US3857439A - Continuous kinematic type machine for producing foundry cores - Google Patents

Continuous kinematic type machine for producing foundry cores Download PDF

Info

Publication number
US3857439A
US3857439A US00326875A US32687573A US3857439A US 3857439 A US3857439 A US 3857439A US 00326875 A US00326875 A US 00326875A US 32687573 A US32687573 A US 32687573A US 3857439 A US3857439 A US 3857439A
Authority
US
United States
Prior art keywords
barrel
boxes
box
core
hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00326875A
Other languages
English (en)
Inventor
G Bardet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automatisme et Technique
Original Assignee
Automatisme et Technique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automatisme et Technique filed Critical Automatisme et Technique
Application granted granted Critical
Publication of US3857439A publication Critical patent/US3857439A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C13/00Moulding machines for making moulds or cores of particular shapes
    • B22C13/12Moulding machines for making moulds or cores of particular shapes for cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/23Compacting by gas pressure or vacuum
    • B22C15/24Compacting by gas pressure or vacuum involving blowing devices in which the mould material is supplied in the form of loose particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening
    • B22C9/123Gas-hardening

Definitions

  • the present invention relates to a machine for the production of foundry cores.
  • the first process involves incorporating a thermo-hardening material in the mixture from which the foundry core is to be moulded and thermally hardening the core in its moulding box. Such processes are called hot box processes, and these are relatively old.
  • the second group of processes involves the catalytic hardening of the core in its box at ambiant temperature.
  • this cold box process which certainly enables relatively rapid work to be carried out, is used with relatively little automation, and human intervention, even for the large scale production of cores, retains its importance to an extent that very appreciably restricts production rates and increases costs.
  • the object of the present invention is to remedy the situation by providing a machine which allows cores of any shape to be produced rapidly and automatically, restricting human intervention only to the replacement of the core boxes corresponding to the production run in progress by coe boxes of a new run.
  • the invention also proposes to provide a machine which enables cores of various shapes to be made rapidly and continuously without any reduction of yield, this machine being of the continuous kinematic type comprising operating barrels or turrets provided with means of support for receiving and transferring the products to be treated, each of these barrels also comprising tools that are controlled and that move with the barrel and intended to treat the products while they are being transported by this barrel, the products being transferred from one operating barrel to the other by transfer barrels or turrets, travelling thus in the machine assembly at a strictly uniform horizontal speed.
  • the invention relates to a machine for the production of foundry cores, said machine being characterized in that it comprises a feed barrel supplying core boxes to a shot injection barrel, the latter introducing the load into the boxes with the aid of injection heads, then transferring these boxes to a gasification barrel provided with gasification heads, passing a hardening gas through the load in each box, and transferring each box to a barrel for removing the cores and cleaning the boxes, this last barrel opening each box separately to bring the core onto a means for removing cores, then cleaning the boxes and closing them again to transfer them to the feed barrel which conveys them to the shot injection barrel, the assembly comprising a driving means synchronizing the movement of the various barrels, so that the operations and the transfers are effected in a continuous kinematic manner.
  • the machine according to the invention has great flexibility as regards application since while being particularly suited for very large scale runs, it can also be used for medium or small runs, owing to the fact that the tools on the machine can be changed very easily and, in addition, it is possible to treat two different types of cores on the same machine.
  • the invention also relates to core boxes usable with this machine.
  • These boxes are characterized in that each comprises at least one part fixed on the transfer plate carrying two positioning pins, and at least one movable part which can separate from the part fixed to the transfer plate along the plane of the joint, rocking locking devices mounted on the fixed part of the transfer enabling it to become integral with the movable part, the box comprising internal walls delimiting, when it is closed, a moulding cavity and two auxiliary cavities, the latter communicating with one another by means of the moulding cavity from which they are separated by filters, at least one opening for filling the moulding cavity and at least one opening for circulating gas in each of the auxiliary cavities being provided on the upper face of the box.
  • the boxes can be provided with one or a plurality of moulds, depending on the size of the core.
  • a same barrel of the machine can smultaneously treat cores boxes with joints in a vertical plane and boxes with joints in a horizontal plane.
  • each working or transfer barrel consititutes an independent unit, connected separately to the same driving unit.
  • This driving unit consists of a motor driving a reducer distributor connected to the transmission boxes of each of the barrels by means of flexible linkages such as cardan shafts.
