US3857232A - Filament yarn and process to prepare same - Google Patents

Filament yarn and process to prepare same Download PDF

Info

Publication number
US3857232A
US3857232A US00378017A US37801773A US3857232A US 3857232 A US3857232 A US 3857232A US 00378017 A US00378017 A US 00378017A US 37801773 A US37801773 A US 37801773A US 3857232 A US3857232 A US 3857232A
Authority
US
United States
Prior art keywords
filament
filaments
yarns
abrasion resistance
flex abrasion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00378017A
Inventor
K Heinrich
N Heichlinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Priority to US05/509,903 priority Critical patent/US3991549A/en
Application granted granted Critical
Publication of US3857232A publication Critical patent/US3857232A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • D02G1/0286Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist characterised by the use of certain filaments, fibres or yarns
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/908Jet interlaced or intermingled

Definitions

  • the present invention concerns a process for preparing essentially smooth filament yarns having several loose filament ends stick out, wherein at least a portion of the used filaments has a flex abrasion resistance of below abt. 1,500 revol. and wherein a filament bonding is imparted in known manner to the filament yarns subject to this treatment and wherein same are then submitted to a transversal stress, at which occasion the filaments having a flex abrasion resistance of below 1,500 revol.
  • German Offenlegungsschrift No. 1660 606 describes a processing method for the'production of such fluffy yarn, wherein the surface of drawn filament yarn is ripped and unraveled mechanically by rotating brushes. This process remains, however, limited to foamed thermoplastic polymers and, moreover, it is obviously applicable to coarse yarns only.
  • British Pat. No. 971 573 claims a similar process, jointly submitting two yarns of different elongation at break to a simultaneous drawing and texturizing process, whereby the stretching force applied has to be adjusted so as to break the yarn filaments with a lower elongation at break.
  • This process provides bulk yarns with filament ends sticking out, which may be transcess is rather troublesome and, moreover, includes quite a series of drawbacks.
  • the drawing step is set at the beginning of the heater built into the false twist texturizing apparatus. Since this known treatment implies that part of the filaments breaks within the stretch area, the
  • This problem could be solved by applying a transversal stress to the filament yarns consisting, at least partially, of filaments having a flex abrasion resistance of less than about 1,500 revolutions. Due to the transversal stresses applied to the yarn, the filaments with the reduced flex abrasion resistance break in irregular intervals. In order to simplify post-treatment, the obtained filament yarns may further be submitted to a subsequent treatment to ameliorate filament bonding.
  • all filaments are appropriate that consist, at least partially, of filaments having originally a folding and rubbing wear resistance of less than 1,500 revolutions, or the flex abrasion resistance of which may be brought down to this level by known methods. Best suitable are filaments the flex abrasion resistance of which is below 1,000 revol., especially below 500 revol.
  • the value of the flex abrasion resistance influences the number of loose filament ends produced by the process according to the invention, whereby the filaments having the lower flex abrasion resistance break easier under the transversal stress. 0n
  • the number of loose filamentends may also'be influenced by the portion within the total filament yarn of filaments having a lower flex abrasion resistance.
  • flex abrasion resistance already implies, it is normally impossible'to produce or utilize practically useful filament yarns havinga folding and rubbing wear resistance of, e.g., zero;
  • filaments having flex abrasion resistance values of, e.g., less than 5 revol. ' may be used:
  • the flex abrasion'resistance is measured by means of the flex abrasion device suchas it is described e.g. by Griinewald in Chemiefasern 12 (1962), pg. 853.
  • revol i.e., revolutions
  • cycles By revol, i.e., revolutions, as used herein with reference to flex abrasion resistance is meant cycles. This is clearly understood to one skilled in the art, and also from the property of flex abrasion resistance in connection with which the term is used as well as from the device employed in measuring said property as described in said publication just cited in this paragraph. Filaments having a reduced flex abrasion re- Ari average flex abrasion resistance of abt. 1,500. revolutions is linked to an average molecular weight of abt. 12,500, whilst flex abrasion resistance values below 10 revol. may be linked to average molecular weights of abt. 8,000.
  • Polyethylene-terephthalate filaments of so low a molecular weight cannot be melt-spun on an economically reasonable basis due to the low fusion viscosity of the polymers; they may, however, be prepared e.g. of the Po ymers .E, Dsmsshs et sls sss f 9-. Q.
  • flex abrasion resistance values It depends on the use intended, whether all the filaments of the filament yarn may have the desired low flex abrasion resistance. of less than 1,500 revol. and thus produce loose filament ends or whether only a portion of the filaments has this property while the rests shows a high flex abrasion resistance and, therefore, does not break during exposure to transversal stress.
  • slightly tighter interlacing of the filaments has to be chosen in the first case, whilst in the latter case sufficient yarn strength is guaranteed anyway by the filaments.
  • titer, profile and number of the filaments, i.e., the total titer of the filament yarn used may be determined freely as best they suit-the use in mind.
  • the titer will remain within the range of from 1 to dtex per filament and of below 300 dtex for the yarn, usually set for textile application purposes; however, special purposes such as decorative fabric may also require higher titers.
  • filaments may also consist of diverse raw materials so that their diversified characteristics may contribute to realize further special effects, such as those caused by use of mixture yarns or coloured twist yarns due to the fact that the different components absorb the applied dyestuff differently; the flame resistance may be increased by using yarn components which are frame-proof or flameretarding; yarns of a potential crimp effect may be prepared by using bicomponent threads or filaments of different shrinkage.
  • a preferred embodiment of the invention is represented by essentially smooth filament yarns consisting of component mixtures showing individually diversified titers and where the yarn component of the lowest individual titer provides the loose filament ends sticking out of the yarn.
