US3856269A - Mixing apparatus - Google Patents

Mixing apparatus Download PDF

Info

Publication number
US3856269A
US3856269A US00300009A US30000972A US3856269A US 3856269 A US3856269 A US 3856269A US 00300009 A US00300009 A US 00300009A US 30000972 A US30000972 A US 30000972A US 3856269 A US3856269 A US 3856269A
Authority
US
United States
Prior art keywords
funnel
mixer
solid
vortex
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00300009A
Inventor
B Fothergill
H Earle
W Kelly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial Chemical Industries Ltd
Original Assignee
Albright and Wilson Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albright and Wilson Ltd filed Critical Albright and Wilson Ltd
Priority to US05/476,861 priority Critical patent/US3994480A/en
Application granted granted Critical
Publication of US3856269A publication Critical patent/US3856269A/en
Assigned to IMPERIAL CHEMICAL INDUSTRIES PLC., IMPERIAL CHEMICAL HOUSE, MILLBANK, LONDON SW1P 3JF reassignment IMPERIAL CHEMICAL INDUSTRIES PLC., IMPERIAL CHEMICAL HOUSE, MILLBANK, LONDON SW1P 3JF ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ALBRIGHT AND WILSON LIMITED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/05Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/10Solid or semi-solid fertilisers, e.g. powders
    • C05G5/12Granules or flakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/56Mixing liquids with solids by introducing solids in liquids, e.g. dispersing or dissolving