  • Each barrel is constructed and transported as an independent unit. To assemble the machine, the various barrels are placed first where the machine is to be located and then connected to the driving unit by the flexible transmission means provided in the form of cardans.
  • This drive by single driving unit also ensures that all the parts of the machine are completely synchronised, without there being any necessity for providing complex devices to ensure such synchronization, as would be the case for barrels having their own individual driving means.
  • FIG. la is a perspective view of a core box with its joint in a vertical plane.
  • FIG. lb is a perspective view of a core box with its joint in a horizontal plane.
  • FIGS. 2a to 2d represent the various phases of the method according to the invention, in the case of a core box with its joint in a horizontal plane.
  • FIG. 3 is a schematic plan view of the machine according to the invention.
  • FIG. 4 represents a schematically, in vertical sections, the shot injection barrel of the machine according to the invention.
  • FIG. 5a is a part of an axial section of a gasification barrel and a gasification head.
  • FIG. Sb is a partial plan view of the gasification barrel and the gasification head.
  • FIG. 6a is a partial axial section of the barrel for the ejection of cores and the cleaning of the boxes, in the case of the equipment for the boxes with a vertical joint.
  • FIG. 6b is a partial axial section of the barrel for the ejection of cores and the cleaning of the boxes, in the case of equipment for boxes with a horizontal joint.
  • FIGS. 7a and 7b show the principle of continuous kinematics.
  • reference point 1 relates to a core box with a vertical joint consisting of two parts la and 1b.
  • Part la is fixed on the transfer plate 2 which serves to convey a part over the differential barrels of the machine for producing cores.
  • Part lb is movable. It is connected to the part la by the locking device 3 consisting essentially of levers comprising two arms 3a and 3b and moving together by means of the sleeve 4, around the axle 5, carried by the vertical faces perpendicular to the plane of the joint, of the fixed part la of the core box.
  • the ends of the arms of the lever 3a are shaped into hooks which cooperate with the pins 6 fixed on the vertical faces, perpendicular to the plane of the joint, of the movable part lb of the core box, so as to make part lb integral with part la.
  • the ends of the lever arms 3b carry some pins 7 which enable the levers 3 to be rocked around the axles 5 to disengage the pins 6 and enable the movable part lb of the core box to be separated from the part la.
  • the upper horizontal part of the core box has an opening 8 which enables the moving mixture to be introduced into the core box, and openings 9 which enable a gaseous mixture to be introduced into the core box and to be removed from it.
  • the transfer plate 2 has fixed to it two positioning pins 10.
  • FIG. lb shows a perspective view of a core box with its joint in a horizontal plane.
  • the various members are designated on the box according to FIG. l by the same references as are given to the members fulfilling the same functions.
  • the movable part lb is placed here above the fixed part la and no longer laterally as in the case of a core box with its joint in a vertical plane.
  • FIGS. 2a and 2b represent schematically the various phases of the method according to the invention, in the case of a core box with its joint in a horizontal plane.
  • FIG. 2a shows schematically a sectional view in a vertical plane of the empty core box, as it is before being filled with the moulding mixture.
  • the part la, fixed to the transfer plate 2 by the screws ll is seen again, as also the movable part lb.
  • the moulding cavity 12 is surrounded by the walls l3, which are separate from the outer wall of the core box.
  • An intermediate partition 14 enables two cavities l5 and I6 to be delimited between the walls 113 and the exterior walls of the core box. These cavities communicate with one another by means of the openings 17, provided in the walls 13 and fitted with filters 18.
  • FIG. 2b shows schematically the operation involved in filling the box with the moulding mixture, this operation being called shot injection.
  • An injection head 301 is pressed onto the upper horizontal face of a box so as to form a sealed joint 19 with the latter.
  • the nature of this injection head is known and will not be shown in this figure.
  • the exit orifice 20 of the injection head communicates with the opening 8 provided in the upper part of the box.
  • a mixture of compressed air and moulding mixture is injected into the box, following the arrows E, by means of a compressed air blast, so that the moulding mixture completely fills the moulding cavity 12, without however going beyond the openings 17, as it is is stopped from doing so by the filters 18 of which the meshes are finer than the grain constituting the moulding mixture.
  • the compressed air passes through the filters l8 and escapes from the core box through the opening 9, following the arrow S.
  • the moulding mixture thus introduced into the moulding cavity 12 consists essentially of foundry sand to which has been added a resin which can be polymerised by catalysts.
  • FIG. 20 shows schematically the so-called gasifica tion operation.
  • a gasification head 21 is applied onto the upper horizontal surface of the core box, by means of a sealing plate 22.
  • the gasification head 21 comprises a feed channel 23, communicating with the cavity I6 of the core box by means of the orifice 24, and a discharge channel 26 communicating with the cavity 15 of the core box by means of the orifice 25.
  • a gaseous hardening mixture consisting, for example of carbon dioxide to which triethylamine or dimethylamine has been added.
  • This mix penetrates into the cavity 16 of the core box and then, passing through the openings 17 and the filters 18, into the moulding cavity 12, from which it emerges by the openings l7 and the filters 18 located in the opposite wall, and enters the cavity 15 and finally is evacuated through the channel 26 following the arrow S.
