 22 withdraws used pigment web 14 to a takeup reel 23, while a lower pair of feed rolls 24 delivers printed web. 13 straight to the cut-off station c. Preferably, the feed rolls 24 are spaced substantially a label length L from the print zone, and are also spaced substantially the distance L from the cut-off point at C, as shown by legend in FIG. 1.
In thefonn shown, the printing head 20 is a drum rotatably mounted in vertical slides 25-25, and the printreciprocation cycle involves vertical descent of the slides toward, and withdrawal from, coaction with the anvil 21, all as guided by vertical ways 26 in the frame. Slides 25-25' are bridge-connected at 27, above drum 20, for attachment to the actuating rod 28 of doubleacting fluid-pressure operated means 29, the latter being frame-mounted on a saddle or table 30 which connects the front and back plates 17-17.
Increments of web-feeding drive to the respective pairs of feed rolls 22-24 are picked off the indicated vertical-reciprocation cycle of the printing head 20, via a bracket 31 secured to one of the slides 25-25. As shown, the bracket 31 has spaced horizontal mounting slots to enable a range of horizontal adjustment of the position at which it is secured, as by bolt means 32, to the front vertical slide 25,'thus enabling a substantially radial adjustment for the point at which a feed pin 33 (forming part of bracket 31) engages a radial slot in a feed crank 34. A one-way-engaging rotary clutch 35 engages crank 34 to a transverse shaft 36, which carries a drive sprocket or toothed wheel 37 for endless-chain or toothed-belt means 38, suitably tensed at 38, and meshing with sprockets 22'-24 forming part of the respective feed-roll pairs 22-24. The direction of oneway-engagement at 35 is such as to disengage during the descending stroke of slides 25-25' and to engage during the return or withdrawal stroke thereof. It will be understood that the pick-off sprockets at 22'-24 should be of the same pitch diameter to assure uniform transport of both webs 13-14 through the printing zone, and that the pitch diameter of drive sprocket 37 should be so proportioned to that of the sprockets at 22-24 as to assure one full character or digit-position index of the web for each print-reciprocation cycle; the horizontal adjustment for securing bracket 31 to slide 25 enables precise control of such digit-position indexing of the webs l314. An auxiliary pick off 39 form the described web-indexing means enables suitable drive of the take-up reel through slip-clutch means, as will be understood Turning now more particularly to FIG. 2, the drum or printing head 20 is seen to comprise an annulus 40 with n equally spaced mounting flats or pedestals 41 about the periphery, each being suitably devised to accurately mount a different one of the n different character or indicium pieces (a, b, c, etc. in FIG. 1) in a plane that is strictly tangential to a cylindrical locus of character or type-face centers. In FIG. 2, the upper and lower sections for annulus 40 appear different because n, in the form shown, happens to be an odd number, being selected as eleven, in order to accommodate one decade of machine-readable indicia of decimal quantities, plus a machine-readable indicium which is distinguishable for machine-recognition of the direction in which a fully encoded label should be scanned.
Flanged hubs 42-43 close the ends of annulus 40 and are bushed at 44 to the respective vertical slides 25-25. The counterbore 45 of the rear hub 43 is keyed to a drive shaft 46, which also fixedly carries drumposition indicator or index plate 47, to be described later, in connection with FIG. 4 and the control and positioning means of FIGS. to 7.
For each of its n possible indexed positions, the drum carries a locating pin 48, typified by the one shown in side elevation in FIG. 2, and fitted to the flange of the rear hub 43. As best seen in FIG. 3, upon attainment of a given indexed position of drum 20, the lowermost index-locating pin 48 is poised above a locating fork 49 which presents a funnel-mouthed locating slot for accurate positioning and retention of drum 20 dur ing a printing stroke; the located down position of this stroke is suggested by phantom outline 48. The fork 49 is shown to have a degree of guided freedom for vertical adjustment, being anchored by means 49 in a guide groove milled in the inner face of the back frame plate 17'.
It suffices to here identify a frame-based unithandling assembly of a light-source support arm 50, and a similar photocell-reader arm 51 fastened by means 52, in radially oriented but axially offset relation, and straddling a local part of plate 47; a bracket 53 is the means shown for frame-mounting this assembly. Drive to the shaft 46 originates with reversible motor means 54, which is shown in FIG. 1 with separately labeled inputs CW and CCW, to suggest the clockwise" and counterclockwise" senses with which drive can be developed, all as will appear from the control and circuitry description below. The drive train from motor 54 is shown to include reduction-gear means 55 to a vertical shaft 56, journalled by means 57 and having an upwardly projecting splined or keying end 58, for axially slidable but non-rotatable engagement to one of the meshing (Ill) pinions in a shaftconnecting gear assembly 59; another of the pinions of assembly 59 is also keyed to the similarly finished reduced end 60 of shaft 46. The rotary connection from motor 54 to drum 20 is thus closely maintained in spite of the vertical reciprocation cycle of drum 20.
The described construction of drum 20 establishes a hollow interior, for accommodation of heater means 61 carried by a tubular rod 62, bushed at 63 to hub 43, passing in clearance relation through the bore of hub 42, and clamped by means 64 on the front face of slide 25. Heater 61 will be understood to be supplied and controlled via the clamped open end of rod 62, as may be required for appropriate for the particular pigment of web 14.
The cut-off station C comprises an upstanding frame 65, mounting fixed and movable shear elements 66-67, and controlled by double-acting fluid-pressure means 68. A limit switch 69 responds to the shear up" or open" position, for electrical synchronizing purposes. A further such switch 70 is carried by a fixed standard 71 (see FIG. 2) to respond to an up' position of drum 20, again for electrical synchronizing purposes.
Turning now to FIG. 4, the index plate 47 is seen as a rotatable mask, having successive concentric loci (I, II, III, IV, V) on which apertures are provided, in uniquely and radially coded array, for each of the n indexible positions of the drum 20 to which plate 47 is clamped, via drive shaft 46. Light-phantom radial strobes indicate the code alignment for each of the indexible positions, and as already indicated, there are eleven such positions, equally spaced; in FIG. 4, each such strobe is marked with a decimal digit, 0, I, 2 ...9. The eleventh position is designated S, to signify the index position for which an indicium is printed at one end of the label, e.g., the start position, so that machine-reading can be unambiguous, by starting to scan only at the correct end of the coded succession of indicia.
As shown, the loci'I to IV accommodate the four respective digit positions for the successive binary equivalents of the single decimal decade here employed; the apertures 72 for this purpose are of relatively large diameter. At the circular locus V, much smaller apertures 73, at intersection with all radial-strobe alignments, enable a much finer pin-pointing of the particular strobe for a given indexed position. The light-source support arm 50 (FIG. 2) directs light from five sources on alignments normal to plate 47 and intersecting the respective loci I, II ...V, as suggested by legends I, II', III, IV and V in FIG. 2; and for each of these alignments a separate photocell, contained in the photocellreader arm 51, will be understood to develop an independent electrical output. For the control equipment to be described below, the apertures 72 of the four-bit binary codes at loci I to IV serve a high-speed indexing rotation of drum 20, and the apertures 73 at locus V serve to mark passage of each indexable position and to end a subsequently programmed, reversed, slowspeed drive back to a drive-stop function, at the se lected indexed position.