Definitions

  • the present invention relates to mixing apparatus. It is particularly relevant to the rapid mixing of solids with liquids, for example in the manufacture of N:P:K. fertilisers.
  • Our invention provides an apparatus for mixing liquids with particulate solids which comprises a funnel shaped base, having a substantially vertical axis, fluid injection means positioned so as to be able to introduce a liquid stream tangentially into the mixer, and thereby establish a vortex of liquid in at least the lower part of the funnel shaped base, solid inlet means positioned so as to be able to pass a stream of the solid substantially along the axis of the funnel, a deflector located substantially at the axis of the funnel below the solid inlet means, preferably at or below the level of the injection means, and adapted to deflect the solid particles radially outwards into the vortex when the apparatus is in use, to form a mixture, and an outlet for the mixture at the base of the funnel.
  • the mixer may optionally comprise a vertical cylindrical portion located above the funnel.
  • the injection means may comprise one, or preferably more, tangential inlets in the wall of the mixer.
  • the inlets are preferably substantially horizontal, but may alternatively be disposed so as to impart a downward as well as a horizontal, tangential component to the liquid stream.
  • the number and geometry of the inlets are dictated by the need to form a continuous vortex covering substantially the whole of at least the lower part of the internal wall of the funnel.
  • a continuous vortex will be formed at least in the funnel shaped portion of the mixer provided a sufficient number of streams are admitted with a sufficient tangential velocity.
  • the optimum conditions for mixing are obtained when the liquid forms a continuous, rapidly moving film over the whole conical surface of the mixer, at least up to the highest point at which the deflected solid particles meet the vortex.
  • the film is at least 1 inch thick where the solid particles meet the vortex.
  • the vortex should therefore extend downwards to, and most preferably into, the outlet. This is readily achieved if the outlet is sufficiently large, and the rate of rotation of the liquid sufficiently rapid.
  • the wall of the funnel may typically make an angle of substantially 20 with the vertical, although larger or smaller angles will be operative.
  • the vertical angle may, for example, be as large as or as small as 5, but is more usually between 10 and 45.
  • the diameter of the outlet will determine the optimum throughput of the mixer. It should preferably be at least sufficiently large to permit the whole of the mixture to flow out through it under the influence of gravity, without building up a substantial head of mixture in the funnel.
  • inlets The optimum number and size of inlets to obtain a continuous vortex depend on the viscosity and desired throughput of liquid. We prefer to provide two inlets although three, four or even more could be used.
  • the inlets preferably have an aperture sufficiently restricted to form the liquid streams into tangential jets.
  • the total cross sectional area of all the inlets is substantially smaller than the cross sectional area of the outlet, typically less than a half and preferably less than a quarter, e.g., an eighth.
  • the minimum cross sectional area of each outlet depends on the viscosity of the liquid and the pressure which it is practicable to build up in the injection means to achieve the desired throughput.
  • the inlets may be located in the wall of the funnel or of an upper cylindrical portion or alternatively may enter through the top of the mixer.
  • the solids inlet means may conveniently be an open ended vertical pipe located substantially co-axially in the mixer and fed by any suitable means such as a belt or screw.
  • the solids inlet means is positioned so as to allow a stream of solid to fall into the funnel substantially along the axis thereof.
  • the deflector may desirably be vertically adjustable so that its position can be optimised to suit solid and liquid feed rates.
  • the deflector preferably distributes the solid particles evenly around the funnel.
  • One convenient form of deflector is a cone, apex upward suspended in the stream of falling solid, for example by means of a rod lying substantially along the axis of the mixer.
  • Such a cone is preferably adapted to prevent the solids from falling directly through the outlet at the base of the funnel. This will be achieved when the maximum diameter of the cone is greater than the diameter of the outlet or if the cone is broad enough to intercept all the falling solids and is located at such a distance below the solids inlet that the falling solids have acquired sufficient kinetic energy to be deflected to the wall of the funnel.
  • the cone may be vibrated if necessary, to prevent or inhibit the accumulation of a solid deposit.
  • a protective skirt may be provided above and outside the cone. Typically this may be outwardly splayed so that skirt and cone together define an outward passage through which the solid passes to the wall of the funnel.
  • deflector which may sometimes be preferred to the static or vibrating cone is a rotatable impeller plate.
  • a horizontal plate usually although not necessarily circular, which may be rotated about a shaft lying in the axis of the mixture by means of a suitable motor.
  • the plate rotates sufficiently fast to throw any particles that are intercepted thereon toward the wall of the funnel by centrifugal force.
  • the plate may rotate in the same, or preferably in the opposite sense to the vortex.
  • the rotating thrower has the advantage of helping to provide an even radial distribution of the deflected particles.
  • electrostatic charging of the solid by means of a highly charged corona discharge wire insulated from the earthed metallic body of the mixer, provides a particularly effective form of deflection.
  • a linear conductor such as a wire, insulated from the rest of the apparatus and lying substantially along the axis of a skirt which is typically cylindrical, below the solids inlet, is charged to a sufficiently high potential to produce a corona discharge towards the earthed skirt.
  • the stream of falling solid is preferably formed into a free-falling annular curtain surrounding the linear conductor, for example by means of a cone located above the conductor and below or within a concentric feed pipe.
  • the particles are charged electrostatically and many are repelled outwards to the vortex of melt flowing within the earthed funnel wall.
  • the charged particles repel each other so ensuring a thorough dispersal, this increases the rate of wetting of the particulate solid and inhibits any tendency of the solids to agglomerate.
  • a particular beneficial effect observed is that the finer particles tend to be deflected further from their downwards path than the coarser particles, this also increases the rate of wetting of transient floating islands of the particulate solid.
  • our invention provides a method for mixing particulate solids and liquids'which comprises forming a liquid into a continuous vortex dropping a stream of solid substantially along the axis of the vortex and deflecting the solid outwardly into the vortex, preferably from a point at or below the level at which the continuous vortex is established.