  • the hardening fluid In its passage through the moulding cavity 12, the hardening fluid enters into intimate contact with the moulding mixture and causes the polymerisable resin incorporated in this mixture to harden.
  • the inflow of the hardening gaseous fluid is arrested and compressed air for a sweeping operation is introduced through the channel 23.
  • This compressed air follows the same path as had previously been followed by the hardening gaseous fluid and thus sweeps the moulding mixture in the cavity 12, diluting and carrying away the hardening gaseous fluid which had remained in the pores of the mixture and finally evacuating it to the channel 26.
  • FIG. 2d shows schematically the core ejection operation.
  • the movable part lb of the core box has been separated from the part la by opening the locking device 3, and then raised above the part la which remains integral with the transfer plate 2. During this raising operation, some extraction pins, according to a known technique, release the hardened core 27 from the bottom of the cavity 12. As the core 27 has also a counterpart corresponding to the opening 8 of the core box, it remains integral with the part lb of the box and is raised with it, for example, by means of two magnetic suction cups 28.
  • the assembly formed by the suction cups 28, part 1b of the core box and the hardened core 27, is then brought to above a discharge belt 29, and an extractor 30, moving in the direction of the arrow G extracts the core from the part 1b and ejects it onto the belt 29.
  • the machine for working the above method comprises a feed barrel or turret 20, connected to a shot injection barrel fitted, for example, with two shot injection heads 301 and 302.
  • the barrel 30 communicates with the gasification barrel 50 by means of a transfer barrel 40.
  • This barrel 50 comprises four heads of which only three are shown.
  • the boxes pass from the barrel 50 to the barrel for evacuating the cores and cleaning the boxes 70 by means of the transfer barrel 60.
  • the evacuation barrel 70 comprises four core evacuation fittings.
  • FIG. 3 shows two fittings 701 for boxes with a vertical joint and two fittings 701 for boxes with a horizontal joint.
  • This barrel 70 deposits the cores on the evacuation means 29 which, in the present case, is an endless belt. After removing the cores, the opened boxes pass in front of the cleaning devices 702.
  • the barrel 70 is connected to the feed barrel which brings the boxes 1 back onto the shot injection barrel 30.
  • the feed barrel 20 makes it possible not only to transfer boxes from the barrel 70 to the barrel but also to introduce or bring out boxes with a view to replacing them, so that new cores can be made or for maintenance purposes.
  • male parts 110 operating barrels
  • female parts 111 transfer barrels
  • the cavities 101, 102 define a cylindrical housing with a vertical axis enclosing the front positioning pin of the boxes, when the parts 110 and 11 1 are opposite, the projecting part 105 of the part 110 entering into the cavity 106 of the part 111.
  • the set-back parts 103 and 104 define an oblong slit of width corresponding substantially to the diameter of the rear positioning of the boxes.
  • each barrel head comprises the parts 110, 111 described above and the heads of two successive barrels are provided respectively with a cavity 106 and a part with a projecting portion 105.
  • the boxes pass from one barrel to another in the contact area between two barrels, that is, near a straight line passing through the two axles of two barrels.
  • the assembly of barrels is driven by a driving unit 80 in which the motor 801, by means of a transmission means 802, drives a distribution box 803 which is connected to each barrel by a transmission shaft 804 with a cardan 805.
  • This driving arrangement based on a driving unit 80, consisting of the members 801, 802, 803, 804 and 805, has a certain number of advantages enabling in particular the construction of a general framework for the machine to be avoided, which facilitates the construction and assembly of this machine.
  • FIG. 4 The assembly of the shot injection barrel 30 is shown, in FIG. 4, as a partial axial section.
  • This barrel comprises two working stations (FIG. 3), each provided with an injection head 301-302, of type known and which, therefore will not be shown in detail on the drawings.
  • Each of the injection heads 301-302 is supplied with a moulding mixture from a movable hopper 303, the latter itself being fed by a fixed hopper 304.
  • Each injection head terminates toward its base by means of an injection plate 305 designed so that it bears on the upper face of the core box.
  • the barrel itself consists of a welded base of 307 which contains the reducer 308 of which the entry shaft 309 is connected to a cardan 805 of the driving unit 80, and of which the exit shaft carries the pinion 310.
  • a fixed crown 311 On the base 307 is mounted a fixed crown 311 on which, by means of roller bearings 312, the barrel as such 313 revolves, being rotated by the pinion 310 en gaging with the toothed crown 310'.
  • the body of the barrel 313 supports the barrel plate 314 on which are mounted the female positioning parts 111, the arrangement and role of which for moving the core boxes 1 and their transfer plates 2 have been described above.
  • An intercalated structure 315 placed above the plate 314, supports the two injection heads 301, 302.
  • a jack, 316 which for example can be pneumatic, called clamping jack is placed under the core box and enables the latter to be lifted and pressed against the injection plate 305. Compressed air is supplied to the jack and to the injection heads from a fixed duct 317, of a rotary joint 318 and of ducts 319, 320 carried along by the barrel in its movement.