  • atransversal stress to the filament yarns necessary according to the invention for preparing crimp-free filament yarns with individual loose ends, may be realized, for example, by twisting the filament yarns.
  • a larger or smaller number of threads are breaking in the filament yarns according to the invention.
  • Another form of transversal stress is to move the filament yarns to be treated around a thread guide having a small diameter.
  • the filaments with a lower flex abrasion resistance break in irregular intervals under application of transversal stress, the loose filament ends stick out of the filament yarn in a regular not in a periodical distribution all over its length.
  • filament yarns may be used, that consist at least partially of filaments having a flex abrasion resistance below 1,500 revol.
  • These yarns may comprise, e.g highmolecular polyamides, polyesters, polyolefins, polyacryl-nitriles, cellulose or threadforming copolymers or derivatives of these materials.
  • the filaments used should be drawn evenly and thoroughly before applying the transversal stress according to the invention for producing the individual loose filament ends. in orderto prevent processing difficulties, it is necessary that the filament yarns used do not show yet any broken single filaments immediately after being drawn.
  • the rear transversal stress should not be applied before filament bonding has increased sufficiently so as to avoid sliding open of the broken ends.
  • a particularly simple process is twisting the filaments, e.g., by means of a ring twister.
  • a torsion is here applied to the filament yarn as it is usually done for fiber'yarns. This twist is at the same time sufficient as transversal stress for breaking the individual filaments with a reduced flex abrasion resistance.
  • the lower limit of the twist required (in revol./m) for still'producing a yarn according to the invention depends as well on the flex abrasion resistance of theyarns or yarn components used as of their titer, too and may be easily determined in each case by pre-testing.
  • other knownmethods are also applicable, such as interlacing in a gas jet orexposure to electrostatic forces, whereby the necessary transversal stress may then be built up by moving the filaments around a thread guide having a small diameter. If desired, combinations are possible. of the different treatments for increasing filament bonding and of said methods for applying transversal stress.
  • its running properties may, optionally, be ameliorated either by application of an additional preparation coating or sizing product. If desired, other known methods may as well be applied to increase filament bonding.
  • the crimp-free filament yarns with loose filament ends prepared as per theprocess of the invention excel in the unusual uniformity of textile-technological properties displayed all over the length of these yarns.
  • the afore described yarns have a greater covering power and a finer hand, though their volume did not increase substantially.
  • Surfaces formed by the filament yarns according to the invention display properties which place them between these made of smooth filament yarns on one hand and those made of staple fiber yarns on the other hand. They are especially well appropriate for plain fabrics, such as cambric-like ones.
  • those made of the filament yarns according to the invention are outstanding by their low tendency to pilling.
  • the fundamental structure of the yarns according to the invention is explained by the drawing.
  • the flex abrasion resistance was defined, as said before, by means of a flex abrasion device, whereby the filaments to be examined are subject to a transversal stress of 0.45 g/dtex, the diameter of the wire being from 0.02 mm to 6.7 dtex, 0.04 mm to l3 dtex and 0.05 mm for even higher titers, folding occurs in an angle of 1 at a velocity of 126 revol./min.
  • Example A filament yarn with individual loose filament ends was prepared according to the process of the invention as a blended yarn composed of 12 filaments having the titer dtex 5.5 (yarn component dtex 67f 12") and of 40 filaments having the titer dtex 1.7 (yarn comp0- nent dtex 67 f40).
  • the yarn component 67 f l 2 consisted of a polyethylene terephthalate of the relative viscosity he: 1.81 (measured by a solution of l g in 100 ml of a mixture of phenol-tetrachlorethane, weight proportion 3:2 at 25C). The spinning temperature amounted to 290C, at a melt output of 35.5 g/min, the take-up rolls were fed at a speed of 2,400 m/min.
  • the polymer material for the yarn component 67 f 40 was prepared in adaptation to the details given by example of Deutsche Auslegeschrift No. l 720 647,
  • the 2.4 g of zinc acetate were replaced by 3.1 g of manganese acetate and the portion of trimethoxysilanethane phosphonic acid diethyl ester was increased from 48 g to 72 g.
  • the melt temperature during the spinning process amounted to 290C, the melt output was by 32.5 g/min, take-up speed 2,200 m/min.
  • Bobbins of each of the two yarn components were linked to a draw-twister with ring traveler and jointly drawn at a stretch-proportion of 12.2 over a pin heated to C and an adjacent heater plate having a temperature of C.
  • the two yarn components were plyed on the draw-twister, the blended yarn thus obtained had a torsion of 20 revol./m, no loose ends sticking out could be observed.
  • a separate measuring of the textile values showed a strength of 36.5 g/tex at an elongation of 27 for dtex 67 f 12 and a flex abrasion resistance of abt. 3,800 revol., whilst the yarn component 67 f 40 showed a strength of 27 g/tex at 32 elongation and a flex abrasion resistance of 415 revol.
  • the blended yarn was fed into a multiple twisting machine.
  • a contact heater plate was placed having a surface temperature of 210C and a length of 70 cm.
  • a twist of 1,500 r/meter was imparted to the yarn, presenting an average of one filament end per cm of yarn length.
  • a process for preparing essentially smooth filament yarns having several loose filament ends sticking out wherein at least a portion of the filaments used have a flex abrasion resistance of below about 1,500 cycles and wherein a filament bonding is imparted to the filament yarns subject to this treatment and wherein same are then submitted to a transversal stress, at which occasion the filaments having a flex abrasion resistance of below about 1,500 cycles break in irregular intervals.
  • transversal stress is produced by imparting a torque to the filament yarn.
  • transversal stress is produced by moving the filament yarns around a thread guide of small diameter.
  • the filaments used have a casion the filaments having a flex abrasion resistance of below about 1,500cycles break in irregular intervals and wherein the thus obtained loose filament ends of the filament yarns are temporarily interlaced.

