US3859712A - Method of making printing disc - Google Patents

Method of making printing disc Download PDF

Info

Publication number
US3859712A
US3859712A US413782A US41378273A US3859712A US 3859712 A US3859712 A US 3859712A US 413782 A US413782 A US 413782A US 41378273 A US41378273 A US 41378273A US 3859712 A US3859712 A US 3859712A
Authority
US
United States
Prior art keywords
disc
printing
font
making
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US413782A
Inventor
Herbert Tramposch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pitney Bowes Inc
Original Assignee
Pitney Bowes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pitney Bowes Inc filed Critical Pitney Bowes Inc
Priority to US413782A priority Critical patent/US3859712A/en
Priority to US05/505,366 priority patent/US3935937A/en
Application granted granted Critical
Publication of US3859712A publication Critical patent/US3859712A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J1/00Typewriters or selective printing mechanisms characterised by the mounting, arrangement or disposition of the types or dies
    • B41J1/22Typewriters or selective printing mechanisms characterised by the mounting, arrangement or disposition of the types or dies with types or dies mounted on carriers rotatable for selection
    • B41J1/24Typewriters or selective printing mechanisms characterised by the mounting, arrangement or disposition of the types or dies with types or dies mounted on carriers rotatable for selection the plane of the type or die face being perpendicular to the axis of rotation
    • B41J1/28Carriers stationary for impression, e.g. with the types or dies not moving relative to the carriers
    • B41J1/30Carriers stationary for impression, e.g. with the types or dies not moving relative to the carriers with the types or dies moving relative to the carriers or mounted on flexible carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P13/00Making metal objects by operations essentially involving machining but not covered by a single other subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49799Providing transitory integral holding or handling portion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49915Overedge assembling of seated part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

A composite of several materials constructed to form a printing disc, of the type used in high speed printers. The printing disc is manufactured in separate stages in order to achieve characteristics within the final assembly that are necessary for high speed quality printing. The assembled printing disc comprises a disc shaped member of flexible plastic. The hub of the disc has radially extending arms which each unite with a print head character composed of a thin layer of powdered metal or plasstic zinc plated with a layer of metal.