  • This injection shot barrel operates in the following way:
  • a core box 1 is introduced by a feed barrel 20 and is taken over by the parts 111.
  • the clamping jack 316 then raises the box and presses it firmly against the injection plate 305. During this movement, the ends 3a, in the form of a hook, of the locking device 3 of the core box are pressed against the spring push rods 306 which ensures that the box is locked.
  • the injection shot that is, the operation that fills the core box with the moulding mixture, is then fired, whereupon the core box is lowered again by means of the jack 316, and is then free.
  • the box is then discharged in the known fashion onto the transfer barrel 40.
  • These two injections heads 301, 302 can be different so as to be adaptable to two types of different boxes following each other successively onto the shot injection barrel, each of the two barrel stations being allocated to one of the two types of boxes.
  • the height of the injection plate can be adjusted by means of packing plates 321.
  • FIG. 4 shows the core box which has a joint in a vertical plane. But the box could just as well be a box with a joint in the horizontal plane, whether only one of the two types of boxes is used alone, or the two types of boxes alternatively succeed one another on the shot injection barrel, each of the two stations of this barrel being allocated to one type of box.
  • a box sensor 322 prevents the injection shot being fired in the absence of a core box.
  • the transfer barrel 40 comprises three stations 401 provided with parts 111 with a cavity 106.
  • the gasification barrel 50 (FIG. a) is described hereafter in relation with a head 501 for the gasification of boxes having a vertical joint.
  • the heads 501 are fixed on a support cylinder 502 which is driven in a rotary movement around the bearing 503 by means of the toothed crown 504 engaging with the exit pinion 505' of the reducer 505 transmitting the movement of the cardan shaft 804.
  • the cylinder 502 also bears on the crown 506 resting on the assembly plate 507 which bears on the base 509.
  • the reducer 505 is fixed to the base 509 provided with a protective plate 510.
  • the reducer 505 is defined in accordance with the speed at which said barrel must revolve to meet the requirements of continuous kinematic operation.
  • the assembly plate 507 also carries a gasification cam 510, a vertical clamping cam 511, a sweeping cam 512 as well as a guide guard 513 for the positioning pins 10 of the transfer plates 2 of the core boxes 1.
  • Each gasification head 501 is connected to support cylinder 502 by a bracket 514; this bracket 514 is provided with an angle bracket 515.
  • This angle bracket carries the vertical clamping jack 516 connected to the gasification plate 517.
  • This gasification plate is designed to come into contact with the upper surface of the box 1.
  • the gasification plate 517 comprises two push rods 518 which bear on the end 3a of the locking device 3 of the box ll.
  • the gasification plate 517 comprises two push rods 518 which bear on the end 3a of the locking device 3 of the box ll.
  • the angle bracket 515 carries a sensor 519 for detecting the presence of a box thereby preventing setting off an operation in the absence of a box.
  • the gasification plate 517 is provided with a gas feed inlet 520 and exit 521.
  • the bracket 5141 also carries a clamping distributor 522, a catalysing gas distributor 523 and a sweeping gas distributor 524.
  • the catalysing gas distributor 523 and the sweeping gas distributor 524 are connected to the gas feed inlet 520 by means of ducts which are shown simply, in schematic form.
  • the clamping distributor 522 controls the vertical clamping jack 516. The course of this jack is regulated in accordance with the type of box that is used, by means of the regulating means 525.
  • the distributors 523, 524 are respectively connected to a rotary joint 525 for the catalysing gas and to a rotary joint 526 for the compressed air constituting the sweeping gas.
  • the rotary joint 525 is connected, by its hose 527, to a catalysing gas supply station.
  • the connection between this rotary joint 525 and the distributor 523 is made by means of a duct 528.
  • the gas exit 521 of the box is connected to an evacutation chamber 530 which itself is connected to a suction station 531, not shown, by means of a rotary joint 532.
  • Each gasification head comprises some distributors 522-524 which are controlled by the cams 510 to 512 by means of the box sensor 519.
  • the rotary joints 525 and 526 are connected to each of the gasification heads. As the cams 510 to 512 are fixed, they control the gasification operation at a point defined by the rotation of the barrel 50.
  • the duration of the gasification and the sweeping operation also is regulated by the cams 510 and 512.
  • FIG. 5B shows a simplified plan view of the gasifca tion head illustrated in FIG. 5A.
  • This Figure shows in particular the guard plate 513 and the positioning of the box 1 and the positioning pins 10 with respect to the part 110.
  • the angle bracket 515 and the upper part of the clamping jack will also be noted.
  • the gasification barrel 50 comprises four gasifcation stations (see FIG. 3) identical to the station described above.
  • the four stations can be provided with the same type of core box or alternatively with boxes of two different types, the diametrically opposed stations on the gasification barrel than being provided with the same type of boxes.
  • the construction of the barrel 70 for ejecting the cores and cleaning the boxes is slightly different if boxes with a vertical joint are concerned (FIG. 6a) or boxes with a horizontal joint are concerned (FIG. 6b).
  • the barrel 70 comprises a barrel 702 having a bearing and resting on the roller members analogous to those of barrel 50.
  • the means for driving in a rotary movement are also analogous and, for this reason, will not be described in detail.