  • the liquid is formed into a continuous rapidly rotating film over substantially the whole of at least the lower part of a funnel shaped surface, the vortex extending downward to or preferably into an outlet channel at the base of the funnel.
  • the liquid is an NP melt and the solid is potassium chloride.
  • the NP melt may be prepared in the normal manner described, for example, in the aforesaid Netherlands Specification. Typically a mixture of ammonium nitrate and wet process phosphoric acid is treated at boiling point with ammonia gas to a pH of 2.7 to 3.0 (measured in 10 percent aqueous solution). The solution is then evaporated to 0.3 to 1.0 percent water content and the melt passed at suitably elevated temperature and pH to the mixer.
  • the potassium chloride is preferably preheated, and the apparatus including the liquid and solid inlets and the funnel may be steam jacketed to keep the mixture sufficiently fluid.
  • our invention provides a method for the mixing of particulate solids and liquids which comprises forming the liquid into a substantially continuous vortex, establishing a corona discharge in the neighbourhood of the vortex, passing a stream of the solid through the corona discharge, thereby charging the solid electrostatically and forming the stream into a dispersed cloud of electrostatically charged particles and passing the cloud of particles into the vortex.
  • FIG. 1 is a sectional elevation of one form of mixer according to the invention and FIGS. 2 and 3 are diagramatic cross sections of alternative forms of deflector.
  • the apparatus of FIG. 1 comprises a cylindrical mixer chamber 1 having a 12 inch high funnel shaped base 2 tapering, at an angle of 20 to the verticle, from a 13 inch upper diameter down to a vertical 4 inch diameter outlet pipe 3.
  • the mixer is provided with a pair of diametrically opposed tangential inlets 4, each of /1 inch diameter, also illustrated in FIG. 3.
  • a vertical axial inlet pipe 5 provides access to the interior of the chamber 1 through the top of the mixer.
  • the top of the mixer is provided with a wash water inlet 6.
  • a conical deflector 7 is suspended co-axially within the funnel shaped portion 2 of the mixer and below the level of the inlets 4 by a rod 8 situated co-axially within the co-axial inlet pipe 5.
  • the rod 8 is slideable, to permit the deflector 7 to be' raised or lowered.
  • FIG. 2 An alternative to the conical deflector 7 is illustrated in FIG. 2 and comprises a circular, horizontal impeller plate 10 mounted at the lower end of a vertical rotatable shaft 11 which lies co'axially within the co-axial inlet pipe 5 and which may be rotated by the action of a motor 12.
  • a further alternative illustrated in the FIG. 3 comprises a fine electrically conducting wire 13 disposed along the axis of the co-axial skirt 9.
  • the upper part of the wire 13 is enclosed in an insulating covering or rod 14, made of some material such as PTFE or silicone rubber which will withstand the operating temperature, and which in turn lies co-axially within a tubular support 15, by means of which a conical flow controller 16 is located below or within the co-axial inlet pipe 5 and above the lower, uninsulated, part of the wire 13.
  • the wire 13 is connected at the upper end to a source of high electrical potential 17, and it may optionally be terminated at its lower end by a small sphere of insulating material 18.
  • a liquid such as an NP melt is passed into the mixer chamber 1 through the tangential inlets, 4 at a rate sufficient to form a continuous vortex in the funnel 2.
  • a stream of solid is dropped into the mixer chamber 1 through the co-axial inlet pipe 5 and, striking the deflector 7, is deflected outwardly into the vortex in the funnel 2.
  • the swirling mixture of liquid and solid passes out of the mixer through the outlet pipe 3.
  • the falling stream of solid particles is directed into an annular curtain around the wire 13 by the cone 16.
  • the mixer including the skirt 9, is earthed and the wire 13 is charged to a high electrical potential to establish a corona discharge.
  • the falling particles acquire an electrostatic charge and are repelled outwardly, as a dispersed cloud, into the vortex in the funnel 2.
  • the invention is illustrated by the folling examples:
  • a 93 to 95 percent solution of ammonium nitrate was mixed with cold phosphoric acid containing 49 to 53% P in such proportions that the final product had a N:P O weight ratio of 1:1.
  • the mixture was treated with gaseous ammonia in a neutraliser at boiling point and atmospheric pressure to the equivalent of pH 2.7 to 3.0 in a percent aqueous solution.
  • Some concentrated sulphuric acid was added to raise the temperature and prevent crystallisation of monoammonium phosphate.
  • the NP solution containing 4 to 8% water was evaporated at 0.1 to 0.15 atmospheres absolute pressure to form a melt containing 0.3 to 1.0 percent water. The pH was then raised with ammonia.
  • the hot melt 170 to 180C was passed to the mixer illustrated in FIG. 1 through the tangential inlets 4 at a rate of 8 cubic metres per hour.
  • Ground preheated potassium chloride was passed into the mixer through the co-axial inlet 5 at a rate of 7.4 metric tons per hour.
  • the mixed NPK melt was passed directly through the outlet pipe 3 to a spinning, perforated prill bucket at the top of a prilling tower. Hot prills were recovered by raking from the floor of the tower, screened and cooled.
  • An apparatus for mixing together liquids and particulate solids comprising a funnel shaped base having a substantially vertical axis,
  • fluid injection means for introducing a stream of liquid tangentially into the mixer to establish a continuous vortex in at least the lower part of the funnel shaped base
  • solid inlet means for introducing a stream of solid particles into the mixer, and substantially down the axis thereof
  • deflection means comprising a corona discharge electrode located substantially at the axis of the funnel, below the level of the solid inlet means and adapted to deflect the solid particles substantially radially outward into the vortex, when the apparatus is in use, to form a mixture of the solid with the liquid, and
  • An apparatus which additionally comprises a skirt located above and substantially co-axially around the deflection means to protect the latter from splashes.
  • deflection means comprises a substantially linear conductor lying substantially in the axis of the mixer and insulated therefrom a grounded skirt substantially coaxially surrounding at least part of the conductor and means for charging the conductor sufficiently to establish a corona discharge.
  • said deflection means includes a conical deflector located above the corona discharge electrode and below the solids inlet, to form the falling solids into a circular curtain around the electrode and within the skirt.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Fertilizers (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Tables And Desks Characterized By Structural Shape (AREA)
  • Treating Waste Gases (AREA)
  • Artificial Filaments (AREA)
  • Paper (AREA)