Description

ited States Patent 1191 Tramposch METHOD OF MAKING PRINTING DISC [75] Inventor: Herbert Tramposch, Riverside,
Conn.
[73] Assignee: Pitney-Bowes Inc., Stamford, Conn. [22] Filed: Nov. 8, 1973 21 Appl. No.: 413,782
3,698,074 10/1972 Helda et a1. 29/418 X Jan. 14, 1975 3,805,941 4/1974 Cattaneo 197/53 Primary Examiner-C. W. Lanham Assistant Examiner-Victor A. DiPalma Attorney, Agent, or FirmWilliam D. Soltow, Jr.; Albert W. Scribner; Robert S. Salzman [5 7] ABSTRACT A composite of several materials constructed to form a printing disc, of the type used in high speed printers. The printing disc is manufactured in separate stages in order to achieve characteristics within the final assembly that are necessary for high speed quality printing. The assembled printing disc comprises a disc shaped member of flexible plastic. The hub of the disc has radially extending arms which each unite with a print head character composed of a thin layer of powdered metal or plastic zinc plated with a layer of metal.
4 Claims, 9 Drawing Figures PATENTEI] JAN 1 4|975 SHEET 10F 2 PATENTEI] JAN 1 MRS SHEH 2 D? 2 METHOD OF MAKING PRINTING DISC This invention pertains to a method of manufacturing a printing disc, to the finished printing disc article, and more particularly to a composite printing disc assembly that obtains the necessary characteristics for high speed quality printing.
BACKGROUND OF THE INVENTION In order to achieve a high speed printing disc, it is necessary to make the arms of the disc very flexible and light in weight so as to accommodate rapid printing impacts. Many flexible and light weighted plastics are available for this purpose. However, if a high quality of printing is also a requirement, then it is necessary to have the character face of each arm of the disc composed of a material that is hard and durable.
Because the material requirements for high speed printing and quality printing are diametrically opposite, a compromise was originally sought for the disc material.
Many tests, however proved that no adequate compromise could be made. Neither was it found possible to plate over the character surface of the arms without substantially destroying the crispness of the character image.
Furthermore, the method of electroforming a metallic cover upon the flexible plastic character head was not entirely satisfactory, because serious cracking developed in the metal after a relatively small number of impacts.
A pure metal print head attached to the plastic arm was not satisfactory. The metal print head had the necessary structural strength, but weighed too much for high speed printing.
The present inventive composite printing disc assembly seeks to achieve the objective of providing a disc that can operate at high speeds and deliver a high quality of printing.
SUMMARY OF THE INVENTION The invention is a plastic and metal composite assembly structured in a novel manner. The print disc hub with its radially extending arms is composed of a flexible plastic such as acetal homopolymer, acetal copolymer, or polypropylene. The printing characters are each composed of a thin layer of powdered metal or plated plastic zinc, which are fastened to the ends of the arms.
The aforementioned assembly is constructed by first making a disc or ring member containing a font ofcharacters annularly arranged thereon. The disc of characters is made of powder metal or of plastic zinc. The character containing disc is machined to produce a double annular ring with individualized character segments disposed therebetween. Next, the inner ring of said double ring member is cut-off. A plastic disc hub with flexibly extending radial arms is injection molded of a flexible plastic such as acetal homopolymer, acetal copolymer, or polypropylene. The character segments are then placed upon the flexible arms and bonded thereto. To obtain a completed disc, the remaining annular ring is removed from the plastic-metal composite structure by a cutting operation.
It is an object of the invention to provide an improved printing disc;
It is another object of this invention to provide a novel compositely assembled printing disc, and a method of making same.
It is still a further object of the invention to provide a high speed printing disc providing a high quality of printing.
These and other objects of this invention will become more apparent and will be better understood with reference to the following detailed description taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a partial top view of a powdered metal disc having a font of characters arranged annularly thereon;
FIG. 2a is an enlarged sectional view of FIG. 1 taken along lines 22;
FIG. 2b is the enlarged sectional view of FIG. 2a showing a machined cut therein;
FIG. 2c is the enlarged sectional view of FIG. 2b showing an additional machined cut therein;
FIG. 3 is an enlarged perspective view of the disc of FIG. 1 after the machined cut of FIG. 212;
FIG. 4 is a partial top view of a plastic disc having a plurality of flexible arms extending radially therefrom;
FIG. 5 is a partial enlarged perspective view of the proposed assembly of the structural members shown in FIGS. 2c and 4.
FIG. 6 is a partial top view of the assembled structural members of FIG. 5; and
FIG. 7 is a partial side view of the assembly of FIG. 6 with the outer ring section removed.
Now referring to FIG. 1, a powdered metal disc 10 is shown having a font of characters 9 annularly arranged about a peripheral portion thereof. The powdered metal disc is formed with two V- grooved slots 11 and 12, respectively, and with depressions 14 disposed between the characters 15. The depressions 14 between the characters 15 are grooved deeper into the metal of disc 10 than the V- grooves 11 and 12, as illustrated in FIG. 2a.
The disc 10 then has a section 16 machined from beneath the font of characters 9 (FIG. 2b) to provide the structural member shown in FIG. 3.
Because depressions 14 were deeper than grooves 11 and 12, (FIGS. 1 and 2a) the characters 15 have become individually separated from each other when section 16 is removed from disc 10 the characters 15 are now separated by channel 20 as illustrated in FIG. 3.