CONTROL RELATIONSHIPS By way of general overview, there are three principal aspects regarding control for the instant label-making machine. First, the numerical identity of the labels to be produced must be entered into electronic storage. Secondly, digital circuit operations (e.g., digit shifting, next-number fetching and the like) must isolate and serially supply to the printing apparatus the digits forming each label. Finally, for printing of each digit, and in accordance with one aspect of the present invention, a logical decision must be made to determine the shortest direction of rotation (i.e., clockwise or counterclockwise) for the printing drum and the index plate 47 to enable printing of the next digit. Considering first the entry of label-numerical information, attention is directed to the operator'console panel of FIG. 5, and the associated electronic circuitry of FIG. 6. To initiate a label-printing sequence of operation, an operator serially depresses numerical keys on a keyboard 80 (FIG. 5) corresponding to the decimal digits of the beginning label number of a label sequence, that is, a series of consecutive label numbers to be produced by the labeling machine of the present invention. As is well known for many commercially available keyboard construclabeling sequence for the duration of the labcl-printing sequence of operation. The number stored in the register 90 is supplied to a decoder-display 84 and is visually displayed on the operator console (see FIG. 5).
At this point then, the beginning and end sequence numbers are preserved and displayed, and the working register 95 stores the full digital number corresponding to the current (or next) label to be produced; in this aptions, depression of any key produces a unique encoding on a plurality of keyboard-output conductors, and also generates a signal on a control line to indicate that a key has been actuated. As shown in FIG. 6, the keyboard output-data lines comprise inputs to spaced sections of a buffer shift register 88 (or inputs to a plurality of differing shift registers), and the control output line from the keyboard 80 comprises a clock input for the register 88, to shift data down each register section.
After the complete beginning-label number is loaded into the register 88, an enter beginning number identifyingcontrol key 81 (FIG. 5) is depressed on the console to transfer'data present at the output terminals of the shift-register (88) stages into a plural-stage register or latch 89, and via a gate 94 enabled by the key 81 into a working register 95. Thus, for example, depression of the key 81 may simply energize a control input port 92 of the register 89 to momentarily render that register operative in a data-receiving (sample) mode. End stages of the register 95 permanently store a special character which is printed at the beginning of each label to facilitate automated reading (retrieval) thereof, and an internal end of label-control character considered below.
The number stored in the register 89 is supplied to a decoder-display 83 which decodes the stored-data format (assumed to be binary-coded decimal, or BCDto x of n form for actuating any commonly available plural-digit display structure, such as cold-cathode tubes, plural-segment light-emitting diodes, or the like. The first label number is displayed on the operator console panel, at the display 83 shown in FIG. 5, for the duration of the label-producing sequence of operation.
Similarly, the characters on the keyboard are next the register thereby retaining the last number of the paratus-initiating situation, it is the first or beginningof-sequence number that is initially loaded into the reg isters 88 and 89. That number, i.e., the contents of the register 95, is loaded in parallel form into a further shift register 98 via a gate 102, the latter being enabled by the key 81 by way of an OR gate 103. The current operand content of the register 98 is decoded and displayed on the operator console by structure 85. The FIG. 6 electrical apparatus has thus completed its data-entry mode of operation, and is next applied to the process of iteratively printing labels, printing being effected on a digit-by-digit basis for each label in turn.
To effect printing of any particular label," the pluraldigit binary-digit word identifying each decimal digit in the label number (e.g., four bits for BCD coding) is supplied to print-wheel control apparatus (FIG. 7) from the end stage of each register portion. In the manner described below, the printing drum 20 and index plate 47 are rotated until a digit comparator 101 (shown in both FIG. 6 and FIG. 7) detects a match between the number to be printed, and the operative print-drum positioning signaled by the plate 47 and the light detectors associated therewith. When a match obtains and the drive to'drum 20 has been completed, the web 13 is imprinted with decimal information in the manner already discussed above.
As partof the printing process, the actuated hydraulic cylinder 29 and anvil 21 produce an electrical completion-of-digit printing signal,'e.g., optically or via a travel-sensing limit switch. The end-of-digit signal serves as'aclock pulse for the shift register 98 to step the information contained therein one stage to the right for each of the assumed four. register sections, such that the binary-coded decimal information for the nextfollowing decimal digit in the label number is then present at the register-output reading positions. After a suitable delay provided by a delay circuit 99, e.g., a monostable multivibrator, this next number to be printed is communicated to the mechanical printing apparatus via a plural-lead buss 104.
The above operation recurs until all digits in the label number have been printed and a complete label has been generated. At this point, the special end-of-label code, supplied to the register 98 when that register is loaded through gate 102, is present at the output stages of the shift register 98. This special character is de tected by a match output of an end-of-character test circuit 100, e.g., a comparator having its other inputs loaded with the BCD special end-of-character" (i.e., end-of-label) binary word. Alternatively, this endof-label signal may be produced by simply counting a predetermined number of end-of-digit" pulses, for the known number of digits in the given label-marking assignment.
The label number stored in the register is supplied to an adder 97 which is continuously available to provide a +1 add function, i.e., the label unumber plus one. The successive outputs of the adder 97 comprise a label number having a value one greater than the previous label number; each such output at 97 thus represents the next label number to be printed. Responsive to the end-of-character signal generated by the match circuit 100 or an equivalent thereof, this next label number present at the output of the adder 97 is gated into the register 95 via a gate 96, and also loaded in parallel into the shift register 98 through gate 102 enabled by gate 103. Thus, printing begins in the manner described above to develop a label with the next large label number. It is also observed that the end-ofcharacter signal comprises information required to sig nal the FIG. 1 apparatus that the previous label is completed, and may be severed at C from the label web 13 for collection at D.
Finally, a further digital comparator 91 signals that all labels in the sequence have been produced when a match is detected between the contents of the register 90 and 95.
