US3861373A - Magneto ignition system for internal combustion engines - Google Patents
Magneto ignition system for internal combustion engines Download PDFInfo
- Publication number
- US3861373A US3861373A US449288A US44928874A US3861373A US 3861373 A US3861373 A US 3861373A US 449288 A US449288 A US 449288A US 44928874 A US44928874 A US 44928874A US 3861373 A US3861373 A US 3861373A
- Authority
- US
- United States
- Prior art keywords
- cores
- armature
- winding
- capacitor
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 18
- 238000004804 winding Methods 0.000 claims abstract description 114
- 239000003990 capacitor Substances 0.000 claims abstract description 52
- 230000006698 induction Effects 0.000 claims description 2
- 238000002955 isolation Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P1/00—Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
- F02P1/08—Layout of circuits
- F02P1/086—Layout of circuits for generating sparks by discharging a capacitor into a coil circuit
Definitions
- the magneto armature is formed with two windings of different numbers of turns which are both coupled to the charge circuit for the ignition capacitor, but uncoupled from each other by diodes, and a further control winding is wound on one of the cores associated with each one of the windings, connected in opposite phase with respect to the winding on the associated core, and electrically connected to trigger discharge of the capacitor through an ignition coil.
- the present invention relates to an ignition system for internal combustion engines, and more particularly to a magneto ignition system in which an armature circuit is connected to a diode to charge an ignition capacitor which is triggered to be discharged by means of an electronic triggering element, the discharge being connected through an ignition coil to provide an output spark at a spark plug connected to the secondary of the coil.
- Capacitor discharge ignition systems have been proposed in which an ignition capacitor is first charged by a half wave derived from the magneto armature, for example during the occurrence of the positive half wave. During the subsequent negative half wave, the capacitor is discharged through an ignition coil or transformer. Discharge of the capacitor is controlled by a trigger circuit including a semiconductor switch, such as a transistor, a thyristor, or the like, the conduction of which is, in turn, controlled from a control winding connected in phase opposition to the charge winding of the armature of the magneto. When a pulse is obtained from the control winding, the thyristor, or similar switching element is rendered conductive to discharge the capacitor.
- Circuits of this kind which have been proposed, have the disadvantage that upon increasing speed of the internal combustion engine, the armature winding of the armature is highly loaded.
- the capacitor must be charged during shorter time intervals as the speed increases.
- This loading results in an armature reaction which prevents complete charging of the ignition capacitor when the engine operates at its upper speed ranges; further, the armature reaction influences the voltage available from the control winding.
- the positive voltage half wave derived from the control winding is attenuated at increasing speed due to the counteracting flux due to armature reaction and, further, retarded in phase.
- control winding will therefore provide a control pulse only at a later instant in time, resulting in, effectively, retardation of the spark, which decreases the efficiency of the internal combustion engine. If the ignition capacitor cannot be charged completely, the voltage at the spark plug will decrease, which limits the upper speed which can be obtained by the internal combustion engine.
- the armature is formed to have two windings of different numbers of turns, located on individual cores, which are connected to the capacitor charging circuit through individual coupling diodes, so that the windings are uncoupled from each other.
- the control winding is wound on one of the cores, for example on the core having the smaller number of turns of the armature winding thereon, and connected in phase opposition with respect to the winding on the respective core.
- the two charge windings of the armature are so matched to the charge capacitor that the windinghaving the greater number of turns charges the capacitor in the lower range of speed; the winding having the lower number of turns charges the capacitor in the upper range of speed of the engine.
- This optimum charge of the capacitor permits full control voltage to appear across the control winding. since the positive half wave of the control voltage is not attenuated by armature reaction. As the speed of the engine rises, the rate of change of the voltage, with respect to time, appearing in the control winding will likewise rise, so that the triggering voltage for the discharge circuit is reached sooner and the ignition timing is changed to advance the spark.
- FIG. 1 is a schematic circuit diagram of a capacitor discharge system with a magneto generator, to generate both a charge voltage as well as a control voltage;
- FIG. 2 is a schematic side view of an armature winding with a U-shaped core
- FIG. 3 is a perspective view, partly broken away, of a fly-wheel utilized, simultaneously, as the rotating magnet of a magneto in which the armature is arranged on cores which are located in chords of the internal circumference of the fly-wheel.
- An internal combustion engine is connected to a magneto generally shown at 10 (FIG. I).
- the internal combustion engine drives a magnetic ring 11, which is in magnetic circuit relationship with an armature l2.
- Armature 12 is wound on two separate cores l3, 14, each of which has an armature winding l5, 16, respectively, wound thereon.
- the number of turns of the windings l5 and 16 is different.
- One terminal 15a of the armature winding 15 being the winding with the higher number of turns, is connected to the anode of a diode 17.
- a corresponding terminal 16a of the armature winding 16 that is, the winding with the smaller number of turns, is connected to the anode of a diode 18.