The removal of section 16 is accomplished by first partially machining the metal from under the font of characters, so that the full depth of section 16 is not reached. The remaining metal is then hardened. The rest of section 16 is removed by electrical discharge machining methods.
Next, the inner disc structure 17 is removed from the disc along surface 18, leaving the font of characters attached only to outer ring 19 as shown in FIG. 2c and as illustrated in the upper half of FIG. 5.
FIG. 4 depicts a molded disc 21 of flexible plastic. The disc 21 has a plurality of radially extending arms 22. The end portions 24 of the arms 22 have a molded face 23 for receiving the characters 15 attached to ring 19 (FIGS. 4 and 5).
FIG. 5 illustrates the joining (arrows 25) ofa typical character 15 with a typical arm 22 about is end portion 24. Face 23 of end portion 24 acts as a seat for the back face 26 of character 15.
Tabs 27 and 28 of the character 15 nest within recesses 29 and 30, respectively, of portion 24.
The portion 24 has plastic toes 31, which are deformed over the respective tabs 27 and 28, by applying a heated forming tool thereto. This results in firmly anchoring the tabs 27 and 28, and hence character 15, to said end portion 24 of arm 22 (see FIG. 7).
The resulting composite assembly of the joined structures l and 24 of FIG. 5, is illustrated in FIG. 6. The metal characters are now each molded-in with a corresponding end portion 24.
The last machining step necessary to provide a completed printing disc, requires the removal of outer ring 19. This is accomplished by cutting ring 19 from surfaces 32 at the crown of the end portion 24 (see FIG. 7).
FIG. 7 shows a typical character composite print head 33 with the character 15 firmly secured to face 23 of end portion 24 of arm 22. Note that ring 19 has been removed from surface 32.
The character disc or ring 10, can be manufactured according to powder metallurgical techniques or super plastic techniques as follows:
Method A Powder Metallurgical Process The character elements are produced by any suitable powder metal process (such as that shown in Standard R 3751 of Pitney-Bowes, Inc., Stamford, Connecticut) which includes the compression of metallic and nonshaped metallic powders, generally while confined in a die where a shape is formed and then bonded by heating (sintering) to produce structurally sound components. This process can accommodate a wide variety of materials, with high surface finishes and close tolerances. This will allow character elements, type, etc., produced by this method to have high precision and detail which will be compatible to post thermal treatments for increased surface and core properties or post coatings for increased surface properties. Post treatments will increase the performance of thecharacter elements. Examples of materials which can be used are as follows:
A. O. Smith-Inland, Inc., Milwaukee, Wisconsin 46F2-50 Pre-Alloyed Powder Chemical Analysis:
Bal
Mn 50% P .0l% S .02% Mo .55% C .50%
or Hoeganaes, Corp., Subsidiary of lnterlake Inc., Riverton, New Jersey Ancorsteel 4650v Powder Density: Any density that would allow for a soundly LII sintered compact could be utilized. We reeom- 6 Thermal Treatment: Any suitable thermal treatment or hardening process such as that found in Pitney Bowes Standard D 1122 of Pitney Bowes, lnc., Stamford, Connecticut.
This treatment or similar treatments will increase the core and surface hardness and mechanical properties. This treatment will prevent the characters from peening or failing in compression, i.e., exceeding the compressive yield.
Post Coating: Any suitable post coating for further increasing the wear resistance is used, such as a Pitney Bowes Standard D 1322 Chromium Plate- Wear Resistant surface.
A Borkote surface which will do the same as above. Borkote is a boride diffusion coating marketed by Kennametal Inc., Latrobe, Penna. When processed on iron, it produces an iron b0- ride Fe B which has a hardness greater than 1,500 DPH units or greater than Rockwell C. This coating is a diffusion coating into the original surfaces and, therefore, offers good thermal and mechanical shock resistance, and vibration and fatigue resistance.
Method B Superplastic Process The superplastic process utilizing a thermal compression forming technique is capable of producing character with clear details.
Material: Superplastic zinc alloys produced by New Jersey Zinc. Specific alloys: SPZ 200, SPZ 300, SPZ 400, or Other superplastic alloys such as brass type, stainless steel type, etc.
Post Coating: Any suitable coating is applied to increase the mechanical wear, such as a Pitney Bowes Standard D 1322 Chromium Plate-Wear Resistantz.
The spirit and scope of the invention should not be limited to any obvious changes or modifications which would occur to those skilled in the art. The invention 0 should be interpreted with respect to the following appended claims.
What is claimed is:
l. A method of making a printing disc for use in a serial printing apparatus, comprising the steps of:
a. making a disc-type member containing a font of print characters annularly arranged thereon;
b. removing material from said disc-type member to produce a double annular ring member having an outer and an inner ring with individualized character segments disposed between said rings;
0. removing said inner ring from said double annular ring member.
(1. molding a flexible plastic disc member having a hub and flexible arms radially extending from said hub;
e. bonding each of said individualized character segments to a corresponding flexible arm to form a printing disc composite assembly; and
f. removing said outer ring from said composite assembly.
2. The method of making a printing disc of claim 1, wherein said flexible plastic disc member is injection molded from a material selected from a group consisting of:
a. acctal homopolymer',
b. acetal copolymer; and
c. polypropylene.
characters by means of electrical discharge machining.
4. The method of making a printing disc of claim 1, wherein the font containing disc member is formed of plastic zinc, and the removing of material from said font containing disc to produce a double annular ring member is accomplished by machining the plastic zinc material from said font containing disc member.
l l l l=