The above discussion has considered the manner in which the labeling information is supplied to the printing apparatus on a digit-by-digit basis, and to also provide control signaling when a label (and when all labels) have been completed. Attention will now be directed to the manner in which the decimal-digit information present on the four binary output lines in the buss 104 is employed to position the print drum 20 In accordance with one aspect of the present invention, it is desired that the labels be printed as rapidly a possible and, therefore, that the print drum 20 be positioned in an efficient manner. To this end, the motor 54 (FIG. 1) which positions the print drum is selectively operative in either direction, and is constrained by the FIG. 7 circuitry to move through the shortest are between its current position (initially corresponding to the last-decimal digit printed) and its next required position (corresponding to the next digit to be printed). In accordance with a still further aspect of the present invention, the motor initially turns rapidly and, accordingly, overshoots the requisite position slightly. It then reverses in a slow rotational mode until properly positioned, at which point the motor 54 stops.
As a basic underlying algorithm for determining the preferred direction of rotation for print-drum (20) repositioning, it is observed that the drum 20 has eleven radial orientations (corresponding to the decimal characters 9 and one special position the special character being identified as a decimal l0, binary 1010). Thus, the drum can be no more than five index stations away (in the shorter direction) from its nextcommanded position. The apparatus of FIG. 7 operates to determine the clockwise or counterclockwise'direction for which the next number is within five positions from its present position. Stated in other words and more generally, where the number of indicium locations is n, a digital threshold x is approximately given by n/2, and the directional sensing means of the invention includes means for selectively adding one of the quantities +x or x to reader output and for comparing the added output with the instantaneous command, for supply to logic means to be described, for developing the correct direction of shortest rotary displacement to the commanded-digit position. To this end, and for the specific form shown, the decimal equivalent of the present print-drum (20) position (PRESENT") is increased by five if the decimal value of the present position is between zero and five, and decremented by five for values between six and eleven, the augmented or decremented present-position quantity being identified as the SUM" quantity. If (I) the next required digit position (identified as the COMMAND" quantity in FIG. 7) is greater or equal to SUM"; if COM- MAND" is greater than PRESENT, and PRES- ENT" is six or more; or, if (2) SUM is greater than COMMAND"; PRESENT" is greater than "COM- MAND; and PRESENT' is less than six, the motor will be directed to turn in a first direction, e.g., clockwise. Otherwise, the motor will be directed to turn in an opposite direction.
When COMMAND equals SUM," the motor is stopped in the manner considered below.
Some reflection will show that the above procedure will always result in the motor 54 turning through the least are to arrive to the next-required angular position from its previous printing orientation.
The manner in which the above mode of processing is implemented is shown in FIG. 7. The present position of the print wheel 20 (PRESENT) is stored in a first register 121. The identity of the next digit to be printed, i.e., the digits supplied by the shift register 98 on buss 104 in FIG. 6, is loaded into a COMMAND" register 122. The present-position information is compared with the literal binary number +6 in a digital comparator 110, and one of two input control ports of a combinatorial circuit 113 is energized by an OR gate III or by the inverse thereof (generated by an invertor 112), depending upon whether or not the quantity presently stored in the register 121 is between 0 and 5, or between 6 and 10, respectively.
The combinatorial circuit 113 responds to one of the two possible enabling input signals by supplying binary equivalents of one of the decimal numbers +5 or 5, as an addend to an adder 114 which also receives the present rotational location information from the register 121. The adder 114 thus serves to produce the quantity SUM described above. SUM" is compared with COMMAND" in a comparator I15 to produce output signals descriptive of the relative magnitudes of the quantities COMMAND and SUM." Similarly, the comparator 101 examines the digital quantities stored in PRESENT register 121 and COM- MAND register 122 and appropriately signals the two possible inequalities th'erebetween, and also provides an output signal via a lead to an AND gate 123 when the signals PRESENT and COMMAND are equal, i.e., when the printing drum 20 is adjusted such that the proper character is disposed in an operative print locatron.
As is readily apparent, gating elements 116417-11- 8-119 operate on the quantities developed by the FIG. 7 circuitry to generate a signal CW which activates the motor 54 for clockwise rotation in accordance with the above described algorithm, and for otherwise rotating the motor in a counterclockwise direction via an appropriate signal at an output terminal CCW which is the inverse of the potential at the output terminal CW, as implemented by an inverter 120. Thus, the FIG. 7 circuitry operates to actuate the motor 54 for rotation in the preferred, shortest direction to properly position the print drum 20.
When the proper position of the index plate 47 and the printing drum 20 is first attained, both inputs of the AND gate 123 will be actuated, the read" signal being developed by the light-sensing transducer at the outer track V of FIG. 4. Thus, a divide-by-two counter 125 registers a count of one therein to energize a counteroutput terminal 124. This causes the motor 54 to reverse direction to obviate the overshoot which occurred when the desired radial orientation was first encountered and traversed. Thus, when the plate 47 next passes the correct position, it is rotating slowly, a match signal is again produced by the comparator 101, and a read potential is again developed by the transducer on track V. Accordingly, the gate 1123 again switches, advancing the counter 125 to its other state (a count of 2) thereby energizing its other output port 126 to stop the motor, and thereby also providing a print-enabling command.
The invention is not to be limited to the implementation of the algorithm set forth above; other tests may be made to determine the preferred direction of rotation of the motor 54. For example, a conceptually simple approach is to determine the larger of PRESENT and COMMAND, and to compute the absolute value of the difference COMMAND-PRESENT. If PRES- ENT exceeds COMMAND and the difference value is at least 6, or ifCOMMAND exceeds PRES- ENT and the difference is less than 6, the motor 54 is turned in one direction. If neither of these conditions obtains, the motor turns in the reverse direction. The foregoing may be implemented by supplying PRES- ENT and COMMAND to a digital subtractor, and
comparing the ,subtractor-output-difference amplitude digits with the number +5. The subtractor sign bit is then employed to gate the comparator inequalityoutput signals to a motor-controlling circuit-output terminal. Such structure is depicted in FIG. 8.
It will be seen that the described invention meets all stated objects. In particular, the described circuitry may be implemented by inexpensive, reliable and wellunderstood and available components and, regardless of theFIG. 7 or FIG. 8 approach used, the circuit arrangement shown will position the print wheel 20 in the most advantageous manner for rapid label printing, such printing being implemented by the mechanical and electrical circuitry discussed hereinabove.