Abstract

Apparatus for mixing liquids and particulate solids wherein a continuous vortex of liquid is formed in a funnel and particulate solids are dropped along the axis of the funnel and deflected radially outward into the vortex. The deflection is accomplished by a corona discharge electrode. The invention is particularly applicable to the manufacture of high potash prilled NPK fertilizers.

Description

United States Patent [1 1 Fothergill et a].
[4 1 Dec. 24, 1974 1 MIXING APPARATUS [75] Inventors: Bernard Henry Fothergill,
Barton-on-Humber; Henry Earle, Cumberland; William John Kelly, Brigg, all of England [73] Assignee: Albright & Wilson Limited, Warley,
Worc., England [22] Filed: Oct. 24, 1972 [21] Appl. No.: 300,009
[30] Foreign Application Priority Data Oct. 25, 1971 Great Britain 49547/71 [52] US. Cl. 259/4, 259/18 [51] Int. Cl. B0lf 5/00, BOlf 15/02 [58] Field of Search 259/4, 5, 6, 7, 8, 18, 259/19, 20, 21, 22, 23, 24, 27, 95, DIG. 46;
[56] References Cited UNITED STATES PATENTS 2,653,801 9/1953 Fontein 259/4 2,724,580 11/1955 Revallier ..259/4 FOREIGN PATENTS OR APPLICATIONS 1,179,913 6/1955 Germany ..259/4 815,247 4/1937 France ..259/4 Primary Examiner-Robert L. Bleutge Assistant ExaminerAlan Cantor Attorney, Agent, or Firm-Flynn & Frishauf [5 7 ABSTRACT Apparatus for mixing liquids and particulate solids wherein a continuous vortex of liquid is formed in a funnel and particulate solids are dropped along the axis of the funnel and deflected radially outward into the vortex. The deflection is accomplished by a corona discharge electrode. The invention is particularly applicable to the manufacture of high potash prilled NPK fertilizers.
8 Claims, 3 Drawing Figures PATENTED DEC 2 4 I974 SHEET 1 OF 2 MIXING APPARATUS The present invention relates to mixing apparatus. It is particularly relevant to the rapid mixing of solids with liquids, for example in the manufacture of N:P:K. fertilisers.
It is known to mix solids with liquids by passing the liquid tangentially into a funnel to form a vortex and dropping solid into the vortex. Thus, it is known from Netherlands application no: 69,06224 that in the mixing of potassium chloride with an NP melt to form an N:P:K fertiliser having a high proportion of K, the viscosity of the mixture rises rapidly after mixing. In order to prepare a satisfactory prilled fertiliser it is necessary to effect mixing as rapidly as possible so that the mixture may be prilled before the viscosity exceeds a certain critical limit. The Netherlands Specification proposes the use of a cyclone mixer in which the N:P melt is injected tangentially into a vertical cylindrical vessel having a funnel shaped base and a stream of potassium chloride is admitted along the axis of the vessel.
While the mixer described in the Netherlands Specification works satisfactorily for the production of some grades of prilled fertiliser it has not been found satisfactory for those with very high potash contents.
It has long been desired to manufacture prilled fertilisers of high potash content based on potassium chloride, for example those with NzP O :K O weight ratio 15:15:21, 15:15:22, or even higher K values. Attempts to manufacture such products commercially using the mixing apparatus described in the Netherlands Specification have failed due to inadequate mixing, to the formation of blockages, and to the increased time required to traverse the mixer series.
The highest K 0 value achieved commerically, with a N:P O melt ratio of 1:1, is represented by :15:19, using the mixer as described in the Netherlands specification.
Our invention provides an apparatus for mixing liquids with particulate solids which comprises a funnel shaped base, having a substantially vertical axis, fluid injection means positioned so as to be able to introduce a liquid stream tangentially into the mixer, and thereby establish a vortex of liquid in at least the lower part of the funnel shaped base, solid inlet means positioned so as to be able to pass a stream of the solid substantially along the axis of the funnel, a deflector located substantially at the axis of the funnel below the solid inlet means, preferably at or below the level of the injection means, and adapted to deflect the solid particles radially outwards into the vortex when the apparatus is in use, to form a mixture, and an outlet for the mixture at the base of the funnel.
The mixer may optionally comprise a vertical cylindrical portion located above the funnel. The injection means may comprise one, or preferably more, tangential inlets in the wall of the mixer. The inlets are preferably substantially horizontal, but may alternatively be disposed so as to impart a downward as well as a horizontal, tangential component to the liquid stream. The number and geometry of the inlets are dictated by the need to form a continuous vortex covering substantially the whole of at least the lower part of the internal wall of the funnel. We believe that one of the main causes of blockages in the prior art mixer was the formation of spiral streams in the cylindrical portion of the mixer, and the accumulation of solid or unwetted, and intermittently 'or insufficiently wetted, portions of the wall, leading ultimately to bridging in the mixer. A continuous vortex will be formed at least in the funnel shaped portion of the mixer provided a sufficient number of streams are admitted with a sufficient tangential velocity.
We have discovered that the optimum conditions for mixing are obtained when the liquid forms a continuous, rapidly moving film over the whole conical surface of the mixer, at least up to the highest point at which the deflected solid particles meet the vortex. Preferably the film is at least 1 inch thick where the solid particles meet the vortex. Preferably the vortex should therefore extend downwards to, and most preferably into, the outlet. This is readily achieved if the outlet is sufficiently large, and the rate of rotation of the liquid sufficiently rapid.
The wall of the funnel may typically make an angle of substantially 20 with the vertical, although larger or smaller angles will be operative. The vertical angle may, for example, be as large as or as small as 5, but is more usually between 10 and 45. For a given slope of the funnel wall, the diameter of the outlet will determine the optimum throughput of the mixer. It should preferably be at least sufficiently large to permit the whole of the mixture to flow out through it under the influence of gravity, without building up a substantial head of mixture in the funnel.