- the cathodes of the two diodes 17, 18 are connected together and to a supply line 19 which is connected to one terminal of the charging ignition capacitor 20.
- the other terminal of ignition capacitor 20 is connected to the primary 21a of an ignition coil 21.
- the secondary 21b of the ignition coil 21 is connected by means of an ignition cable 22 to a spark plug 23.
- the other terminals of the primary and secondary windings of the ignition coil 21, as well as the terminals 15b, 16b of the armature windings 15, 16 are connected to chassis or ground.
- a diode 28 bridges the primary winding 21a.
- the series circuit formed of capacitor 20 and the primary 21a of the ignition coil 21 is bridged by the main current path of a thyristor 24, having a gate or trigger contact 24a.
- the core 14, carrying the winding with the smaller number of turns has a control winding 25 applied thereto, phased oppositely to the winding 16.
- One terminal 25b is connected to the common ground or chassis line.
- the other terminal 25a is connected through a diode 26 with the gate electrode 24a of the thyristor 24.
- a resistor 27 bridges the gate electrode 24a to chassis.
- the positive half waves are transmitted over diodes l7, 18 to the ignition capacitor 20.
- the charge circuit is closed over the primary winding 21a of the ignition coil 21 and over the ground or chassis return line to the armature windings 15, 16.
- the voltage induced in winding rises rapidly, so that it can charge the ignition capacitor almost to its upper limit.
- the voltage in winding 15 decreases due to armature reaction.
- Charge in the capacitor 20 is applied from the winding 16 having a lesser number of turns, since the armature reaction due to current flow in winding 16 is much smaller.
- the charge windings 15, 16 are so matched to the capacity of the capacitor 20 that, even in upper speed ranges, the entire positive voltage half wave is not required to completely charge the ignition capacitor 20. After the ignition capacitor 20 is charged, armature reaction in the windings 15, 16 drops to zero, so that the subsequent negative voltage half wave occurs without time delay and phase retardation.
- the control winding is wound in phase opposition to the charge winding 16.
- a positive half wave will be induced in the control winding 25, which is applied over diode 26 to the control electrode 24a of the thyristor 24.
- Thyristor 24 has a certain response threshold level. When the voltage has reached this threshold or triggering level, the thyristor is rendered conductive and the capacitor 20 can rapidly discharge over a discharge circuit formed by the ignition capacitor 20, thyristor 24, chassis connection and the primary 21a of ignition coil 21. This rapid suddenly occurring pulse, having a high rate of change of current, results in a high voltage pulse in the secondary 21b of ignition coil 21 to provide the spark at spark plug 23.
- the charge and discharge cycle repeats on the ignition capacitor 20 upon each half rotation of the magnetized or magnet wheel 11.
- the control winding 25 operates practically without loading.
- the rate of voltage rise thus increases as the speed of the engine increases, so that the triggering level of the thyristor is reached earlier and earlier as the speed increases, and so that the discharge of the capacitor 20 is likewise advanced, thus changing the timing of the ignition of the internal combustion engine in the direction to advance the spark as the speed of the engine itself increases.
- FIG. 2 shows a magneto generator 30 in which a permanent magnet 32, having pole shoes 33, 34 at the sides thereof, is located on the circumference of a flywheel 31 of the internal combustion engine.
- the flywheel 31 is driven by the internal combustion engine from a shaft, not shown.
- the permanent magnet 32 cooperates with an armature 35 on the engine, which is stationary. It includes a U-shaped iron core 36 with two projecting legs 37, 38, on which the windings 15x, 16x and the control winding 25x are wound.
- the windings 15x, 16x, 25x correspond to the windings 15, 16, 25 of FIG. 1.
- the cross-sectional areas of the legs 37, 38 are different.
- the control winding 25x and the armature winding 15 are located on the core leg 37 which has the larger cross-sectional area.
- the winding l6, having the smaller number of windings, is located on core leg 38 having a smaller cross-sectional area.
- the three windings have one terminal, each, connected to the core 36,
- the other terminals are brought out at terminals 15a, 1611,2511. respectively, and connect to the corresponding terminals 16a, 25a of FIG. 1.
- the control winding 25x is connected in phase opposition with respect to the winding 15x.
- the ignition capacitor is first charged by the windings 15x or 16x, respectively, and then discharged, at the ignition instant, by the positive voltage half wave arising in the control winding 25x, thereby rendering thyristor 24 conductive and discharging capacitor 20.
- the charge and discharge cycle with respect to ignition capacitor 20 and the resulting ignition of spark plug 23 of the internal combustion engine only occurs once upon each rotation of the fly-wheel 31. If more frequent ignition is desired, more than one magnetic structure 32, 33, 34 can be located around the circumference of fly-wheel 31.
- the magneto generator generally shown at 10 in FIG. 1 may be associated also with hollow fly-wheels.
- a potshaped, cylindrical. hollow flywheel 40 has located therein four segment-shaped permanent magnets 41, of alternating polarity.