Abstract

The present invention concerns a process for preparing essentially smooth filament yarns having several loose filament ends stick out, wherein at least a portion of the used filaments has a flex abrasion resistance of below abt. 1,500 revol. and wherein a filament bonding is imparted in known manner to the filament yarns subject to this treatment and wherein same are then submitted to a transversal stress, at which occasion the filaments having a flex abrasion resistance of below 1,500 revol. break in irregular intervals and wherein the thus obtained loose filament ends of the filament yarns may, optionally, be temporarily interlaced by known methods so as to ameliorate the filament bonding and the filament yarns so obtained. These yarns are distinguished by excellent uniform characteristics all over their length and may be worked up to fabrics having an extremely low tendency to pilling.

Description

United States Patent [191 Heinrich et al.
FILAMENT YARN AND PROCESS T0 PREPARE SAME Inventors: Karl Heinrich, Bobingen; Norbert l-leichlinger, Konigsbrunn, both of Germany Farbwerke Hoechst Aktiengesellschaft vormals Lucius & Bruning, Frankfurt/Main, Germany Filed: July 10, 1973 Appl. No.: 378,017
Assignee:
Foreign Application Priority Data Feb. 19, 1973 Germany 2308138 US. Cl. 57/157 R, 57/140 R, 57/157 TS,
57/157 F Int. Cl .1 D02g 3/34 Field of Search... 57/2, 140 BY, 157 R, 157 F,
57/157 S, 157 TS, 140 R 7/1962 Breen 57/157 F 3/1964 Stamp et al. 57/140 BY 3,214,899 11/1965 Wininger, Jr. et al 57/157 F X 3,398,220 8/1968 Port et al. 57/157 TS X 3,488,941 l/l970 Asaka 57/157 TS Primary Examiner-John W. Huckert Assistant Examiner-Charles Gorenstein Attorney, Agent, or Firm-Connolly and l-lutz [5 7] ABSTRACT The present invention concerns a process for preparing essentially smooth filament yarns having several loose filament ends stick out, wherein at least a portion of the used filaments has a flex abrasion resistance of below abt. 1,500 revol. and wherein a filament bonding is imparted in known manner to the filament yarns subject to this treatment and wherein same are then submitted to a transversal stress, at which occasion the filaments having a flex abrasion resistance of below 1,500 revol. break in irregular intervals and wherein the thus obtained loose filament ends of the filament yarns may, optionally, be temporarily inter- 6 Claims, 1 Drawing Figure FILAMENT YARN AND PROCESS TO PREPARE SAME Threads made of synthetic highpolymers normally come out of the production as smooth filamentthreads, which, when being further processed, result in textile fabrics of an accordingly smooth surface lacking the usual soft touch and covering power of fabric surfaces made of spun fiber yarns. Though attempts have been made to ameliorate thesepropertiesby texturizing the filament threads, same did not bring the results hoped for; obviously, it is of decisive importance, for evaluation of the texturized fabric surface, whether some fibers stick out of the fiberryarns.
The production of spun fiber yarns requires many processing steps, all of them implying a high portion of wage costs. Therefore, process methods have been developed which are supposed to enable the production of filament yarns having filament ends stick out, with-' out having to take to cutting the synthetic filaments to: staple fibers and to subsequent secondary spinning.
The German Offenlegungsschrift No. 1660 606 describes a processing method for the'production of such fluffy yarn, wherein the surface of drawn filament yarn is ripped and unraveled mechanically by rotating brushes. This process remains, however, limited to foamed thermoplastic polymers and, moreover, it is obviously applicable to coarse yarns only.
According to the British Pat. No; 924 086 it is said to be possible to draw simultaneously filaments of different stretchability in such a way, that one of the components breaks and thus provides the loose ends as desired.
British Pat. No. 971 573 claims a similar process, jointly submitting two yarns of different elongation at break to a simultaneous drawing and texturizing process, whereby the stretching force applied has to be adjusted so as to break the yarn filaments with a lower elongation at break. This process provides bulk yarns with filament ends sticking out, which may be transcess is rather troublesome and, moreover, includes quite a series of drawbacks.
When drawing and texturizing treatments are arranged simultaneously, the drawing step is set at the beginning of the heater built into the false twist texturizing apparatus. Since this known treatment implies that part of the filaments breaks within the stretch area, the
loose ends jam the twister of the texturizing apparatus again and again. A filament never breaks before being exposed to too high a tensile stress. The passage, however, which immediately follows the break, is not picked up right away by the stretching godet, so that it remains unstretched or, at most, partially stretched over a certain length. An irregular stretch on one hand is the reason for an irregular dyestuff adsorption on the other hand and thus, of course, an uneven coloration of the woven or knitted fabrics made thereof is the result. Moreover, filament yarns prepared as per the state of the art, several filament ends of which stick out, show a strong tendency to pilling such as it is known from spun fiber yarns made of high polymers.