The optimum number and size of inlets to obtain a continuous vortex depend on the viscosity and desired throughput of liquid. We prefer to provide two inlets although three, four or even more could be used. The inlets preferably have an aperture sufficiently restricted to form the liquid streams into tangential jets.
Desirably the total cross sectional area of all the inlets is substantially smaller than the cross sectional area of the outlet, typically less than a half and preferably less than a quarter, e.g., an eighth. The minimum cross sectional area of each outlet depends on the viscosity of the liquid and the pressure which it is practicable to build up in the injection means to achieve the desired throughput. The inlets may be located in the wall of the funnel or of an upper cylindrical portion or alternatively may enter through the top of the mixer.
The solids inlet means may conveniently be an open ended vertical pipe located substantially co-axially in the mixer and fed by any suitable means such as a belt or screw. The solids inlet means is positioned so as to allow a stream of solid to fall into the funnel substantially along the axis thereof.
The deflector may desirably be vertically adjustable so that its position can be optimised to suit solid and liquid feed rates. The deflector preferably distributes the solid particles evenly around the funnel. One convenient form of deflector is a cone, apex upward suspended in the stream of falling solid, for example by means of a rod lying substantially along the axis of the mixer. Such a cone is preferably adapted to prevent the solids from falling directly through the outlet at the base of the funnel. This will be achieved when the maximum diameter of the cone is greater than the diameter of the outlet or if the cone is broad enough to intercept all the falling solids and is located at such a distance below the solids inlet that the falling solids have acquired sufficient kinetic energy to be deflected to the wall of the funnel. The cone may be vibrated if necessary, to prevent or inhibit the accumulation of a solid deposit.
Preferably means are provided for preventing the liquid from splashing onto the deflector. For example a protective skirt may be provided above and outside the cone. Typically this may be outwardly splayed so that skirt and cone together define an outward passage through which the solid passes to the wall of the funnel.
An alternative form of deflector which may sometimes be preferred to the static or vibrating cone is a rotatable impeller plate. Typically this is a horizontal plate, usually although not necessarily circular, which may be rotated about a shaft lying in the axis of the mixture by means of a suitable motor. The plate rotates sufficiently fast to throw any particles that are intercepted thereon toward the wall of the funnel by centrifugal force. The plate may rotate in the same, or preferably in the opposite sense to the vortex. The rotating thrower has the advantage of helping to provide an even radial distribution of the deflected particles.
According to a specially preferred embodiment of our invention, we have discovered that electrostatic charging of the solid, by means of a highly charged corona discharge wire insulated from the earthed metallic body of the mixer, provides a particularly effective form of deflection.
The principle of electrostatic deflection has, of course, been aplied hitherto to separators for removing ontrained solids from gas streams and to the dispersion and application of paints and powder coatings. We believe, however, that this is the first proposal for using this technique for the purpose of mixing a solid with fluid. According to this embodiment of our invention, a linear conductor, such as a wire, insulated from the rest of the apparatus and lying substantially along the axis of a skirt which is typically cylindrical, below the solids inlet, is charged to a sufficiently high potential to produce a corona discharge towards the earthed skirt. The stream of falling solid is preferably formed into a free-falling annular curtain surrounding the linear conductor, for example by means of a cone located above the conductor and below or within a concentric feed pipe. The particles are charged electrostatically and many are repelled outwards to the vortex of melt flowing within the earthed funnel wall. The charged particles repel each other so ensuring a thorough dispersal, this increases the rate of wetting of the particulate solid and inhibits any tendency of the solids to agglomerate. A particular beneficial effect observed is that the finer particles tend to be deflected further from their downwards path than the coarser particles, this also increases the rate of wetting of transient floating islands of the particulate solid.
According to a further embodiment our invention provides a method for mixing particulate solids and liquids'which comprises forming a liquid into a continuous vortex dropping a stream of solid substantially along the axis of the vortex and deflecting the solid outwardly into the vortex, preferably from a point at or below the level at which the continuous vortex is established.
Preferably the liquid is formed into a continuous rapidly rotating film over substantially the whole of at least the lower part of a funnel shaped surface, the vortex extending downward to or preferably into an outlet channel at the base of the funnel.
Preferably the liquid is an NP melt and the solid is potassium chloride. The NP melt may be prepared in the normal manner described, for example, in the aforesaid Netherlands Specification. Typically a mixture of ammonium nitrate and wet process phosphoric acid is treated at boiling point with ammonia gas to a pH of 2.7 to 3.0 (measured in 10 percent aqueous solution). The solution is then evaporated to 0.3 to 1.0 percent water content and the melt passed at suitably elevated temperature and pH to the mixer. The potassium chloride is preferably preheated, and the apparatus including the liquid and solid inlets and the funnel may be steam jacketed to keep the mixture sufficiently fluid.
According to a particularly preferred embodiment our invention provides a method for the mixing of particulate solids and liquids which comprises forming the liquid into a substantially continuous vortex, establishing a corona discharge in the neighbourhood of the vortex, passing a stream of the solid through the corona discharge, thereby charging the solid electrostatically and forming the stream into a dispersed cloud of electrostatically charged particles and passing the cloud of particles into the vortex.
The apparatus of our invention will now be described with reference to the drawings of which FIG. 1 is a sectional elevation of one form of mixer according to the invention and FIGS. 2 and 3 are diagramatic cross sections of alternative forms of deflector.