- the cutaway portion of the fly-wheel makes visible the magneto structure 12a which includes cores 13, 14 formed as chords with respect to the circumference of the cylindrical fly-wheel 40.
- the permanent magnets 41 are supplied with pole shoes 42.
- the chord-located cores l3, 14 are magnetically in parallel, and located axially staggered in the cylindrical flywheel armature combination.
- Non-magnetic spacer pins 43 space the cores l3, 14 from each other and additionally secure the cores on an armature plate 44, which is stationary.
- the lower, or inner core 14 has a smaller cross sectional area than the outer, or upper core 13. Space utilization is particularly efficient when the control winding 25 is wound together with the winding 16, having the lesser number of turns on one common core 14 (which is the core of smaller crosssectional area). The other main winding 15, with the larger number of turns, is then located on core 13 having the larger cross-sectional area.
- Typical dimensions for a magneto generator, of the type of FIG. 1 may be:
- coil 15 7000 turns
- coil 16 1500 turns
- Magneto ignition system for internal combustion engines comprising an armature (12), a rotating magnet (11) magnetically coupled to the armature, an ignition storage capacitor (20), a charging circuit (17, 18) connecting the capacitor and the armature to charge the capacitor, and a discharge circuit (26, 24, 27) including a discharge control winding polarized oppositely to the armature and connected to the capacitor to discharge the capacitor through an ignition coil (21) to generate an ignition spark pulse for a spark plug (23),
- the armature comprises two individual cores (13, 14) and two windings (15, 16) each located on an individual core (l3, 14);
- the charging circuit comprises diodes (17, 18) connected and poled to electrically uncouple said two windings (15, 16) from each other,
- control winding (25) is a separate winding wound on one of said individual cores, and connected in phase opposition with respect to the winding on said one core to provide energy to control the discharge of the capacitor when no charge energy is required from the armature windings, and to generate said control energy independently of induction in any one of the armature windings.
- the armature cores (13, 14) are located within the hollow structure on chords with respect to the center of the rotation thereof.
- armature core elements a carrier (44) and means securing the armature core elements to the carrier while providing for magnetic isolation of said cores with respect to each other.
- control winding (25) is located on the core (14) carrying the winding (16) with the smaller number of turns.
- the magnet (41) is located at the inner surface of the fly-wheel, and the armature cores are located inside said hollow portion, magnetically coupled to the magnet;
- non-magnetic attachment means (43) attaching the cores to the support portion.
- the cores are located adjacent and parallel to each other, spanning a chord of the cylindrical portion, and the attachment means comprises axially extending pins (43) passing through said cores, separating said cores from each other, while attaching both said cores to the carrier;
- control winding (25) is located on the core (14) carrying the winding (16) with the smaller number of turns.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Abstract
To provide for better uniformity of ignition pulses in capacitor discharge ignition systems, the magneto armature is formed with two windings of different numbers of turns which are both coupled to the charge circuit for the ignition capacitor, but uncoupled from each other by diodes, and a further control winding is wound on one of the cores associated with each one of the windings, connected in opposite phase with respect to the winding on the associated core, and electrically connected to trigger discharge of the capacitor through an ignition coil.
Description
United States Patent [191 Allwang et al.
[451 Jan. 21, 1975 MAGNETO IGNITION SYSTEM FOR INTERNAL COMBUSTION ENGINES [75] Inventors: Heribert Allwang, Rothenbach;
Georg Haubner, Berg; Walter Hofer, Schwabach, all of Germany [73] Assignee: Robert Bosch GmbH,
Gerlingen-Schillerhohe, Germany 22 Filed: Mar. 8, 1974 21 Appl. No.: 449,288
[30] Foreign Application Priority Data Mar. 23, 1973 Germany 2314558 [52] US. Cl. 123/148 E, 315/209 CD [51] Int. Cl. F02d 1/00 [58] Field of Search 123/148 E; 315/209 CD [56] References Cited UNITED STATES PATENTS 3,461,851 8/1969 Stephens 123/148 E Schmuldienst et a1 123/148 E lmhof et al 123/148 E Primary ExaminerManuel A. Antonakas Assistant Examiner-1ames W. Cranson, Jr. Attorney, Agent, or FirmFlynn & Frishauf [57] ABSTRACT To provide for better uniformity of ignition pulses in capacitor discharge ignition systems, the magneto armature is formed with two windings of different numbers of turns which are both coupled to the charge circuit for the ignition capacitor, but uncoupled from each other by diodes, and a further control winding is wound on one of the cores associated with each one of the windings, connected in opposite phase with respect to the winding on the associated core, and electrically connected to trigger discharge of the capacitor through an ignition coil.