Claims (4)

1. A method of making a printing disc for use in a serial printing apparatus, comprising the steps of: a. making a disc-type member containing a font of print characters annularly arranged thereon; b. removing material from said disc-type member to produce a double annular ring member having an outer and an inner ring with individualized character segments disposed between said rings; c. removing said inner ring from said double annular ring member. d. molding a flexible plastic disc member having a hub and flexible arms radially extending from said hub; e. bonding each of said individualized character segments to a corresponding flexible arm to form a printing disc composite assembly; and f. removing said outer ring from said composite assembly.
2. The method of making a printing disc of claim 1, wherein said flexible plastic disc member is injection molded from a material selected from a group consisting of: a. acetal homopolymer; b. acetal copolymer; and c. polypropylene.
3. The method of making a printing disc of claim 1, wherein the font containing disc member is formed of powder metal, and the removing of material from said font containing disc to produce a double annular ring member is accomplished by first partially machining the metal from under said font without separately delineating the characters, hardening the remaining metal, and final machining metal from between the characters by means of electrical discharge machining.
4. The method of making a printing disc of claim 1, wherein the font containing disc member is formed of plastic zinc, and the removing of material from said font containing disc to produce a double annular ring member is accomplished by machining the plastic zinc material from said font containing disc member.
US413782A 1973-11-08 1973-11-08 Method of making printing disc Expired - Lifetime US3859712A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US413782A US3859712A (en) 1973-11-08 1973-11-08 Method of making printing disc
US05/505,366 US3935937A (en) 1973-11-08 1974-09-12 Plastic and metal article of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US413782A US3859712A (en) 1973-11-08 1973-11-08 Method of making printing disc

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/505,366 Division US3935937A (en) 1973-11-08 1974-09-12 Plastic and metal article of manufacture

Publications (1)

Publication Number Publication Date
US3859712A true US3859712A (en) 1975-01-14

Family

ID=23638606

Family Applications (1)

Application Number Title Priority Date Filing Date
US413782A Expired - Lifetime US3859712A (en) 1973-11-08 1973-11-08 Method of making printing disc

Country Status (1)

Country Link
US (1) US3859712A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2640940A1 (en) * 1975-09-12 1977-03-24 Ricoh Kk TYPE CARRIER DEVICE FOR A TYPEWRITER OR PRINTING DEVICE AND PROCESS FOR THEIR MANUFACTURING
US4044455A (en) * 1975-06-05 1977-08-30 Canon Kabushiki Kaisha Method of making a printing hammer unit
US4126400A (en) * 1975-09-12 1978-11-21 Ricoh Company, Ltd. Serial printing apparatus
US4127336A (en) * 1976-03-08 1978-11-28 Nippon Telegraph And Telephone Public Corporation Type heads
US4329072A (en) * 1979-10-30 1982-05-11 International Business Machines Corporation Ribbon feed and lift mechanism for a typewriter
US4750259A (en) * 1983-11-23 1988-06-14 Honeywell Bull Italia S.P.A. Method of making armature group for mosaic printing head
US4970125A (en) * 1985-04-01 1990-11-13 Chromalloy Castings Miami Corp. Cantilevered integral airfoil casting and method
US5593084A (en) * 1992-04-03 1997-01-14 Gkn Automotive Ag Method of assembling constant velocity fixed joint
US5618450A (en) * 1995-06-07 1997-04-08 Stuart; James P. Tool having interchangeable indicia marking electrodes for use in electrical discharge machining