Therefore, it is object of the present invention to de-' velop an operationally safe process for preparing nontexturized filament yarns, wherein the filaments of the Yam Show uniform Phases-aware?! er lh i le th and may be worked up to fabrics having an extremely low tendency to pilling.
This problem could be solved by applying a transversal stress to the filament yarns consisting, at least partially, of filaments having a flex abrasion resistance of less than about 1,500 revolutions. Due to the transversal stresses applied to the yarn, the filaments with the reduced flex abrasion resistance break in irregular intervals. In order to simplify post-treatment, the obtained filament yarns may further be submitted to a subsequent treatment to ameliorate filament bonding.
For the production of the non-texturized filament yarns according to the invention. all filaments are appropriate that consist, at least partially, of filaments having originally a folding and rubbing wear resistance of less than 1,500 revolutions, or the flex abrasion resistance of which may be brought down to this level by known methods. Best suitable are filaments the flex abrasion resistance of which is below 1,000 revol., especially below 500 revol. The value of the flex abrasion resistance influences the number of loose filament ends produced by the process according to the invention, whereby the filaments having the lower flex abrasion resistance break easier under the transversal stress. 0n
the other hand, the number of loose filamentends may also'be influenced by the portion within the total filament yarn of filaments having a lower flex abrasion resistance. The more the flex abrasion resistance of woven and knitted materials is reduced, the less they show a tendency to pilling. However, as the term of flex abrasion resistance already implies, it is normally impossible'to produce or utilize practically useful filament yarns havinga folding and rubbing wear resistance of, e.g., zero; However, in special cases requiring woven or knitted fabrics of particularly low tendency to pilling, filaments having flex abrasion resistance values of, e.g., less than 5 revol. 'may be used:
The flex abrasion'resistance is measured by means of the flex abrasion device suchas it is described e.g. by Griinewald in Chemiefasern 12 (1962), pg. 853. By revol, i.e., revolutions, as used herein with reference to flex abrasion resistance is meant cycles. This is clearly understood to one skilled in the art, and also from the property of flex abrasion resistance in connection with which the term is used as well as from the device employed in measuring said property as described in said publication just cited in this paragraph. Filaments having a reduced flex abrasion re- Ari average flex abrasion resistance of abt. 1,500. revolutions is linked to an average molecular weight of abt. 12,500, whilst flex abrasion resistance values below 10 revol. may be linked to average molecular weights of abt. 8,000.
Polyethylene-terephthalate filaments of so low a molecular weight cannot be melt-spun on an economically reasonable basis due to the low fusion viscosity of the polymers; they may, however, be prepared e.g. of the Po ymers .E, Dsmsshs et sls sss f 9-. Q.
within the said ranges of flex abrasion resistance values( It depends on the use intended, whether all the filaments of the filament yarn may have the desired low flex abrasion resistance. of less than 1,500 revol. and thus produce loose filament ends or whether only a portion of the filaments has this property while the rests shows a high flex abrasion resistance and, therefore, does not break during exposure to transversal stress. In order to attain a sufficient yarn strength, slightly tighter interlacing of the filaments has to be chosen in the first case, whilst in the latter case sufficient yarn strength is guaranteed anyway by the filaments. Filament yarns blended at 7:3 to 3:7 of filaments having a lower flex abrasion resistance (below 1,500 revol.) with filaments, resistance of which exceeds 1,500 (e.g. 3,000 revol.), resulted in knitted or woven fabric which excels in especially attractive appearance and touch of the product and by excellent wear as well. Furthermore, titer, profile and number of the filaments, i.e., the total titer of the filament yarn used, may be determined freely as best they suit-the use in mind. Most often the titer will remain within the range of from 1 to dtex per filament and of below 300 dtex for the yarn, usually set for textile application purposes; however, special purposes such as decorative fabric may also require higher titers. In case that different filaments are used to make up a yarn, their titers and cross sections may differ as well, of course; filaments may also consist of diverse raw materials so that their diversified characteristics may contribute to realize further special effects, such as those caused by use of mixture yarns or coloured twist yarns due to the fact that the different components absorb the applied dyestuff differently; the flame resistance may be increased by using yarn components which are frame-proof or flameretarding; yarns of a potential crimp effect may be prepared by using bicomponent threads or filaments of different shrinkage. On the other hand it is also possible, of course, to modify conveniently the dyeing reaction of the filaments so as to adapt same to enable uniform colorations. Since in the process according to the invention the filaments are regularly drawn before breaking, a uniform coloration all over their total length including the loose ends is guaranteed, differing from known processing methods wherein overstretching causes the break of the filaments while drawing same.