12 Claims, 3 Drawing Figures MAGNETO IGNITION SYSTEM FOR INTERNAL COMBUSTION ENGINES The present invention relates to an ignition system for internal combustion engines, and more particularly to a magneto ignition system in which an armature circuit is connected to a diode to charge an ignition capacitor which is triggered to be discharged by means of an electronic triggering element, the discharge being connected through an ignition coil to provide an output spark at a spark plug connected to the secondary of the coil.
Capacitor discharge ignition systems have been proposed in which an ignition capacitor is first charged by a half wave derived from the magneto armature, for example during the occurrence of the positive half wave. During the subsequent negative half wave, the capacitor is discharged through an ignition coil or transformer. Discharge of the capacitor is controlled by a trigger circuit including a semiconductor switch, such as a transistor, a thyristor, or the like, the conduction of which is, in turn, controlled from a control winding connected in phase opposition to the charge winding of the armature of the magneto. When a pulse is obtained from the control winding, the thyristor, or similar switching element is rendered conductive to discharge the capacitor.
Circuits of this kind, which have been proposed, have the disadvantage that upon increasing speed of the internal combustion engine, the armature winding of the armature is highly loaded. The capacitor must be charged during shorter time intervals as the speed increases. This loading results in an armature reaction which prevents complete charging of the ignition capacitor when the engine operates at its upper speed ranges; further, the armature reaction influences the voltage available from the control winding. The positive voltage half wave derived from the control winding is attenuated at increasing speed due to the counteracting flux due to armature reaction and, further, retarded in phase. In higher ranges of speeds of the internal combustion engine, the control winding will therefore provide a control pulse only at a later instant in time, resulting in, effectively, retardation of the spark, which decreases the efficiency of the internal combustion engine. If the ignition capacitor cannot be charged completely, the voltage at the spark plug will decrease, which limits the upper speed which can be obtained by the internal combustion engine.
It is an object of the present invention to provide an ignition system which is simple, and effective over the entire speed range of the internal combustion engine and provides an essentially uniform ignition voltage throughout the speed range of the engine and which, preferably, increases the ignition pulse timing towards spark advance as the speed of the engine increases.
Subject Matter of the Present Invention Briefly, the armature is formed to have two windings of different numbers of turns, located on individual cores, which are connected to the capacitor charging circuit through individual coupling diodes, so that the windings are uncoupled from each other. The control winding is wound on one of the cores, for example on the core having the smaller number of turns of the armature winding thereon, and connected in phase opposition with respect to the winding on the respective core.
The two charge windings of the armature are so matched to the charge capacitor that the windinghaving the greater number of turns charges the capacitor in the lower range of speed; the winding having the lower number of turns charges the capacitor in the upper range of speed of the engine. This optimum charge of the capacitor permits full control voltage to appear across the control winding. since the positive half wave of the control voltage is not attenuated by armature reaction. As the speed of the engine rises, the rate of change of the voltage, with respect to time, appearing in the control winding will likewise rise, so that the triggering voltage for the discharge circuit is reached sooner and the ignition timing is changed to advance the spark.
The invention will be described by way of example with reference to the accompanying drawings, wherein:
FIG. 1 is a schematic circuit diagram of a capacitor discharge system with a magneto generator, to generate both a charge voltage as well as a control voltage;
FIG. 2 is a schematic side view of an armature winding with a U-shaped core; and
FIG. 3 is a perspective view, partly broken away, of a fly-wheel utilized, simultaneously, as the rotating magnet of a magneto in which the armature is arranged on cores which are located in chords of the internal circumference of the fly-wheel.
An internal combustion engine, not shown, is connected to a magneto generally shown at 10 (FIG. I). The internal combustion engine drives a magnetic ring 11, which is in magnetic circuit relationship with an armature l2. Armature 12 is wound on two separate cores l3, 14, each of which has an armature winding l5, 16, respectively, wound thereon. The number of turns of the windings l5 and 16 is different. One terminal 15a of the armature winding 15, being the winding with the higher number of turns, is connected to the anode of a diode 17. A corresponding terminal 16a of the armature winding 16, that is, the winding with the smaller number of turns, is connected to the anode of a diode 18. The cathodes of the two diodes 17, 18 are connected together and to a supply line 19 which is connected to one terminal of the charging ignition capacitor 20. The other terminal of ignition capacitor 20 is connected to the primary 21a of an ignition coil 21. The secondary 21b of the ignition coil 21 is connected by means of an ignition cable 22 to a spark plug 23. The other terminals of the primary and secondary windings of the ignition coil 21, as well as the terminals 15b, 16b of the armature windings 15, 16 are connected to chassis or ground. A diode 28 bridges the primary winding 21a. The series circuit formed of capacitor 20 and the primary 21a of the ignition coil 21 is bridged by the main current path of a thyristor 24, having a gate or trigger contact 24a.
The core 14, carrying the winding with the smaller number of turns has a control winding 25 applied thereto, phased oppositely to the winding 16. One terminal 25b is connected to the common ground or chassis line. The other terminal 25a is connected through a diode 26 with the gate electrode 24a of the thyristor 24. A resistor 27 bridges the gate electrode 24a to chassis.