In a preferred embodiment of the impression-transfer mechanism, the-anvil 21 is a removably inserted block of yieldable-plastic having a good memory characteristic, such as relatively stiff polyurethane, retained in a suitable cavity within the bed structure 21' (FIG. 2) of the frame between plates 17-17. As shown, the cavity is an elongate horizontal dovetail groove and the anvil 21 is of similar section for slidable reception in the groove; removable plate means 21" is secured to bed 21 and retains the inserted longitudinal position of anvil 21, in registry beneath the currently indexed operative pedestal 41 (and the type face or indicium piece mounted thereon). The plastic anvil 21 will be seen as particularly useful when indicia are to be nonreflectively printed on the reflective side of a web 13 of glass-beaded reflective tape. The local compliant yield-ability of the anvil material adapts the pigment web 14 to surface undulations and irregularities of the beaded surface, causing full penetration of pigment into the interstices,recesses and follicles of the bead surface. The parts are adjusted to assure locally compressed indentation of the anvil for each print stroke, the extent of interference being at least equal to substantially the maximum amplitude of surface irregularity of the glass-bead surface. During the momentum of the pigment-impression part of the stroke, the plastic anvil allows fully pressurized imbedding of the exposed portions of the glass beads, creating a uniformly printed (pigment-coated) surface; in the rest intervals between print strokes, the urethane anvil is self-restoring to its original shape. If a specific employment of the invention, the anvil 21 was a %-inch thick block of K- Prene urethane, being a trademark product of Hondaille Industries, the web l3was a glass-beaded tape (No. 7900) of the 3M Company, and the web 14 carried a heat-responsive pigment on a plastic-film backing, calling for maintenance of the drum 20 at a temperature of 250 Fahrenheit; the impression stroke was adjusted to achieve a 0.020-inch compression of the anvil, namely in the range of 2.5 to 5 percent (preferably substantially 3.5 percent of anvil thickness), which, for the indicated materials, involved a maximum impression force of substantially 1,000 psi.
The above described arrangements are merely illustrative of the principles of the present invention, and it will be understood that modifications may be made without departing from the spirit and scope of the invention.
What is claimed is:
1. Printing means, comprising a rotatably indexible member having a series of different indicia at each of a plurality of angularly spaced index locations thereon, multiple-speed reversible rotary-drive means for said member, an anvil member, a frame including guide ways, a slide on said ways and supporting one of said members-for movement to and'away from coaction with the other member for a given indicium location, means for supporting web material between said members, reciprocating 'means connected to drive said members into and away from indicium-marking relation with said web, mechanicalindex-position locating mechanism coacting between said indexible member and said frame, such mechanism being enterable into index-locating relationship in the course of reciprocating approach of said members into indicium-marking relation and becoming free of index-locating relationship in the course of reciprocating retreat of said membe'rs from indicium-marking relation, said .indexlocating mechanism having a predetermined indexangle acceptance tolerance and including'cam means operative to home said members to precision-location of indexed position during the course of such reciprocating approach and prior to achievement of indiciummarking relation, code-wheel means carried for rotation with said rotatably indexible member and having markings uniquely identifying each of said spaced locations, code-wheel reader means non-rotatably mounted to track code markings in the course of rotation, command means for selecting a code output corresponding to a selected one of the several indicium locations on said rotatable member,and program means including a comparator connected for response to the difference between the command and'reader outputs, said program means being responsive to a sensed difference between said outputs and determining (a) a relatively high-speed operation of said rotary-drive means and (b) the direction of rotation for which said difference is minimal, said drive means being operative during a separated relation of said members to drive said rotatably indexible member in the direction of minimal rotary displacement to reduce to zero the difference between the command and reader outputs, said program means being also operative upon subsequent comparator-sensed recognition of zero difference between said outputs to discontinue such high-speed operation and to determine a relatively slow-speed and directionallyreversed operation of said rotary-drive means, and said program means being finally operative to discontinue operation of said rotary-drive means upon the next comparator-sensed recognition of zero difference between said outputs, the index-positioning accuracy of said last-defined final operation being within said index-angle acceptance tolerance.
2. A label-making machine for automatically preparing a label card of n-digits of machine-readable characters, said machine comprising a fixed frame including elongate guide means for the progressive guidance of card stock advanced through said machine, stocksupply means at one end of said guide means, a printing station at a location along said guide means and near said supply means, said station comprising on one side of said guide means a rotatably indexible member having a series of different machine-readable printing indicia at each of a plurality of angularly spaced index locations thereon, an anvil member on the other side of said guide means, frame-based structure including guide ways transverse to the direction of said guide means, a slide on said ways and supporting one of said members for movement to and away from coaction with the other member for a given indicium location, reciprocating means connected to drive said members into and away from indicium-marking relation with card stock therebetween, mechanical index-position locating mechanism coacting between said indexible member and said frame, such mechanism being enterable into index-locating relationship in the course of reciprocating approach of said members into indicium-marking relation and becoming free of index-locating relationship in the course of reciprocating retreat of said members from indicium-marking relation, said indexlocating mechanism having a predetermined indexangle acceptance tolerance and including cam means operative to homesaid members to precision-location of indexed position during the course of such reciprocating approach and prior to achievement of indiciummarking relation,'indexing stock-advancing means having a synchronizing connection to said reciprocating means for imparting indexed stock-advancing displacement betweenindicium-marking strokes of said recip-.
rocating means; code-wheel means carried for rotation with said rotatable member and having markings uniquely identifying each of said spaced locations, code-wheel reader means non-rotatably mounted to track code markings in the courseof rotation, program means including command means for selecting a code output corresponding to a selected one of the several indicium locations on said rotatable member, comparator means connected for response to the difference between the command and reader outputs, said comparator means including means sensing the direction of rotation for which said difference is minimal, and reversible-drive means for said rotatably indexible member operative during a separated relation of said members and responsive to said last-defined means to drive said rotatably indexible member the minimal rotaty displacement to reduce to zero the the difference between the command and reader outputs, the index-positioning accuracy of said last-defined means being within said index-angle acceptance tolerance; said program means further including means responsive to attainment of said zero difference for initiating a succeeding cycle of said reciprocating means and for repeating the cycle thereof in synchronized interlace with the cycle of said comparator means and of said reversible-drive means, such repeated cycling being for each of the n digits to be impressed on a given label, and means responsive to completion of the cycles of digit impression on said label for discharging the completed label from said guide means and for changing by an increment of one the n-digit number to be impressed on the nextsucceeding label.