A preferred embodiment of the invention is represented by essentially smooth filament yarns consisting of component mixtures showing individually diversified titers and where the yarn component of the lowest individual titer provides the loose filament ends sticking out of the yarn.
It is generally useful to mix the individual components while processing various filaments into a filament yarn. Mixing may take place at anyone of the different preceding processing stages. For instance, the two kinds of filaments may be spun either from one single spinning nozzle or from two adjacent spinning nozzles as described for-example in British Pat. No. l 208 801. A particularly simple mixing method is to ply the different yarn components before drawing.
The application of atransversal stress to the filament yarns, necessary according to the invention for preparing crimp-free filament yarns with individual loose ends, may be realized, for example, by twisting the filament yarns. Depending on the applied torsion per length unit, a larger or smaller number of threads are breaking in the filament yarns according to the invention. Thus it is possible to prepare these yarns, for instance, by using regular draw-twist devices. Another form of transversal stress is to move the filament yarns to be treated around a thread guide having a small diameter. When chosing this form of the process according to the invention, it is very important to make sure that the processing conditions are set in such a way that overstretching at the thread guide devices and crimping of the thus treated threads be prevented. It is also possible to apply a combination of these two embodiments of transversal stress.
Though the filaments with a lower flex abrasion resistance break in irregular intervals under application of transversal stress, the loose filament ends stick out of the filament yarn in a regular not in a periodical distribution all over its length. Contradictory to' the aforesaid, the hitherto known methods for preparing filament yarns with loose ends, breaking the filaments by overstretching during the drawing process, very easily produced a simultaneous break of numerous filaments and thus lead at least to an irregular accumulation of loose filament ends.
For the execution of the process according to the invention all such filament yarns may be used, that consist at least partially of filaments having a flex abrasion resistance below 1,500 revol. These yarns may comprise, e.g highmolecular polyamides, polyesters, polyolefins, polyacryl-nitriles, cellulose or threadforming copolymers or derivatives of these materials.
The filaments used should be drawn evenly and thoroughly before applying the transversal stress according to the invention for producing the individual loose filament ends. in orderto prevent processing difficulties, it is necessary that the filament yarns used do not show yet any broken single filaments immediately after being drawn. The rear transversal stress should not be applied before filament bonding has increased sufficiently so as to avoid sliding open of the broken ends. A particularly simple process is twisting the filaments, e.g., by means of a ring twister. A torsion is here applied to the filament yarn as it is usually done for fiber'yarns. This twist is at the same time sufficient as transversal stress for breaking the individual filaments with a reduced flex abrasion resistance. The lower limit of the twist required (in revol./m) for still'producing a yarn according to the invention, depends as well on the flex abrasion resistance of theyarns or yarn components used as of their titer, too and may be easily determined in each case by pre-testing. However, to increase the filament bonding other knownmethods are also applicable, such as interlacing in a gas jet orexposure to electrostatic forces, whereby the necessary transversal stress may then be built up by moving the filaments around a thread guide having a small diameter. If desired, combinations are possible. of the different treatments for increasing filament bonding and of said methods for applying transversal stress.
After the transversal stress succeeded in producing broken filament ends, these still stick out more or less, depending on the degree of filament bonding chosen.
In order to facilitate the further processing of the yarn, its running properties may, optionally, be ameliorated either by application of an additional preparation coating or sizing product. If desired, other known methods may as well be applied to increase filament bonding.
When being submitted to further treatment, the crimp-free filament yarns with loose filament ends prepared as per theprocess of the invention excel in the unusual uniformity of textile-technological properties displayed all over the length of these yarns. In comparison to filament yarns composed of continuous filaments, the afore described yarns have a greater covering power and a finer hand, though their volume did not increase substantially. Surfaces formed by the filament yarns according to the invention display properties which place them between these made of smooth filament yarns on one hand and those made of staple fiber yarns on the other hand. They are especially well appropriate for plain fabrics, such as cambric-like ones. Compared to known knitted and woven fabrics of fiber yarns, those made of the filament yarns according to the invention are outstanding by their low tendency to pilling. The fundamental structure of the yarns according to the invention is explained by the drawing.