Operation: Upon starting of the internal combustion engine, the magnet wheel 11 is rotated in the direction of the arrow. Upon such rotation, an alternating voltage is induced in the windings l5, 16. The negative half waves which are induced are blocked by the diodes l7,
18. The positive half waves are transmitted over diodes l7, 18 to the ignition capacitor 20. The charge circuit is closed over the primary winding 21a of the ignition coil 21 and over the ground or chassis return line to the armature windings 15, 16. In lower ranges of speed, the voltage induced in winding (with the larger number of turns) rises rapidly, so that it can charge the ignition capacitor almost to its upper limit. As the speed of the engine increases, however, the voltage in winding 15 decreases due to armature reaction. Charge in the capacitor 20 is applied from the winding 16 having a lesser number of turns, since the armature reaction due to current flow in winding 16 is much smaller. The charge windings 15, 16 are so matched to the capacity of the capacitor 20 that, even in upper speed ranges, the entire positive voltage half wave is not required to completely charge the ignition capacitor 20. After the ignition capacitor 20 is charged, armature reaction in the windings 15, 16 drops to zero, so that the subsequent negative voltage half wave occurs without time delay and phase retardation.
The control winding is wound in phase opposition to the charge winding 16. During the negative half wave in the charge winding 16, a positive half wave will be induced in the control winding 25, which is applied over diode 26 to the control electrode 24a of the thyristor 24. Thyristor 24 has a certain response threshold level. When the voltage has reached this threshold or triggering level, the thyristor is rendered conductive and the capacitor 20 can rapidly discharge over a discharge circuit formed by the ignition capacitor 20, thyristor 24, chassis connection and the primary 21a of ignition coil 21. This rapid suddenly occurring pulse, having a high rate of change of current, results in a high voltage pulse in the secondary 21b of ignition coil 21 to provide the spark at spark plug 23. The charge and discharge cycle repeats on the ignition capacitor 20 upon each half rotation of the magnetized or magnet wheel 11. The control winding 25 operates practically without loading. The rate of voltage rise thus increases as the speed of the engine increases, so that the triggering level of the thyristor is reached earlier and earlier as the speed increases, and so that the discharge of the capacitor 20 is likewise advanced, thus changing the timing of the ignition of the internal combustion engine in the direction to advance the spark as the speed of the engine itself increases.
FIG. 2 shows a magneto generator 30 in which a permanent magnet 32, having pole shoes 33, 34 at the sides thereof, is located on the circumference of a flywheel 31 of the internal combustion engine. The flywheel 31 is driven by the internal combustion engine from a shaft, not shown. The permanent magnet 32 cooperates with an armature 35 on the engine, which is stationary. It includes a U-shaped iron core 36 with two projecting legs 37, 38, on which the windings 15x, 16x and the control winding 25x are wound. The windings 15x, 16x, 25x correspond to the windings 15, 16, 25 of FIG. 1. The cross-sectional areas of the legs 37, 38 are different. The control winding 25x and the armature winding 15 are located on the core leg 37 which has the larger cross-sectional area. The winding l6, having the smaller number of windings, is located on core leg 38 having a smaller cross-sectional area. The three windings have one terminal, each, connected to the core 36,
and hence to chassis of the machine; the other terminals are brought out at terminals 15a, 1611,2511. respectively, and connect to the corresponding terminals 16a, 25a of FIG. 1.
Operation: Basically, the operation of the magneto generator 30 of FIG. 2 is essentially the same as that described in connection with FIG. 1. The different crosssectional area of the two core legs 37, 38 provides for relatively great leakage of the flux derived from the permanent magnet 32, as it passes with its pole shoes between the ends of the core legs 37, 38. This, then, effectively de-couples the windings 15x and 16.\' from each other, so that a counter-flux in one ofthe windings does not adversely effect the induced voltage in the other winding.
The control winding 25x is connected in phase opposition with respect to the winding 15x. In operation of the engine, the ignition capacitor is first charged by the windings 15x or 16x, respectively, and then discharged, at the ignition instant, by the positive voltage half wave arising in the control winding 25x, thereby rendering thyristor 24 conductive and discharging capacitor 20. The charge and discharge cycle with respect to ignition capacitor 20 and the resulting ignition of spark plug 23 of the internal combustion engine only occurs once upon each rotation of the fly-wheel 31. If more frequent ignition is desired, more than one magnetic structure 32, 33, 34 can be located around the circumference of fly-wheel 31.