3. The machine of claim 2, in which the number of locations of machine-readable printing indicia on said rotatable member is eleven, ten of which have different machine-readable means corresponding to decimal units and the eleventh of which is uniquely characterized for printed identification on one to the exclusion of the other end of the n-digit sequence to be printed on each label, for unambiguous machine readability.
4. The machine of claim 2, in which said stock-supply means includes a reel accommodating continuous card stock for advance through the printing station, and in which said lastdefined means includes cut-off mechanism having a cut-off initiating actuating connection to said last-defined means.
5. Printing means, comprising a rotatably indexible member having a series of different indicia at each of a plurality of angularly spaced index locations thereon, an anvil member, a fixed frame including guide ways, a slide on said ways and supporting one of said members for movement to and away from coaction with the other member for a given indicium location, means for supporting web material between said members, reciprocating means connected to drive said members into and away from indicium-marking relation with said web, mechanical index-position locating mechanism coacting between said indexible member and said frame, such mechanism being enterable into index locating relationship in the course of reciprocating approach of said members into indicium-marking relation and becoming free of index-locating relationship in the course of reciprocating retreat of said members from indicium-marking relation, said index-locating mechanism having a predetermined index-angle acceptance tolerance and including cam means operative to home said members to precision-location of indexed position during the course of such reciprocating approach and prior to achievement of indicium-marking relation, code-wheel means carried for rotation with said rotatably indexible member and having markings uniquely identifying each of saidspaced locations, code-wheel reader means non-rotatably mounted to track code markings in the course of rotation, command means for selecting a code output corresponding to a selected one of the several indicium locations .on said rotatable member, comparator means connected for response to the difference between the command-and reader outputs, said comparator means including means sensing the direction of rotation for which said difference is minimal, and reversible-drive means for said rotatably indexible member operative during a separated relation of said members and responsive to said last-defined means to drive said rotatably indexible member the minimal rotary displacement to reduce to zero the difference between the command and reader outputs, the index-positioning accuracy 'of said last-defined means being within said index-angle acceptance tolerance;
said web-supporting means including means for supporting first web material to face said rotatable member, and means for supporting a second and pigmented web material between the first web material and said rotatable member, said anvil comprising a block of stiffly compliant plastic material backed by a part of said frame, the parts relation being such that at the indicium-marking end of the reciprocating stroke, said webs are compressed against each other and into at least some compressive deformation of said anvil; whereby, for first web material having a glass-beaded surface supported to face said rotatable member, and for pigment of the second web facing the glass-beaded surface, pigment will be caused to penetrate into and be retained within the interstices, recesses and follicles of the beaded surface.
-6. Printing means according to claim 5, in which the extent of anvil compression is in the range of substantially 2.5 to 5.0 percent of the effective thickness of said anvil.
7. Printing means according to claim 5, in which the extent of anvil compression is approximately 3.5 percent of the effective thickness of said anvil.
8. Printing means according to claim 5, and including heater means in said drum establishing a predetermined temperature level above ambient; whereby, for a given thermosetting pigment in the second web, and for a given heating of thedrum, consistent with the thermosetting character of the pigment, the transferred pigment may be locally set and bonded to the beaded surface in its penetrated condition.
9. Printing means according to claim 5, in which the parts relation is such that the maximum indiciummarking pressure upon indenting compression of said anvil is in the order of 1000 psi.
10. Printing means according to claim 5, in which said plastic material is of solid urethane.
11. Printing means, comprising a rotatably indexible member having a series of different indicia at each of a plurality of angularly spaced index locations thereon, an anvil member, a fixed frame including guide ways, a slide on said ways and supporting one of said members for movement to and away from coaction with the other member for a given indicium location, means for supporting web material between said members, reciprocating means connected to drive said members into and away from indicium-marking relation with said web, mechanical index-position locating mechanism coacting between said indexible member and said frame, such mechanism being enterable into indexlocating relationship in the course of reciprocating approach of said members into indicium-marking relation 14 ably indexible member and having markings uniquely identifying each of said spaced locations, code-wheel reader means non-rotatably mounted to track code markings in the course of rotation, command means for selecting a code output corresponding to a selected one of the several indicium locations on said rotatable member, comparator means connected for response to the difference between the command and reader outputs, said comparator means including means sensing the direction of rotation for which said difference is minimal, and reversible-drive means for relation of said members and responsive to said last-defined means to drive said rotatably indexible member the minimal rotary displacement to reduce to zero the difference between the command and reader outputs; the indexpositioning accuracy of said drive means upon such reduction to zero being within said index-angle acceptance tolerance.
12. Printing means according to claim 11, further including indexing web-advancing means having a synchronizing connection to said reciprocating means for imparting indexed web movement between indiciummarking strokes of said reciprocating means.
13. Printing means according to claim 11, in which said rotatably indexible member is carried by said slide and said anvil member is supported by a fixed part of said frame.
14. Printing means according to claim 11, in which said locating mechanism comprises a guide element fixed to said frame and having an open guide slot on an alignment parallel to the axis of slide reciprocation, and guidable pin elements fixed to said rotatably indexible member at index-identifying locations, any selected one of said pin elements being enterable in said slot in the course of slide approach to the indicium-marking relation.
15. Printing means according to claim 11, wherein the number of indicium locations is n, and wherein a digital threshold x is approximately given by n/2, said directional sensing means comprising means for selectively adding one of +x or x to said reader output, means for comparing the output of said adder means with said command, means for comparing said command and the outputof said reader, and logic means and becoming free of index-locating relationship in the connected to said comparator means for selectively signaling said reversible drive means for driving said rotatable means in a given direction.
label numbers to be printed.