Though the development of so-called low-pilling fiber types succeeded in reducing to an acceptable degree (cf. in this respect P. Braun, Chemiefaser/Textilindustrie 1972, pg. 537 540), the known high tendency to pilling to which fabrics are prone formed by spun fiber yarns of synthetic polymers, it has been found, surprisingly, that the yarns as per the invention comparably twisted can be worked up to fabrics, the tendency to pilling of. which does not even attain the degree stated for the least pilling spun fiber yarns known'to the art. The tendency to pilling of specific fabrics was examined by the Random Tumble Pilling Tester (cf., e.g., Baird, Legere, Stanley, in Textile Research Journal 26 (1956), pg. 731 and ASTM Standards on textile materials 1961, pg. 552). The tendency to pilling is evaluated visually byapplication of the Reutlinger pill grades (synopsis cf. e.g. Grilnewald in Chemiefasern (12) 1968, pg. 936).
The flex abrasion resistance was defined, as said before, by means of a flex abrasion device, whereby the filaments to be examined are subject to a transversal stress of 0.45 g/dtex, the diameter of the wire being from 0.02 mm to 6.7 dtex, 0.04 mm to l3 dtex and 0.05 mm for even higher titers, folding occurs in an angle of 1 at a velocity of 126 revol./min.
The following examples illustrate the invention: Example A filament yarn with individual loose filament ends was prepared according to the process of the invention as a blended yarn composed of 12 filaments having the titer dtex 5.5 (yarn component dtex 67f 12") and of 40 filaments having the titer dtex 1.7 (yarn comp0- nent dtex 67 f40).
The yarn component 67 f l 2 consisted of a polyethylene terephthalate of the relative viscosity he: 1.81 (measured by a solution of l g in 100 ml of a mixture of phenol-tetrachlorethane, weight proportion 3:2 at 25C). The spinning temperature amounted to 290C, at a melt output of 35.5 g/min, the take-up rolls were fed at a speed of 2,400 m/min.
The polymer material for the yarn component 67 f 40 was prepared in adaptation to the details given by example of Deutsche Auslegeschrift No. l 720 647,
however, the 2.4 g of zinc acetate were replaced by 3.1 g of manganese acetate and the portion of trimethoxysilanethane phosphonic acid diethyl ester was increased from 48 g to 72 g. The melt temperature during the spinning process amounted to 290C, the melt output was by 32.5 g/min, take-up speed 2,200 m/min.
Bobbins of each of the two yarn components were linked to a draw-twister with ring traveler and jointly drawn at a stretch-proportion of 12.2 over a pin heated to C and an adjacent heater plate having a temperature of C. The two yarn components were plyed on the draw-twister, the blended yarn thus obtained had a torsion of 20 revol./m, no loose ends sticking out could be observed.
A separate measuring of the textile values showed a strength of 36.5 g/tex at an elongation of 27 for dtex 67 f 12 and a flex abrasion resistance of abt. 3,800 revol., whilst the yarn component 67 f 40 showed a strength of 27 g/tex at 32 elongation and a flex abrasion resistance of 415 revol.
Subsequently, the blended yarn was fed into a multiple twisting machine. At the thread entrance a contact heater plate was placed having a surface temperature of 210C and a length of 70 cm. At a feed-in speed of 8.7 m/min and spindle revolutions of abt. 13,000 r/min a twist of 1,500 r/meter was imparted to the yarn, presenting an average of one filament end per cm of yarn length. When reducing the torque to 1,000 r/meter a loose filament stuck out abt. every 2 to 3 cm only.
When testing in the Random Tumble Pilling Tester woven and knitted fabrics made of this filament yarn, not later than after a testing period of 2 hours the value zero was hit, i.e., at the endof this test the surfaces of the fabrics did not show the least modifications.
We claim:
1. A process for preparing essentially smooth filament yarns having several loose filament ends sticking out, wherein at least a portion of the filaments used have a flex abrasion resistance of below about 1,500 cycles and wherein a filament bonding is imparted to the filament yarns subject to this treatment and wherein same are then submitted to a transversal stress, at which occasion the filaments having a flex abrasion resistance of below about 1,500 cycles break in irregular intervals.
2. Process according to claim 1, wherein the transversal stress is produced by imparting a torque to the filament yarn.
3. Process according to claim 1, wherein the transversal stress is produced by moving the filament yarns around a thread guide of small diameter.
4. Process according to claim 1, wherein at least a portion of the filaments used have a flex abrasion resistance of below approximately 1,000 cycles.
5. Process according to claim 1, wherein at least a portion of the filaments used have a flex abrasion resistance of less than approximately 500 cycles.
6. Process for preparing essentially smooth filament yarns having several loose filament ends sticking out,
' wherein at least a portion of the filaments used have a casion the filaments having a flex abrasion resistance of below about 1,500cycles break in irregular intervals and wherein the thus obtained loose filament ends of the filament yarns are temporarily interlaced.