The apparatus of FIG. 1 comprises a cylindrical mixer chamber 1 having a 12 inch high funnel shaped base 2 tapering, at an angle of 20 to the verticle, from a 13 inch upper diameter down to a vertical 4 inch diameter outlet pipe 3. The mixer is provided with a pair of diametrically opposed tangential inlets 4, each of /1 inch diameter, also illustrated in FIG. 3. A vertical axial inlet pipe 5 provides access to the interior of the chamber 1 through the top of the mixer. The top of the mixer is provided with a wash water inlet 6. A conical deflector 7 is suspended co-axially within the funnel shaped portion 2 of the mixer and below the level of the inlets 4 by a rod 8 situated co-axially within the co-axial inlet pipe 5. The rod 8 is slideable, to permit the deflector 7 to be' raised or lowered. A skirt 9 situated above the conical deflector 7, surrounds the co-axial inlet pipe 5. The lower part of the skirt 9 is outwardly splayed so that the skirt 9 and deflector 7 together define an outwardly and downwardly disposed annular passage.
An alternative to the conical deflector 7 is illustrated in FIG. 2 and comprises a circular, horizontal impeller plate 10 mounted at the lower end of a vertical rotatable shaft 11 which lies co'axially within the co-axial inlet pipe 5 and which may be rotated by the action of a motor 12.
A further alternative illustrated in the FIG. 3 comprises a fine electrically conducting wire 13 disposed along the axis of the co-axial skirt 9. The upper part of the wire 13 is enclosed in an insulating covering or rod 14, made of some material such as PTFE or silicone rubber which will withstand the operating temperature, and which in turn lies co-axially within a tubular support 15, by means of which a conical flow controller 16 is located below or within the co-axial inlet pipe 5 and above the lower, uninsulated, part of the wire 13. The wire 13 is connected at the upper end to a source of high electrical potential 17, and it may optionally be terminated at its lower end by a small sphere of insulating material 18.
When the mixer of FIG. 1 is in operation a liquid, such as an NP melt is passed into the mixer chamber 1 through the tangential inlets, 4 at a rate sufficient to form a continuous vortex in the funnel 2. A stream of solid is dropped into the mixer chamber 1 through the co-axial inlet pipe 5 and, striking the deflector 7, is deflected outwardly into the vortex in the funnel 2. The swirling mixture of liquid and solid passes out of the mixer through the outlet pipe 3.
In the alternative of FIG. 2 the falling stream of solid is intercepted by the impeller plate 10 which is rotated sufficiently rapidly by the action of the motor 12 to throw the solid particles outwards into the vortex by centrifugal force.
In the alternative of FIG. 3 the falling stream of solid particles is directed into an annular curtain around the wire 13 by the cone 16. The mixer, including the skirt 9, is earthed and the wire 13 is charged to a high electrical potential to establish a corona discharge. The falling particles acquire an electrostatic charge and are repelled outwardly, as a dispersed cloud, into the vortex in the funnel 2.
The invention is illustrated by the folling examples:
A 93 to 95 percent solution of ammonium nitrate was mixed with cold phosphoric acid containing 49 to 53% P in such proportions that the final product had a N:P O weight ratio of 1:1. The mixture was treated with gaseous ammonia in a neutraliser at boiling point and atmospheric pressure to the equivalent of pH 2.7 to 3.0 in a percent aqueous solution. Some concentrated sulphuric acid was added to raise the temperature and prevent crystallisation of monoammonium phosphate. The NP solution containing 4 to 8% water was evaporated at 0.1 to 0.15 atmospheres absolute pressure to form a melt containing 0.3 to 1.0 percent water. The pH was then raised with ammonia.
The hot melt 170 to 180C) was passed to the mixer illustrated in FIG. 1 through the tangential inlets 4 at a rate of 8 cubic metres per hour. Ground preheated potassium chloride, was passed into the mixer through the co-axial inlet 5 at a rate of 7.4 metric tons per hour. The mixed NPK melt was passed directly through the outlet pipe 3 to a spinning, perforated prill bucket at the top of a prilling tower. Hot prills were recovered by raking from the floor of the tower, screened and cooled.
The process operated satisfactorily for the manufacture of a consistent, high quality prilled product having an NzPgO K 0 ratio of 15:15:21.
We claim:
1. An apparatus for mixing together liquids and particulate solids, comprising a funnel shaped base having a substantially vertical axis,
fluid injection means for introducing a stream of liquid tangentially into the mixer to establish a continuous vortex in at least the lower part of the funnel shaped base,
solid inlet means for introducing a stream of solid particles into the mixer, and substantially down the axis thereof,
deflection means comprising a corona discharge electrode located substantially at the axis of the funnel, below the level of the solid inlet means and adapted to deflect the solid particles substantially radially outward into the vortex, when the apparatus is in use, to form a mixture of the solid with the liquid, and
an outlet for the mixture at the base of the funnel.
2. An apparatus according to claim 1 wherein the deflection means is located no higher than the level of the fluid injection means.
3. An apparatus according to claim 2 wherein the fluid injection means comprises at least two tangential inlets.
4. An apparatus according to claim 3 wherein the total cross sectional area of the inlets is less than half the cross sectional area of the outlet.
5. An apparatus according to claim 1 wherein the height of the deflection means is adjustable.
6. An apparatus according to claim 1 which additionally comprises a skirt located above and substantially co-axially around the deflection means to protect the latter from splashes.
7. An apparatus according to claim 1 wherein the deflection means comprises a substantially linear conductor lying substantially in the axis of the mixer and insulated therefrom a grounded skirt substantially coaxially surrounding at least part of the conductor and means for charging the conductor sufficiently to establish a corona discharge.
8. An apparatus according to claim 7 wherein said deflection means includes a conical deflector located above the corona discharge electrode and below the solids inlet, to form the falling solids into a circular curtain around the electrode and within the skirt.