Claims (19)

1. Printing means, comprising a rotatably indexible member having a series of different indicia at each of a plurality of angularly spaced index locations thereon, multiple-speed reversible rotary-drive means for said member, an anvil member, a frame including guide ways, a slide on said ways and supporting one of said mEmbers for movement to and away from coaction with the other member for a given indicium location, means for supporting web material between said members, reciprocating means connected to drive said members into and away from indiciummarking relation with said web, mechanical index-position locating mechanism coacting between said indexible member and said frame, such mechanism being enterable into index-locating relationship in the course of reciprocating approach of said members into indicium-marking relation and becoming free of index-locating relationship in the course of reciprocating retreat of said members from indicium-marking relation, said index-locating mechanism having a predetermined index-angle acceptance tolerance and including cam means operative to home said members to precision-location of indexed position during the course of such reciprocating approach and prior to achievement of indicium-marking relation, code-wheel means carried for rotation with said rotatably indexible member and having markings uniquely identifying each of said spaced locations, code-wheel reader means non-rotatably mounted to track code markings in the course of rotation, command means for selecting a code output corresponding to a selected one of the several indicium locations on said rotatable member, and program means including a comparator connected for response to the difference between the command and reader outputs, said program means being responsive to a sensed difference between said outputs and determining (a) a relatively high-speed operation of said rotary-drive means and (b) the direction of rotation for which said difference is minimal, said drive means being operative during a separated relation of said members to drive said rotatably indexible member in the direction of minimal rotary displacement to reduce to zero the difference between the command and reader outputs, said program means being also operative upon subsequent comparatorsensed recognition of zero difference between said outputs to discontinue such high-speed operation and to determine a relatively slow-speed and directionally-reversed operation of said rotary-drive means, and said program means being finally operative to discontinue operation of said rotary-drive means upon the next comparator-sensed recognition of zero difference between said outputs, the index-positioning accuracy of said last-defined final operation being within said index-angle acceptance tolerance.
2. A label-making machine for automatically preparing a label card of n-digits of machine-readable characters, said machine comprising a fixed frame including elongate guide means for the progressive guidance of card stock advanced through said machine, stock-supply means at one end of said guide means, a printing station at a location along said guide means and near said supply means, said station comprising on one side of said guide means a rotatably indexible member having a series of different machine-readable printing indicia at each of a plurality of angularly spaced index locations thereon, an anvil member on the other side of said guide means, frame-based structure including guide ways transverse to the direction of said guide means, a slide on said ways and supporting one of said members for movement to and away from coaction with the other member for a given indicium location, reciprocating means connected to drive said members into and away from indicium-marking relation with card stock therebetween, mechanical index-position locating mechanism coacting between said indexible member and said frame, such mechanism being enterable into index-locating relationship in the course of reciprocating approach of said members into indicium-marking relation and becoming free of index-locating relationship in the course of reciprocating retreat of said members from indicium-marking relation, said index-locating mechanism having a predetermined index-angle acceptance tolerance and including cam means operative to home said members to precision-location of indexed position during the course of such reciprocating approach and prior to achievement of indicium-marking relation, indexing stock-advancing means having a synchronizing connection to said reciprocating means for imparting indexed stock-advancing displacement between indicium-marking strokes of said reciprocating means; code-wheel means carried for rotation with said rotatable member and having markings uniquely identifying each of said spaced locations, code-wheel reader means non-rotatably mounted to track code markings in the course of rotation, program means including command means for selecting a code output corresponding to a selected one of the several indicium locations on said rotatable member, comparator means connected for response to the difference between the command and reader outputs, said comparator means including means sensing the direction of rotation for which said difference is minimal, and reversible-drive means for said rotatably indexible member operative during a separated relation of said members and responsive to said last-defined means to drive said rotatably indexible member the minimal rotaty displacement to reduce to zero the the difference between the command and reader outputs, the index-positioning accuracy of said last-defined means being within said index-angle acceptance tolerance; said program means further including means responsive to attainment of said zero difference for initiating a succeeding cycle of said reciprocating means and for repeating the cycle thereof in synchronized interlace with the cycle of said comparator means and of said reversible-drive means, such repeated cycling being for each of the n digits to be impressed on a given label, and means responsive to completion of the cycles of digit impression on said label for discharging the completed label from said guide means and for changing by an increment of one the n-digit number to be impressed on the next-succeeding label.
3. The machine of claim 2, in which the number of locations of machine-readable printing indicia on said rotatable member is eleven, ten of which have different machine-readable means corresponding to decimal units and the eleventh of which is uniquely characterized for printed identification on one to the exclusion of the other end of the n-digit sequence to be printed on each label, for unambiguous machine readability.
4. The machine of claim 2, in which said stock-supply means includes a reel accommodating continuous card stock for advance through the printing station, and in which said lastdefined means includes cut-off mechanism having a cut-off initiating actuating connection to said last-defined means.
5. Printing means, comprising a rotatably indexible member having a series of different indicia at each of a plurality of angularly spaced index locations thereon, an anvil member, a fixed frame including guide ways, a slide on said ways and supporting one of said members for movement to and away from coaction with the other member for a given indicium location, means for supporting web material between said members, reciprocating means connected to drive said members into and away from indicium-marking relation with said web, mechanical index-position locating mechanism coacting between said indexible member and said frame, such mechanism being enterable into index-locating relationship in the course of reciprocating approach of said members into indicium-marking relation and becoming free of index-locating relationship in the course of reciprocating retreat of said members from indicium-marking relation, said index-locating mechanism having a predetermined index-angle acceptance tolerance and including cam means operative to home said members to precision-location of indexed position during the course of such reciprocating approach and prior to achievement of indicium-marking relation, code-wheel means carried for rotation with said rotatably indexible member and having markings uniquely idenTifying each of said spaced locations, code-wheel reader means non-rotatably mounted to track code markings in the course of rotation, command means for selecting a code output corresponding to a selected one of the several indicium locations on said rotatable member, comparator means connected for response to the difference between the command and reader outputs, said comparator means including means sensing the direction of rotation for which said difference is minimal, and reversible-drive means for said rotatably indexible member operative during a separated relation of said members and responsive to said last-defined means to drive said rotatably indexible member the minimal rotary displacement to reduce to zero the difference between the command and reader outputs, the index-positioning accuracy of said last-defined means being within said index-angle acceptance tolerance; said web-supporting means including means for supporting first web material to face said rotatable member, and means for supporting a second and pigmented web material between the first web material and said rotatable member, said anvil comprising a block of stiffly compliant plastic material backed by a part of said frame, the parts relation being such that at the indicium-marking end of the reciprocating stroke, said webs are compressed against each other and into at least some compressive deformation of said anvil; whereby, for first web material having a glass-beaded surface supported to face said rotatable member, and for pigment of the second web facing the glass-beaded surface, pigment will be caused to penetrate into and be retained within the interstices, recesses and follicles of the beaded surface.
6. Printing means according to claim 5, in which the extent of anvil compression is in the range of substantially 2.5 to 5.0 percent of the effective thickness of said anvil.
7. Printing means according to claim 5, in which the extent of anvil compression is approximately 3.5 percent of the effective thickness of said anvil.
8. Printing means according to claim 5, and including heater means in said drum establishing a predetermined temperature level above ambient; whereby, for a given thermosetting pigment in the second web, and for a given heating of the drum, consistent with the thermosetting character of the pigment, the transferred pigment may be locally set and bonded to the beaded surface in its penetrated condition.
9. Printing means according to claim 5, in which the parts relation is such that the maximum indicium-marking pressure upon indenting compression of said anvil is in the order of 1000 psi.
10. Printing means according to claim 5, in which said plastic material is of solid urethane.
11. Printing means, comprising a rotatably indexible member having a series of different indicia at each of a plurality of angularly spaced index locations thereon, an anvil member, a fixed frame including guide ways, a slide on said ways and supporting one of said members for movement to and away from coaction with the other member for a given indicium location, means for supporting web material between said members, reciprocating means connected to drive said members into and away from indicium-marking relation with said web, mechanical index-position locating mechanism coacting between said indexible member and said frame, such mechanism being enterable into index-locating relationship in the course of reciprocating approach of said members into indicium-marking relation and becoming free of index-locating relationship in the course of reciprocating retreat of said members from indicium-marking relation, said index-locating mechanism having a predetermined index-angle acceptance tolerance and including cam means operative to home said members to precision-location of indexed position during the course of such reciprocating approach and prior to achievement of indicium-marking relation, code-wheel means carried for rotation with said rotatably indexible member and hAving markings uniquely identifying each of said spaced locations, code-wheel reader means non-rotatably mounted to track code markings in the course of rotation, command means for selecting a code output corresponding to a selected one of the several indicium locations on said rotatable member, comparator means connected for response to the difference between the command and reader outputs, said comparator means including means sensing the direction of rotation for which said difference is minimal, and reversible-drive means for relation of said members and responsive to said last-defined means to drive said rotatably indexible member the minimal rotary displacement to reduce to zero the difference between the command and reader outputs; the index-positioning accuracy of said drive means upon such reduction to zero being within said index-angle acceptance tolerance.
12. Printing means according to claim 11, further including indexing web-advancing means having a synchronizing connection to said reciprocating means for imparting indexed web movement between indicium-marking strokes of said reciprocating means.
13. Printing means according to claim 11, in which said rotatably indexible member is carried by said slide and said anvil member is supported by a fixed part of said frame.
14. Printing means according to claim 11, in which said locating mechanism comprises a guide element fixed to said frame and having an open guide slot on an alignment parallel to the axis of slide reciprocation, and guidable pin elements fixed to said rotatably indexible member at index-identifying locations, any selected one of said pin elements being enterable in said slot in the course of slide approach to the indicium-marking relation.
15. Printing means according to claim 11, wherein the number of indicium locations is n, and wherein a digital threshold x is approximately given by n/2, said directional sensing means comprising means for selectively adding one of +x or -x to said reader output, means for comparing the output of said adder means with said command, means for comparing said command and the output of said reader, and logic means connected to said comparator means for selectively signaling said reversible drive means for driving said rotatable means in a given direction.
16. Printing means according to claim 11, further comprising means for storing label numbers and operatively connected to said command means.
17. Printing means as in claim 16, wherein said storage means includes a shift register, and means responsive to each printing operation for shifting information within said shift register.
18. Printing means according to claim 16, further comprising display means for displaying the instantaneous numerical value of said shift register.
19. Printing means according to claim 16, further comprising means for generating a serial sequence of label numbers to be printed.
US279702A 1972-08-10 1972-08-10 Label-making machine Expired - Lifetime US3861512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US279702A US3861512A (en) 1972-08-10 1972-08-10 Label-making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US279702A US3861512A (en) 1972-08-10 1972-08-10 Label-making machine