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3574326A (en) * 1968-03-26 1971-04-13 Donald F Flynn Actuating mechanism for rotating printing disc
US3609861A (en) * 1969-10-21 1971-10-05 Kollsman Instr Corp Method of manufacturing rotary switch rotor contact members
US3698074A (en) * 1970-06-29 1972-10-17 Motorola Inc Contact bonding and packaging of integrated circuits
US3805941A (en) * 1969-06-28 1974-04-23 Honeywell Inf Systems Ballistic print hammer and type-bearing element combination for on-the-fly printer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3574326A (en) * 1968-03-26 1971-04-13 Donald F Flynn Actuating mechanism for rotating printing disc
US3805941A (en) * 1969-06-28 1974-04-23 Honeywell Inf Systems Ballistic print hammer and type-bearing element combination for on-the-fly printer
US3609861A (en) * 1969-10-21 1971-10-05 Kollsman Instr Corp Method of manufacturing rotary switch rotor contact members
US3698074A (en) * 1970-06-29 1972-10-17 Motorola Inc Contact bonding and packaging of integrated circuits

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044455A (en) * 1975-06-05 1977-08-30 Canon Kabushiki Kaisha Method of making a printing hammer unit
DE2640940A1 (en) * 1975-09-12 1977-03-24 Ricoh Kk TYPE CARRIER DEVICE FOR A TYPEWRITER OR PRINTING DEVICE AND PROCESS FOR THEIR MANUFACTURING
US4126400A (en) * 1975-09-12 1978-11-21 Ricoh Company, Ltd. Serial printing apparatus
US4228577A (en) * 1975-09-12 1980-10-21 Ricoh Company, Ltd. Method of making rotary type wheels
US4127336A (en) * 1976-03-08 1978-11-28 Nippon Telegraph And Telephone Public Corporation Type heads
US4329072A (en) * 1979-10-30 1982-05-11 International Business Machines Corporation Ribbon feed and lift mechanism for a typewriter
US4750259A (en) * 1983-11-23 1988-06-14 Honeywell Bull Italia S.P.A. Method of making armature group for mosaic printing head
US4970125A (en) * 1985-04-01 1990-11-13 Chromalloy Castings Miami Corp. Cantilevered integral airfoil casting and method
US5593084A (en) * 1992-04-03 1997-01-14 Gkn Automotive Ag Method of assembling constant velocity fixed joint
US5618450A (en) * 1995-06-07 1997-04-08 Stuart; James P. Tool having interchangeable indicia marking electrodes for use in electrical discharge machining

Similar Documents

Publication Publication Date Title
US3859712A (en) Method of making printing disc
US3935937A (en) Plastic and metal article of manufacture
US3840983A (en) Method of manufacture of a dynamoelectric machine laminated armature structure
US6319446B1 (en) Method of producing replaceable mold cavities and mold cavity inserts
GB2201970A (en) Process for making sintered layer-on-metal composite
US4638538A (en) Method of manufacturing wound bush bearing with notch-free flange and mold assembly for manufacturing the same
US20060039818A1 (en) Method of forming a die
US3921277A (en) Method of making printing disc
US3786552A (en) Method of manufacturing a composite bimetallic sleeve for a die-casting machine
GB1582033A (en) Methods of and apparatus for forming in one piece brake discs for vehicles
JP2006046540A (en) Dynamic pressure fluid bearing device
Rota et al. Wear resistant tools for reproduction technologies produced by micro powder metallurgy
US2336578A (en) Molding equipment
GB2097869A (en) Method of making race rings by pairs for rolling bearings
US3286329A (en) Process for the manufacture of a gear
US5094796A (en) Elastically deformable die and method of die forming using the die
EP0305388A1 (en) Method of making multi-chain sprockets
US4296180A (en) Process for the production of metallic formed members
CN100450703C (en) Molding process
JPS59155660A (en) Hollow cam shaft and manufacture thereof
US4696722A (en) Low cost tooling replication technique
US3805360A (en) Method and apparatus for sizing brake drum rings
US2869947A (en) Variable density article and method of making
JP4642686B2 (en) Sliding bearing manufacturing method
US3472306A (en) Process for forming an arcuate metal punch plate