  • the barrel 702 is provided with a bracket 703 carrying the equipment 701.
  • This equipment consists in an angle bracket 704 which carries a horizontal guide bar 705, supporting a slide piece 706.
  • This slide piece is controlled by the jack 707.
  • the slide piece 706 itself carries a so-called raising jack 708 for raising the movable half box 1a, as described hereafter.
  • the raising jack 708 cooperates with the arm 700 articulated on the cover 710 which is integral with the sliding piece 706.
  • the arm 709 carries, at its end, magnetic suction cups 711 which engages the side of the half box 1a.
  • the other half box 1b is integral with the driving plate 101.
  • the equipment 701 comprises a mechanical unlocking jack 712 for the boxes.
  • This jack is fixed on the angle bracket 713, integral with the bracket 703. It acts on the arm 3b of the unlocking device 3 of the core boxes (FIG. 1a).
  • the equipment 701 comprises control means which will be described subsequently.
  • the equipment 701 operates as follows:
  • the unlocking jack 712 acts on the arm of the locking hook of the two half boxes 1b and la, in order to unlock these two halves.
  • the raising jack 700 then lowers the arm 709 to bring the magnetic suction cups 711 onto contact with the half box lb.
  • the opening jack 707 pushes the slide piece 706 transmitting its movement to the arm 709 to separate the half box 1b from the half box la by translation.
  • the raising jack 708 is actuated and this makes the arm 709 rock to bring the half box lb into a horizontal position which is also shown, above the core discharge belt 9.
  • the ejectors of the half box lb are then actuated and the core deposited on the discharge belt 29.
  • FIG. 3 shows better, the half boxes la and 1b pass in front of the cleaning nozzles 702 from which compressed air is supplied, to remove all traces of foundry sand.
  • the jack 708 is actuated resulting in the lowering of the arm 709, whereupon the jack 707 is actuated to bring the half box lb against the half box 1a. Raising the rod of the jack 712 results in the locking of the box which is then ready for a new moulding cycle.
  • the transfer of the boxes is made on a horizontal plane, it is necessary to disengage the arm 709 at the moment of its transfer from the barrel 7 to the barrel 8, as FIG. 3 shows, along a line between the centers of the two barrels.
  • the cams 715 and 716 serve respectively for controlling the closing and the opening of the boxes by means of the jack 707.
  • the cams 717 and 718 control the jack 712 to ensure respectively the locking and unlocking of the boxes by mechanical means.
  • the cam 719 controls the magnetic suction cups 711 while the cam 720 ensures the ejection of the cores.
  • FIG. 6a includes also a certain number of cams which have been given the general reference 721. These cams serve to control the equipment 701 for boxes with a horizontal joint. As the corresponding operations for the equipments 701 and 701' are themselves passage points of the equipments, the sets of cams are in the same place. It has been found that it is sufficient to provide particular cams corresponding to the cams 713 to 716 and 720. The cams 717 to 720 being the same in both cases.
  • the various jacks are supplied with a driving gas, such as compressed air, from a source of compressed air (not shown) and a rotary joint 722.
  • a driving gas such as compressed air
  • the rotary joint is connected to an assembly of distributors (not shown) which are controlled by the cams 713 to 720.
  • the magnetic suction cups 711 are demagnetised by means of the collectors and the brushes 723.
  • the equipment 701' for boxes with a horizontal joint 1 (FIG. 6b) is fixed to a bracket 703, which is integral with the part 702 of the barrel.
  • This bracekt 703 comprises an angle bracket 704' which has a guide bar 705 which is horizontal, for the transfer operation.
  • a slide piece 706', controlled by a transfer jack 707' enables the upper half box lb to be brought to the position represented by a broken line in the left part of FIG. 6b.
  • the equipment comprises, in addition, a raising jack 708' of the half box lb.
  • the front end of the piston rod of this jack comprises some magnetic suction cups 711 which act on the upper part of the half box'lb.
  • an unlocking jack 712' is provided which, when it is actuated, pushes in the arm 3b of the locking book 3 and frees the upper half box lb (see FIG. lb).
  • the operation of the equipment 701 is very close to that described above in relation to a box with a vertical joint. In the present case, the operating procedure is even simpler.
  • the unlocking jack 712 is ac tuated
  • the raising jack 708 is lowered followed by the actuation of the magnetic suction cups 711.
  • the jack 708' is then raised to bring it into the position represented by a broken line.
  • the transfer jack 707 is then actuated which causes the raised assembly to execute a translatory movement to bring it into the position represented by the broken line. In this position, the upper half box lb is above the core discharge belt 29.
  • the ejectors are actuated in order to remove the core from the half box lb.
  • the cleaning operation of the half boxes is carried out, as shown above, whereupon the half box lb is brought back onto the half box 1a and the assembly locked together.
  • the shot injection barrel comprises two working stations, each of which has an injection head with a capactiy of 5 liters.
  • the shot injection barrel rotates at a speed of 10 revolutions per minute.
  • the gasification barrel comprises 4 working stations each constituted by a gasification head.
  • the rotational speed of this barrel is 5 revolutions per minute.
  • the barrel for evacuating the core and cleaning comprises four equipments.
  • the rotational speed is 5 revolutions per minute.