Publications (1)

Publication Number Publication Date
US3861512A true US3861512A (en) 1975-01-21

Family

ID=23070069

Family Applications (1)

Application Number Title Priority Date Filing Date
US279702A Expired - Lifetime US3861512A (en) 1972-08-10 1972-08-10 Label-making machine

Country Status (1)

Country Link
US (1) US3861512A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998312A (en) * 1973-12-28 1976-12-21 Kabushiki Kaisha Daini Seikosha Printing or stamping device
US4050565A (en) * 1975-04-25 1977-09-27 Adrema Pitney Bowes Keyboard controlled electronic embossing machine
FR2347726A1 (en) * 1976-04-09 1977-11-04 Litton Business Systems Inc PRINTING AND COMPOSITION PROCESS AND APPARATUS
US4071131A (en) * 1975-11-13 1978-01-31 Signode Corporation Electronic control system
US4311398A (en) * 1979-02-17 1982-01-19 Olympia Werke Ag Printer for producing uniformly spaced characters
US5115737A (en) * 1990-04-16 1992-05-26 Philip Morris Incorporated Hot rotary stamper apparatus and methods for metal leaf stamping
US5816717A (en) * 1993-01-14 1998-10-06 Esselte N.V. Label printing apparatus with character string matching
US6814126B1 (en) * 2003-09-10 2004-11-09 Taiwan Semiconductor Co., Ltd. Sheet member impression structure for labeling machine
US20080219745A1 (en) * 2007-03-06 2008-09-11 Datacard Corporation Indent printing apparatus