The magneto generator generally shown at 10 in FIG. 1 may be associated also with hollow fly-wheels. Refer ring to FIG. 3, a potshaped, cylindrical. hollow flywheel 40 has located therein four segment-shaped permanent magnets 41, of alternating polarity. The cutaway portion of the fly-wheel makes visible the magneto structure 12a which includes cores 13, 14 formed as chords with respect to the circumference of the cylindrical fly-wheel 40. The permanent magnets 41 are supplied with pole shoes 42. The chord-located cores l3, 14 are magnetically in parallel, and located axially staggered in the cylindrical flywheel armature combination. Non-magnetic spacer pins 43 space the cores l3, 14 from each other and additionally secure the cores on an armature plate 44, which is stationary. The lower, or inner core 14 has a smaller cross sectional area than the outer, or upper core 13. Space utilization is particularly efficient when the control winding 25 is wound together with the winding 16, having the lesser number of turns on one common core 14 (which is the core of smaller crosssectional area). The other main winding 15, with the larger number of turns, is then located on core 13 having the larger cross-sectional area.
Various changes and modifications may be made within the inventive concept. It is possible, for example, to locate the cores l3, 14 not axially staggered. as shown in FIG, 3, but rather axially aligned and offset with each other by 90, or electrical. The main windings l5, 16 must, however, have different numbers of turns, and the control winding 25 must be located on one of the cores associated with one of the main windings, and connected in phase opposition with respect thereto.
Typical dimensions for a magneto generator, of the type of FIG. 1 may be:
coil 15: 7000 turns Continued coil 16: 1500 turns coil 25: I00 turns cross section of armature core 13: 4.0 cm cross section of core 14: 2.5 tm charge capacitor 2.0 uF.
The foregoing is merely an example and various changes and modifications may be made within the inventive concept.
We claim: 1. Magneto ignition system for internal combustion engines comprising an armature (12), a rotating magnet (11) magnetically coupled to the armature, an ignition storage capacitor (20), a charging circuit (17, 18) connecting the capacitor and the armature to charge the capacitor, and a discharge circuit (26, 24, 27) including a discharge control winding polarized oppositely to the armature and connected to the capacitor to discharge the capacitor through an ignition coil (21) to generate an ignition spark pulse for a spark plug (23),
and wherein the armature comprises two individual cores (13, 14) and two windings (15, 16) each located on an individual core (l3, 14); the charging circuit comprises diodes (17, 18) connected and poled to electrically uncouple said two windings (15, 16) from each other,
characterized in that the numbers of turns of the windings (15, 16) are different to provide charge energy to the capacitor (20) over a wide range of engine speed;
and in that the control winding (25) is a separate winding wound on one of said individual cores, and connected in phase opposition with respect to the winding on said one core to provide energy to control the discharge of the capacitor when no charge energy is required from the armature windings, and to generate said control energy independently of induction in any one of the armature windings.
2. System according to claim 1, wherein the cores (13, 14; 37, 38) have different cross-sectional area, the control winding (25):) and one of the armature wind ings (15):) being located on the core of greater crosssectional area.
3. System according to claim 2, wherein the cores form the leg parts (37, 38) of a U-shaped core structure (36) in which the leg parts are of different crosssectional area. 7
4. System according to claim 1, wherein the magnet (41, 42) is located at the inner surface of a hollow rotating structure (40);
the armature cores (13, 14) are located within the hollow structure on chords with respect to the center of the rotation thereof.
5. System according to claim 4, wherein the armature cores are separate core elements;
a carrier (44) and means securing the armature core elements to the carrier while providing for magnetic isolation of said cores with respect to each other.
6. System according to claim 4, wherein the armature cores are separate core elements (l3, 14) located magnetically in parallel with respect to the magnet (41, 42).
7. System according to claim 1, wherein the control winding (25) is located on the core (14) carrying the winding (16) with the smaller number of turns.
8. System according to claim 1, wherein the crosssectional area of the cores is different and the control winding (25) is located on the core with the smaller cross-sectional area.
9. System according to claim 1, wherein one, terminal, each, of both windings (15, 16) of the armature windings, and of the control winding (25) are commonly connected to ground, or chassis of the engine.
10. System according to claim 1, wherein the engine has a fly-wheel (40) having a cylindrical, hollow portron;
the magnet (41) is located at the inner surface of the fly-wheel, and the armature cores are located inside said hollow portion, magnetically coupled to the magnet;
a support carrier (44) facing said hollow portion;
and non-magnetic attachment means (43) attaching the cores to the support portion.
11. System according to claim 10, wherein the cores are located adjacent and parallel to each other, spanning a chord of the cylindrical portion, and the attachment means comprises axially extending pins (43) passing through said cores, separating said cores from each other, while attaching both said cores to the carrier;
the control winding (25) is located on the core (14) carrying the winding (16) with the smaller number of turns.
12. System according to claim 1, wherein the cores (l3, 14) are of different cross-sectional area, and the winding (16) having the smaller number of turns, as well as the control winding (25) are located on the core 14) having the smaller cross-sectional area.