Claims (6)

1. A PROCESS FOR PREPARING ESSENTIALLY SMOOTH FILAMENT YARNS HAVING SEVERAL LOOSE FILAMENT ENDS STICKING OUT, WHEREIN AT LEAST A PORTION OF THE FILAMENTS USED HAVE A FLEX ABRASION RESISTANCE OF BELOW ABOUT 1,5000 CYCLES AND WHEREIN A FILAMENT BONDING IS IMPARTED TO THE FILAMENT YARNS SUBJECT TO THIS TREATMENT AND WHEREIN SAME ARE THAN SUBMITTED TO A TRANVERSAL STRESS, AT WHICH OCCASION THE FILAMENTS HAVING A FLEX ABRASION RESISTANCE OF BELOW ABOUT 1,500 CYCLES BREAK IN IRREGULAR INTERVALS.
2. Process according to claim 1, wherein the transversal stress is produced by imparting a torque to the filament yarn.
3. Process according to claim 1, wherein the transversal stress is produced by moving the filament yarns around a thread guide of small diameter.
4. Process according to claim 1, wherein at least a portion of the filaments used have a flex abrasion resistance of below approximately 1,000 cycles.
5. Process according to claim 1, wherein at least a portion of the filaments used have a flex abrasion resistance of less than approximately 500 cycles.
6. Process for preparing essentially smooth filament yarns having several loose filament ends sticking out, wherein at least a portion of the filaments used have a flex abrasion resistance of below about 1,500 cycles and wherein a filament bonding is imparted to the filament yarns subject to this treatment and wherein same are then submitted to a transversal stress, at which occasion the filaments having a flex abrasion resistance of below about 1,500 cycles break in irregular intervals and wherein the thus obtained loose filament ends of the filament yarns are temporarily interlaced.
US00378017A 1973-02-19 1973-07-10 Filament yarn and process to prepare same Expired - Lifetime US3857232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/509,903 US3991549A (en) 1973-02-19 1974-09-27 Filament yarn and process to prepare same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19732308138 DE2308138B2 (en) 1973-02-19 1973-02-19 FILAMENT YARN AND THE PROCESS FOR ITS MANUFACTURING

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/509,903 Division US3991549A (en) 1973-02-19 1974-09-27 Filament yarn and process to prepare same

Publications (1)

Publication Number Publication Date
US3857232A true US3857232A (en) 1974-12-31

Family

ID=5872407

Family Applications (1)

Application Number Title Priority Date Filing Date
US00378017A Expired - Lifetime US3857232A (en) 1973-02-19 1973-07-10 Filament yarn and process to prepare same

Country Status (4)

Country Link
US (1) US3857232A (en)
BE (1) BE811258A (en)
DE (1) DE2308138B2 (en)
ZA (1) ZA74777B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991549A (en) * 1973-02-19 1976-11-16 Hoechst Aktiengesellschaft Filament yarn and process to prepare same
US4054025A (en) * 1975-07-23 1977-10-18 Bayer Aktiengesellschaft Process for the production of filament yarns with statistically distributed, broken individual filaments
DE2803401A1 (en) * 1977-01-26 1978-07-27 Eastman Kodak Co TEXTILE THREADS, PROCESS FOR THEIR MANUFACTURING AND YARNS MADE FROM THREADS
US4110965A (en) * 1976-12-20 1978-09-05 Monsanto Company Spun-like hand yarn process
WO1979000149A1 (en) * 1977-09-16 1979-03-22 Du Pont Polyester feed yarn for draw-texturing
US4302929A (en) * 1978-11-24 1981-12-01 Hoechst Aktiengesellschaft Hairy monocomponent yarn
US4414801A (en) * 1978-07-10 1983-11-15 Fiber Industries, Inc. Process for making spun-like yarn with variable denier filaments
US4590032A (en) * 1982-06-21 1986-05-20 Eastman Kodak Company Process for draw-fracturable yarn
US4829761A (en) * 1987-06-05 1989-05-16 Eastman Kodak Company Continuous filament yarn having spun-like or staple-like character