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US705587A (en) * 1900-07-19 1902-07-29 Charles H Howell Jr Type-writing machine.
US1714795A (en) * 1929-05-28 Embossing machine
US1727416A (en) * 1927-04-20 1929-09-10 Norman C Smith Machine for marking hats and the like
US2250567A (en) * 1940-04-17 1941-07-29 Harold O Bates Embossing machine
US2833209A (en) * 1954-12-30 1958-05-06 Ibm Consecutive number printer
US3167003A (en) * 1964-01-30 1965-01-26 Ncr Co Multiple field printing mechanism
US3196782A (en) * 1962-01-22 1965-07-27 Seailles & Tison Type wheel setting and locking means in line composition
US3215069A (en) * 1965-02-01 1965-11-02 Autographic Business Forms Apparatus for printing
US3306416A (en) * 1964-06-24 1967-02-28 Citograf Aktiebolag Electromechanical control for embossing machines which rotates font past and back to selected character
US3322064A (en) * 1966-06-02 1967-05-30 Anelex Corp Print drum type matrix and sequential line printing control
US3399297A (en) * 1964-01-17 1968-08-27 Brunswick Corp Printing apparatus
US3405794A (en) * 1965-10-22 1968-10-15 Soroban Engineering Inc Printer with detent means on the print motion producing means
US3527162A (en) * 1967-03-13 1970-09-08 Casio Computer Co Ltd Printer driving circuit for rockably mounted settable print wheels
US3569815A (en) * 1968-07-24 1971-03-09 Gen Electric Servo driven turret direction determination control for numerical control system
US3573589A (en) * 1969-04-01 1971-04-06 Burroughs Corp Position servo system for a motor including detenting at destination
US3586953A (en) * 1967-09-22 1971-06-22 Fairchild Camera Instr Co Stepper motor control system
US3640216A (en) * 1968-09-26 1972-02-08 Olivetti & Co Spa Parallel printing apparatus for recorded data
US3650206A (en) * 1970-02-25 1972-03-21 Varifab Inc Print storage unit for data recording systems
US3701991A (en) * 1970-05-28 1972-10-31 Robert Morse Corp Ltd Electronic controls for alphanumeric printer
US3707214A (en) * 1969-05-23 1972-12-26 Olivetti & Co Spa Serial printing device
US3712212A (en) * 1971-11-12 1973-01-23 Burroughs Corp Variable printer intensity control

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1714795A (en) * 1929-05-28 Embossing machine
US705587A (en) * 1900-07-19 1902-07-29 Charles H Howell Jr Type-writing machine.
US1727416A (en) * 1927-04-20 1929-09-10 Norman C Smith Machine for marking hats and the like
US2250567A (en) * 1940-04-17 1941-07-29 Harold O Bates Embossing machine
US2833209A (en) * 1954-12-30 1958-05-06 Ibm Consecutive number printer
US3196782A (en) * 1962-01-22 1965-07-27 Seailles & Tison Type wheel setting and locking means in line composition
US3399297A (en) * 1964-01-17 1968-08-27 Brunswick Corp Printing apparatus
US3167003A (en) * 1964-01-30 1965-01-26 Ncr Co Multiple field printing mechanism
US3306416A (en) * 1964-06-24 1967-02-28 Citograf Aktiebolag Electromechanical control for embossing machines which rotates font past and back to selected character
US3215069A (en) * 1965-02-01 1965-11-02 Autographic Business Forms Apparatus for printing
US3405794A (en) * 1965-10-22 1968-10-15 Soroban Engineering Inc Printer with detent means on the print motion producing means
US3322064A (en) * 1966-06-02 1967-05-30 Anelex Corp Print drum type matrix and sequential line printing control
US3527162A (en) * 1967-03-13 1970-09-08 Casio Computer Co Ltd Printer driving circuit for rockably mounted settable print wheels
US3586953A (en) * 1967-09-22 1971-06-22 Fairchild Camera Instr Co Stepper motor control system
US3569815A (en) * 1968-07-24 1971-03-09 Gen Electric Servo driven turret direction determination control for numerical control system
US3640216A (en) * 1968-09-26 1972-02-08 Olivetti & Co Spa Parallel printing apparatus for recorded data
US3573589A (en) * 1969-04-01 1971-04-06 Burroughs Corp Position servo system for a motor including detenting at destination
US3707214A (en) * 1969-05-23 1972-12-26 Olivetti & Co Spa Serial printing device
US3650206A (en) * 1970-02-25 1972-03-21 Varifab Inc Print storage unit for data recording systems
US3701991A (en) * 1970-05-28 1972-10-31 Robert Morse Corp Ltd Electronic controls for alphanumeric printer
US3712212A (en) * 1971-11-12 1973-01-23 Burroughs Corp Variable printer intensity control

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998312A (en) * 1973-12-28 1976-12-21 Kabushiki Kaisha Daini Seikosha Printing or stamping device
US4050565A (en) * 1975-04-25 1977-09-27 Adrema Pitney Bowes Keyboard controlled electronic embossing machine
US4071131A (en) * 1975-11-13 1978-01-31 Signode Corporation Electronic control system
FR2347726A1 (en) * 1976-04-09 1977-11-04 Litton Business Systems Inc PRINTING AND COMPOSITION PROCESS AND APPARATUS
US4311398A (en) * 1979-02-17 1982-01-19 Olympia Werke Ag Printer for producing uniformly spaced characters
US5115737A (en) * 1990-04-16 1992-05-26 Philip Morris Incorporated Hot rotary stamper apparatus and methods for metal leaf stamping
US5816717A (en) * 1993-01-14 1998-10-06 Esselte N.V. Label printing apparatus with character string matching
US6814126B1 (en) * 2003-09-10 2004-11-09 Taiwan Semiconductor Co., Ltd. Sheet member impression structure for labeling machine
US20080219745A1 (en) * 2007-03-06 2008-09-11 Datacard Corporation Indent printing apparatus
WO2008109282A1 (en) * 2007-03-06 2008-09-12 Datacard Corporation Indent printing apparatus
US7866904B2 (en) 2007-03-06 2011-01-11 Datacard Corporation Desktop card printer with indent printing apparatus and method of printing

Similar Documents

Publication Publication Date Title
US3409760A (en) Machine readable merchandise tag
US3861512A (en) Label-making machine
US4630067A (en) Bar code printer
CA2124116C (en) Label generation apparatus
US3585366A (en) Self-timing encoded tag reader
GB1593547A (en) Automatic embossing system
US3474234A (en) Encoder tag reader
GB1584729A (en) Index device for tool storage magazine
US4289069A (en) Method for producing a multiple color hard copy image
US3594735A (en) Data retrieval apparatus
US4078485A (en) Print wheel control
JPS58501216A (en) Manufacturing equipment for parts with identification marks
US3924532A (en) Method for printing on labels
US3631775A (en) Photocomposing apparatus and method for varying character magnification
US3413447A (en) Information-bearing label and reading method and apparatus therefor
US3697958A (en) Font selecting system
US4027586A (en) Method for printing a manually scannable bar code and articles carrying a vertically extended bar code
US3750565A (en) Print-setting apparatus
US3804007A (en) Marking system
US4401390A (en) Ribbon control system for multiple color impact printer
US4082943A (en) Method and apparatus for read and print data
US3840104A (en) Machine for engraving on curved metallic surfaces
US4270172A (en) Ultrahigh resolution photocomposition system employing electronic character generation from magnetically stored data
US3858506A (en) Color bar printer
US4122770A (en) Series printer