Claims (12)
1. Magneto ignition system for internal combustion engines comprising an armature (12), a rotating magnet (11) magnetically coupled to the armature, an ignition storage capacitor (20), a charging circuit (17, 18) connecting the capacitor and the armature to charge the capacitor, and a discharge circuit (26, 24, 27) including a discharge control winding (25) polarized oppositely to the armature and connected to the capacitor to discharge the capacitor through an ignition coil (21) to generate an ignition spark pulse for a spark plug (23), and wherein the armature comprises two individual cores (13, 14) and two windings (15, 16) each located on an individual core (13, 14); the charging circuit comprises diodes (17, 18) connected and poled to electrically uncouple said two windings (15, 16) from each other, characterized in that the numbers of turns of the windings (15, 16) are different to provide charge energy to the capacitor (20) over a wide range of engine speed; and in that the control winding (25) is a separate winding wound on one of said individual cores, and connected in phase opposition with respect to the winding on said one core to provide energy to control the discharge of the capacitor when no charge energy is required from the armature windings, and to generate said control energy independently of induction in any one of the armature windings.
2. System according to claim 1, wherein the cores (13, 14; 37, 38) have different cross-sectional area, the control winding (25x) and one of the armature windings (15x) being located on the core of greater cross-sectional area.
3. System according to claim 2, wherein the cores form the leg parts (37, 38) of a U-shaped core structure (36) in which the leg parts are of different cross-sectional area.
4. System according to claim 1, wherein the magnet (41, 42) is located at the inner surface of a hollow rotating structure (40); the armature cores (13, 14) are located within the hollow structure on chords with respect to the center of the rotation thereof.
5. System according to claim 4, wherein the armature cores are separate core elements; a carrier (44) and means securing the armature core elements to the carrier while providing for magnetic isolation of said cores with respect to each other.
6. System according to claim 4, wherein the armature cores are separate core elements (13, 14) located magnetically in parallel with respect to the magnet (41, 42).
7. System according to claim 1, wherein the control winding (25) is located on the core (14) carrying the winding (16) with the smaller number of turns.
8. System according to claim 1, wherein the cross-sectional area of the cores is different and the control winding (25) is located on the core with the smaller cross-sectional area.
9. System according to claim 1, wherein one, terminal, each, of both windings (15, 16) of the armature windings, and of the control winding (25) are commonly connected to ground, or chassis of the engine.
10. System according to claim 1, wherein the engine has a fly-wheel (40) having a cylindrical, hollow portion; the magnet (41) is located at the inner surface of the fly-wheel, and the armature cores are located inside said hollow portion, magnetically coupled to the magnet; a support carrier (44) facing said hollow portion; and non-magnetic attachment means (43) attaching the cores to the support portion.
11. System according to claim 10, wherein the cores are located adjacent and parallel to each other, spanning a chord of the cylindrical portion, and the attachment means comprises axially extending pins (43) passing through said cores, separating said cores from each other, while attaching both said cores to the carrier; the control winding (25) is located on the core (14) carrying the winding (16) with the smaller number of turns.
12. System according to claim 1, wherein the cores (13, 14) are of different cross-sectional area, and the winding (16) having the smaller number of turns, as well as the control winding (25) are located on the core (14) having the smaller cross-sectional area.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19732314558 DE2314558A1 (en) | 1973-03-23 | 1973-03-23 | IGNITION DEVICE FOR COMBUSTION MACHINERY |
Publications (1)
Publication Number | Publication Date |
---|---|
US3861373A true US3861373A (en) | 1975-01-21 |
Family
ID=5875707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US449288A Expired - Lifetime US3861373A (en) | 1973-03-23 | 1974-03-08 | Magneto ignition system for internal combustion engines |
Country Status (5)
Country | Link |
---|---|
US (1) | US3861373A (en) |
JP (1) | JPS49127037A (en) |
CA (1) | CA1004293A (en) |
DE (1) | DE2314558A1 (en) |
IT (1) | IT1009354B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4184467A (en) * | 1977-07-30 | 1980-01-22 | Nippondenso Co., Ltd. | Contactless ignition system for internal combustion engine |
US4202305A (en) * | 1978-07-25 | 1980-05-13 | Wabash, Inc. | Capacitor discharge ignition system with timing stabilization arrangement |
US4448179A (en) * | 1981-10-08 | 1984-05-15 | Foster Leslie W | Engine including means for retarding sparking operation to control engine overspeed |
US4620521A (en) * | 1984-07-18 | 1986-11-04 | Colt Industries Operating Corp. | Modular, programmable high energy ignition system |