Claims (8)

1. An apparatus for mixing together liquids and particulate solids, comprising a funnel shaped base having a substantially vertical axis, fluid injection means for introducing a stream of liquid tangentially into the mixer to establish a continuous vortex in at least the lower part of the funnel shaped base, solid inlet means for introducing a stream of solid particles into the mixer, and substantially down the axis thereof, deflection means comprising a corona discharge electrode located substantially at the axis of the funnel, below the level of the solid inlet means and adapted to deflect the solid particles substantially radially outward into the vortex, when the apparatus is in use, to form a mixture of the solid with the liquid, and an outlet for the mixture at the base of the funnel.
2. An apparatus according to claim 1 wherein the deflection means is located no higher than the level of the fluid injection means.
3. An apparatus according to claim 2 wherein the fluid injection means comprises at least two tangential inlets.
4. An apparatus according to claim 3 wherein the total cross sectional area of the inlets is less than half the cross sectional area of the outlet.
5. An apparatus according to claim 1 wherein the height of the deflection means is adjustable.
6. An apparatus according to claim 1 which additionally comprises a skirt located above and substantially co-axially around the deflection means to protect the latter from splashes.
7. An apparatus according to claim 1 wherein the deflection means comprises a substantially linear conductor lying substantially in the axis of the mixer and insulated therefrom a grounded skirt substantially co-axially surrounding at least part of the conductor and means for charging the conductor sufficiently to establish a corona discharge.
8. An apparatus according to claim 7 wherein said deflection means includes a conical deflector located above the corona discharge electrode and below the solids inlet, to form the falling solidS into a circular curtain around the electrode and within the skirt.
US00300009A 1971-10-25 1972-10-24 Mixing apparatus Expired - Lifetime US3856269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/476,861 US3994480A (en) 1971-10-25 1974-06-06 Mixing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB4954771A GB1420305A (en) 1971-10-25 1971-10-25 Method of making npk fertilisers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/476,861 Division US3994480A (en) 1971-10-25 1974-06-06 Mixing method

Publications (1)