  • the motor drive unit rotates the distributor at a speed of 1,500 revolutions per minute.
  • the kinematic arrangement illustrated by the diagram generally consists in: on one hand, providing a number N of stations P on the peripheral of the barrel which rotates uniformly at the rate of n revolutions per minute,
  • R N/T X (1/360 lt is seen that when a working station is well defined by T, n and a, the yield is directly proportional to the number of working stations N on the barrel.
  • the yield of the barrel can be improved by increasing n (maintaining the value of N and a) in a proportion very inversely with the decrease of T.
  • FIG. 7b shows, the object is introduced and distributed in the vehicle 1a, which constitutes the first operation.
  • Operations 2a, 3a, 4a, 5a on the various barrels, shown schematically, are then carried out.
  • the object is discharged at 6a.
  • a machine operable in a continuous kinematic manner for the production of foundry cores with the aid of core boxes comprising a rotatable feed barrel for receiving such boxes, a rotatable shot injection barrel for filling the boxes with a moulding mixture, a rotatable hardening barrel for hardening the moulding mixture in the boxes to form cores, a rotatable barrel for ejecting the cores from the boxes and cleaning the boxes, means for receiving ejected cores from said last-mentioned barrel and conveying them away, driving means for continuously rotating all of said barrels in synchronism, and means for transferring the boxes from each of said barrels to the next barrel in succession in a closed circuit in which said ejecting and cleaning barrel transfers cleaned empty boxes to said feed barrel for recirculation in said circuit.
  • a machine including a transfer plate for each core box, two positioning pins projecting from the bottom of each plate, and means on said hardening barrel for delivering a hardening gas to the core boxes, each box comprising a first part secured to one of said transfer plates, a second part normally engaging said first part but separable therefrom, releas able locking means mounted on said first part for normally locking said second part to it, the box having internal walls forming a moulding cavity between two auxiliary cavities, said walls being provided with openings connecting said cavities, and screens in said openings, said second part of the box having an opening for filling the moulding cavity with moulding mixture, and the box having openings for circulating said hardening gas through all of said cavities.
  • said transferring means including a rotatable transfer barrel between said shot injection barrel and said hardening barrel, a rotatable transfer barrel between said hardening barrel and said ejecting and cleaning barrel, means operatively connecting said driving means with said transfer barrels for continuously rotating them in synchronism with the other barrels, and means carried by the transfer barrels for receiving and transferring filled boxes from the shot injection barrel to the hardening barrel and from the latter to the ejecting and cleaning barrel.
  • each transfer barrel and the adjoining barrels are provided with heads that substantially engage each other periodically as the barrels rotate, each pair of engaging heads having a vertical opening between them formed by registering recesses in the two heads, and said machine including a transfer plate on which each core box is mounted, and a positioning pin projecting from the bottom of the plate and disposed in said vertical opening as the plate transfers from one barrel to another.
  • the shot injection barrel includes injection heads, pneumatic jacks for raising the core boxes up to said heads, means for delivering compressed air to said jacks and to moulding mixture in said injection heads, and means including fixed cams for controlling said compressed air delivering means during rotation of the shot injection barrel.
  • said hardening barrel includes a plurality of gasification heads having vertically movable control jacks with plates at their lower ends, means controlled in accordance with the rotational position of each head for delivering fluid pressure to its jack to press the plate against the top of a core box, and means controlled by fixed position cams cooperating with the rotating barrel for distributing a hardening gas and a purging gas to each of said heads.
  • said ejecting and cleaning barrel comprises separate fittings each including means for unlocking a two part core box, means for gripping one part of the box, means for moving said gripping means to move the gripped part of the box containing a core to a position above said conveying means, means for ejecting the core onto the conveying means, means for then returning said gripping means to close the box, and fixed control means for said unlocking and gripping and moving means with which said fittings cooperate as the barrel rotates,
  • a machine including means for supporting said gripping means, a jack for moving said supporting means horizontally, and a jack carried by said supporting means for raising and lowering the gripping means.
  • a machine including a slide, a jack for moving the slide horizontally, an arm having an upper end pivotally connected to the slide on a horizontal axis, the lower end of the arm carrying said gripping means, and a raising jack for swinging the arm upwardly over said conveying means.
  • said driving means include a motor, a speed reducing unit driven by the motor, and a separate drive operatively connecting each of said barrels with said unit for independent rotation of each barrel, said barrles being positioned around each speed reducing unit in a closed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Devices For Molds (AREA)
US00326875A 1972-02-02 1973-01-26 Continuous kinematic type machine for producing foundry cores Expired - Lifetime US3857439A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7203503A FR2170828B1 (de) 1972-02-02 1972-02-02