US4829972A (en) * | 1986-12-05 | 1989-05-16 | Piaggio & C. S.P.A. | Magnet-flywheel ignition unit for internal combustion engines |
US5024204A (en) * | 1990-06-29 | 1991-06-18 | Briggs & Stratton Corporation | Capacitive discharge ignition system with continuous timing advance |
US5048502A (en) * | 1990-09-05 | 1991-09-17 | Briggs & Stratton Corporation | Capacitive-discharge ignition system with step timing advance |
US5513619A (en) * | 1995-01-30 | 1996-05-07 | R. E. Phelon Company, Inc. | Discharge ignition apparatus for internal combustion engine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53141267U (en) * | 1977-04-11 | 1978-11-08 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3461851A (en) * | 1968-10-07 | 1969-08-19 | Ambac Ind | Ignition system and magneto therefor |
US3736914A (en) * | 1970-07-07 | 1973-06-05 | Bosch Gmbh Robert | Electronic ignition system for an internal combustion engine |
US3753429A (en) * | 1970-07-28 | 1973-08-21 | Bosch Gmbh Robert | Internal combustion engine ignition system |
-
1973
- 1973-03-23 DE DE19732314558 patent/DE2314558A1/en active Pending
-
1974
- 1974-03-08 US US449288A patent/US3861373A/en not_active Expired - Lifetime
- 1974-03-19 JP JP49031429A patent/JPS49127037A/ja active Pending
- 1974-03-21 IT IT67877/74A patent/IT1009354B/en active
- 1974-03-22 CA CA195,771A patent/CA1004293A/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3461851A (en) * | 1968-10-07 | 1969-08-19 | Ambac Ind | Ignition system and magneto therefor |
US3736914A (en) * | 1970-07-07 | 1973-06-05 | Bosch Gmbh Robert | Electronic ignition system for an internal combustion engine |
US3753429A (en) * | 1970-07-28 | 1973-08-21 | Bosch Gmbh Robert | Internal combustion engine ignition system |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4184467A (en) * | 1977-07-30 | 1980-01-22 | Nippondenso Co., Ltd. | Contactless ignition system for internal combustion engine |
US4202305A (en) * | 1978-07-25 | 1980-05-13 | Wabash, Inc. | Capacitor discharge ignition system with timing stabilization arrangement |
US4448179A (en) * | 1981-10-08 | 1984-05-15 | Foster Leslie W | Engine including means for retarding sparking operation to control engine overspeed |
US4620521A (en) * | 1984-07-18 | 1986-11-04 | Colt Industries Operating Corp. | Modular, programmable high energy ignition system |
US4829972A (en) * | 1986-12-05 | 1989-05-16 | Piaggio & C. S.P.A. | Magnet-flywheel ignition unit for internal combustion engines |
US5024204A (en) * | 1990-06-29 | 1991-06-18 | Briggs & Stratton Corporation | Capacitive discharge ignition system with continuous timing advance |
US5048502A (en) * | 1990-09-05 | 1991-09-17 | Briggs & Stratton Corporation | Capacitive-discharge ignition system with step timing advance |
US5513619A (en) * | 1995-01-30 | 1996-05-07 | R. E. Phelon Company, Inc. | Discharge ignition apparatus for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JPS49127037A (en) | 1974-12-05 |
CA1004293A (en) | 1977-01-25 |
IT1009354B (en) | 1976-12-10 |
DE2314558A1 (en) | 1974-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3500809A (en) | Ignition arrangement for internal combustion engines | |
US3678913A (en) | Current generator and electronic ignition circuit | |
US3598098A (en) | Ignition arrangment for internal combustion engines | |
US3461851A (en) | Ignition system and magneto therefor | |
US3878452A (en) | Transistorized magneto ignition system for internal combustion engines | |
US3619634A (en) | Alternator and combined breakerless ignition system | |
US3623467A (en) | Triggering magnet and coil assembly for use with an ignition system including a permanent magnet alternator | |
US3861373A (en) | Magneto ignition system for internal combustion engines | |
US3747582A (en) | Ignition system for multicylinder internal combustion engine | |
US4170207A (en) | Ignition system for a multicylinder internal combustion engine | |
US3661132A (en) | Ignition circuit with automatic spark advance | |
US4325350A (en) | Alternator-powered breakerless capacitor discharge ignition system having improved low-speed timing characteristics | |
US3864621A (en) | Transistorized control circuit for magneto motor ignition systems | |
US4014309A (en) | Capacitor discharge type contactless ignition system for internal combustion engines | |
US3219877A (en) | Controlled rectifier ignition system | |
US3948239A (en) | Signal generator for use in a breakerless ignition system for an internal combustion engine | |
US3746901A (en) | Magneto generator for ignition systems of internal combustion engines | |
US3911889A (en) | Capacitor discharge type contactless ignition system for internal combustion engines | |
US3824976A (en) | Capacitor charge-discharge type ignition system for use in a two-cycle internal combustion engine | |
US3864622A (en) | Transistorized control circuit for magneto motor ignition systems | |
US4141331A (en) | Breakerless capacitive discharge ignition system | |
CA1107347A (en) | Ignition system for internal combustion engines | |
US3893439A (en) | Magneto ignition system for internal combustion engines | |
US4116188A (en) | Capacitor discharge type contactless ignition system for internal combustion engines | |
US3791363A (en) | Electronically controlled reversal-proof magneto ignition system |