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107349A (en) * 1976-03-04 1977-09-08 Murata Machinery Ltd Spun yarn and method of producing same
DE2850854C2 (en) * 1978-11-24 1983-01-20 Hoechst Ag, 6000 Frankfurt Process for the production of a voluminous, false-wire-textured filament yarn with individual protruding filament ends

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2196975A (en) * 1940-04-16 Apparatus for stapiuzing yarn
US3001358A (en) * 1956-11-28 1961-09-26 Midland Ross Corp Bulked continuous multi-filament yarn
US3043088A (en) * 1958-11-26 1962-07-10 Du Pont Process for making bulky yarn
US3123972A (en) * 1964-03-10 Slub yarn
US3214899A (en) * 1965-02-12 1965-11-02 Eastman Kodak Co Cordage product
US3398220A (en) * 1964-06-26 1968-08-20 Parker Pace Corp Process for converting a web of synthetic material into bulk yarns
US3488941A (en) * 1966-12-05 1970-01-13 Teijin Ltd Process for splitting a narrow film or false twisting a fibrous material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2196975A (en) * 1940-04-16 Apparatus for stapiuzing yarn
US3123972A (en) * 1964-03-10 Slub yarn
US3001358A (en) * 1956-11-28 1961-09-26 Midland Ross Corp Bulked continuous multi-filament yarn
US3043088A (en) * 1958-11-26 1962-07-10 Du Pont Process for making bulky yarn
US3398220A (en) * 1964-06-26 1968-08-20 Parker Pace Corp Process for converting a web of synthetic material into bulk yarns
US3214899A (en) * 1965-02-12 1965-11-02 Eastman Kodak Co Cordage product
US3488941A (en) * 1966-12-05 1970-01-13 Teijin Ltd Process for splitting a narrow film or false twisting a fibrous material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991549A (en) * 1973-02-19 1976-11-16 Hoechst Aktiengesellschaft Filament yarn and process to prepare same
US4054025A (en) * 1975-07-23 1977-10-18 Bayer Aktiengesellschaft Process for the production of filament yarns with statistically distributed, broken individual filaments
US4110965A (en) * 1976-12-20 1978-09-05 Monsanto Company Spun-like hand yarn process
DE2803401A1 (en) * 1977-01-26 1978-07-27 Eastman Kodak Co TEXTILE THREADS, PROCESS FOR THEIR MANUFACTURING AND YARNS MADE FROM THREADS
WO1979000149A1 (en) * 1977-09-16 1979-03-22 Du Pont Polyester feed yarn for draw-texturing
US4157419A (en) * 1977-09-16 1979-06-05 E. I. Du Pont De Nemours And Company Polyester feed yarn for draw-texturing
US4414801A (en) * 1978-07-10 1983-11-15 Fiber Industries, Inc. Process for making spun-like yarn with variable denier filaments
US4302929A (en) * 1978-11-24 1981-12-01 Hoechst Aktiengesellschaft Hairy monocomponent yarn
US4590032A (en) * 1982-06-21 1986-05-20 Eastman Kodak Company Process for draw-fracturable yarn
US4829761A (en) * 1987-06-05 1989-05-16 Eastman Kodak Company Continuous filament yarn having spun-like or staple-like character

Also Published As

Publication number Publication date
DE2308138A1 (en) 1974-09-05
BE811258A (en) 1974-08-19
ZA74777B (en) 1975-01-29
DE2308138B2 (en) 1976-04-15

Similar Documents

Publication Publication Date Title
US3857233A (en) Voluminous filament yarn and process to prepare same
US4019311A (en) Process for the production of a multifilament texturized yarn
US2278888A (en) Artificial structure and process for producing same
US3691750A (en) Textured core yarns
US5459991A (en) Composite crimped yarn and woven fabric
US4059950A (en) Multifilament yarn having novel configuration and a method for producing the same
US4157419A (en) Polyester feed yarn for draw-texturing
US3577873A (en) Novel core yarns and methods for their manufacture
KR100452675B1 (en) Polyamide-based fibers having a stiffness and a method for producing the same
US3973386A (en) Process for texturing polyester yarn
US3534540A (en) Composite multi-color or colorable yarn structures
US3857232A (en) Filament yarn and process to prepare same
AU700155B2 (en) False twisted yarn
US3987614A (en) Voluminous filament yarn
US3967441A (en) Yarns and process for production thereof
US3780515A (en) Textured core yarns
US4242862A (en) Multifilament yarn having novel configuration and a method for producing the same
US3910027A (en) Process for the simultaneous stretch texturing of filament yarn
US3956878A (en) High speed texturing
US4559772A (en) False twist texturized yarn, and a process for its preparation
US3959962A (en) Method of forming a bulked polyester textile yarns
US4021520A (en) Process for the manufacture of filament yarn having protruding filament ends
US3991549A (en) Filament yarn and process to prepare same
AU656294B2 (en) Steam-drawing process for yarns
US3995004A (en) Process for the manufacture of filament yarn having protruding filament ends