Publications (1)

Publication Number Publication Date
US3857439A true US3857439A (en) 1974-12-31

Family

ID=9092880

Family Applications (1)

Application Number Title Priority Date Filing Date
US00326875A Expired - Lifetime US3857439A (en) 1972-02-02 1973-01-26 Continuous kinematic type machine for producing foundry cores

Country Status (3)

Country Link
US (1) US3857439A (de)
DE (1) DE2304779A1 (de)
FR (1) FR2170828B1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184533A (en) * 1978-05-30 1980-01-22 Esco Corporation Machine for shaping sand into cores or molds
EP0040987A1 (de) * 1980-05-28 1981-12-02 Anatol Michelson Maschine und Verfahren zur Herstellung hohler Gegenstände, z.B. Giesserei-Hohlkerne
US5535809A (en) * 1993-11-24 1996-07-16 Grand Haven Brass Foundry Method and apparatus for packing a granular material for foundry use
US20090302180A1 (en) * 2008-06-09 2009-12-10 Lynn Marion Dantuono Deck accessory bracket
CN103909230A (zh) * 2014-04-23 2014-07-09 河南省四达仙龙实业有限公司 一种铸件造型机
US20180141109A1 (en) * 2015-04-21 2018-05-24 Nemak, S.A.B. De C.V. Core Box for Manufacturing Casting Cores

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2783509A (en) * 1952-02-23 1957-03-05 Osborn Mfg Co Core blower, molding and draw machine
US2901791A (en) * 1956-10-29 1959-09-01 Foundry Equipment Ltd Foundry core making machines
US3096547A (en) * 1961-09-14 1963-07-09 Pettibone Mulliken Corp Automatic core-making machine
CA717895A (en) * 1965-09-14 K. Hatch Edmond Mold and core blowing machine
US3277538A (en) * 1963-07-26 1966-10-11 Grinnell Corp Automatic core blowing machine
US3398781A (en) * 1966-05-02 1968-08-27 Caterpillar Tractor Co Ejection mechanism for molding apparatus
US3528481A (en) * 1968-10-17 1970-09-15 Pettibone Corp Core making machine with hardening gas manifold

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA717895A (en) * 1965-09-14 K. Hatch Edmond Mold and core blowing machine
US2783509A (en) * 1952-02-23 1957-03-05 Osborn Mfg Co Core blower, molding and draw machine
US2901791A (en) * 1956-10-29 1959-09-01 Foundry Equipment Ltd Foundry core making machines
US3096547A (en) * 1961-09-14 1963-07-09 Pettibone Mulliken Corp Automatic core-making machine
US3277538A (en) * 1963-07-26 1966-10-11 Grinnell Corp Automatic core blowing machine
US3398781A (en) * 1966-05-02 1968-08-27 Caterpillar Tractor Co Ejection mechanism for molding apparatus
US3528481A (en) * 1968-10-17 1970-09-15 Pettibone Corp Core making machine with hardening gas manifold

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184533A (en) * 1978-05-30 1980-01-22 Esco Corporation Machine for shaping sand into cores or molds
EP0040987A1 (de) * 1980-05-28 1981-12-02 Anatol Michelson Maschine und Verfahren zur Herstellung hohler Gegenstände, z.B. Giesserei-Hohlkerne
US5535809A (en) * 1993-11-24 1996-07-16 Grand Haven Brass Foundry Method and apparatus for packing a granular material for foundry use
US20090302180A1 (en) * 2008-06-09 2009-12-10 Lynn Marion Dantuono Deck accessory bracket
CN103909230A (zh) * 2014-04-23 2014-07-09 河南省四达仙龙实业有限公司 一种铸件造型机
CN103909230B (zh) * 2014-04-23 2015-12-16 河南省四达仙龙实业有限公司 一种铸件造型机
US20180141109A1 (en) * 2015-04-21 2018-05-24 Nemak, S.A.B. De C.V. Core Box for Manufacturing Casting Cores
US10710149B2 (en) * 2015-04-21 2020-07-14 Nemak, S.A.B. De C.V. Core box for manufacturing casting cores

Also Published As

Publication number Publication date
DE2304779A1 (de) 1973-08-09
FR2170828B1 (de) 1977-01-14
FR2170828A1 (de) 1973-09-21

Similar Documents

Publication Publication Date Title
US1958422A (en) Apparatus for molding plastic material
US3528481A (en) Core making machine with hardening gas manifold
US4158381A (en) Core box assembly
US3833329A (en) Injection molding apparatus
US4463794A (en) Apparatus for producing containerless sand molds
US4186161A (en) Method of continuous injection molding of plastic articles
US3857439A (en) Continuous kinematic type machine for producing foundry cores
US2356585A (en) Injection mold
US2783509A (en) Core blower, molding and draw machine
US3999915A (en) Liner feeder apparatus
US3878881A (en) Method for producing and assembling cope and drag mold parts
US4442882A (en) Machine for producing flaskless molds
US3754848A (en) High speed single cavity molding apparatus
US1911106A (en) Flask handling apparatus
US2680270A (en) Automatic foundry molding machine
US4830082A (en) Machine and method for making molds using an activating gas
US4699199A (en) Automated mold making system
US2762092A (en) Turntable type machines for forming shell molds
US1809358A (en) Molding machine
US3939899A (en) Shell molding machine in which blown core can be ejected outside vise assembly
US4114677A (en) Molding machine for producing casting molds
US4079774A (en) System for making sand molds each having associated therewith a core member
US2476219A (en) Rotary transfer molding device
US1524877A (en) Molding machine
US4718474A (en) Mold transfer mechanism for a molding machine