Publication Number Publication Date
US3856269A true US3856269A (en) 1974-12-24

Family

ID=10452705

Family Applications (1)

Application Number Title Priority Date Filing Date
US00300009A Expired - Lifetime US3856269A (en) 1971-10-25 1972-10-24 Mixing apparatus

Country Status (15)

Country Link
US (1) US3856269A (en)
JP (1) JPS5414773B2 (en)
AT (1) AT334329B (en)
AU (1) AU474503B2 (en)
BE (1) BE790515A (en)
CA (1) CA967946A (en)
DE (1) DE2252421A1 (en)
DK (1) DK131027B (en)
GB (1) GB1420305A (en)
IE (1) IE36791B1 (en)
IT (1) IT975360B (en)
LU (1) LU66339A1 (en)
NL (1) NL7214415A (en)
NO (1) NO133228C (en)
SE (1) SE7513945L (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995838A (en) * 1974-01-23 1976-12-07 Supraton Auer & Zucker Ohg Arrangement for the production of a suspension of highly swellable substances
US4034966A (en) * 1975-11-05 1977-07-12 Massachusetts Institute Of Technology Method and apparatus for mixing particles
US4087862A (en) * 1975-12-11 1978-05-02 Exxon Research & Engineering Co. Bladeless mixer and system
US4153373A (en) * 1977-03-14 1979-05-08 United States Gypsum Company Apparatus and process for preparing calcined gypsum
DE2900931A1 (en) * 1978-08-24 1980-03-13 Geosource Inc METHOD AND DEVICE FOR MIXING FLOWABLE MATERIALS WITH SOLID BODIES
US4199547A (en) * 1977-12-12 1980-04-22 Irkutsky Gosudarstvenny NauchnoIssledovatelsky Institut Redkikh I Tsvetnykh Metallov "Irgiredmet" Device for producing foam plastics
US4495086A (en) * 1981-08-19 1985-01-22 Ransburg Japan, Limited Method and apparatus for preparing emulsions
US4838701A (en) * 1986-06-02 1989-06-13 Dowell Schlumberger Incorporated Mixer
US20030205072A1 (en) * 2000-11-09 2003-11-06 Van Der Merwe Pieter Gideo Soil improving and fertilising composition
US6689181B2 (en) 2000-11-15 2004-02-10 Honeywell International Inc. Ammonium sulfate nitrate
US20060164914A1 (en) * 2003-02-28 2006-07-27 Okutama Kogyo Co., Ltd. Mixing device and slurrying device
US7175684B1 (en) 1999-07-30 2007-02-13 Honeywell International, Inc. Prilling method
US20090107196A1 (en) * 2007-10-26 2009-04-30 Jung Philip O Control of Particle Formation
CN109364788A (en) * 2018-11-21 2019-02-22 盐城师范学院 Mudflat aquaculture field birds mixed fodder blender

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0056044A1 (en) * 1980-07-21 1982-07-21 HOPGOOD DUNSTAN & PARTNERS PTY. LTD. A method and means for introducing fine particulate material
US4479920A (en) * 1981-06-29 1984-10-30 Torftech Limited Apparatus for processing matter in a turbulent mass of particulate material
DE3233151C2 (en) * 1982-09-07 1986-07-10 Lipfert, Kurt F., 8942 Ottobeuren Mixing device, especially for the concrete industry
DE3243671A1 (en) * 1982-11-25 1984-05-30 Karg Ytron Gmbh DEVICE FOR CONTINUOUSLY MIXING POWDERED SUBSTANCES WITH LIQUIDS
GB8607699D0 (en) * 1986-03-27 1986-04-30 Shell Int Research Mixing fluids
DE19748855C2 (en) * 1997-11-05 2002-02-07 Dosier Und Prozestechnik Salzw Conveying and mixing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR815247A (en) * 1936-03-18 1937-07-08 Tecalemit Mondial Method and apparatus for mixing a powder with a stream of water under pressure
US2653801A (en) * 1950-10-13 1953-09-29 Stamicarbon Process and apparatus for dispersing a substance in a liquid
US2724580A (en) * 1952-06-19 1955-11-22 Stamicarbon Method of mixing a pulverulent solid material and a liquid
DE1179913B (en) * 1955-12-06 1964-10-22 Forschungsgesellschaft Der Iaw Device for dispersing powdery substances

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR815247A (en) * 1936-03-18 1937-07-08 Tecalemit Mondial Method and apparatus for mixing a powder with a stream of water under pressure
US2653801A (en) * 1950-10-13 1953-09-29 Stamicarbon Process and apparatus for dispersing a substance in a liquid
US2724580A (en) * 1952-06-19 1955-11-22 Stamicarbon Method of mixing a pulverulent solid material and a liquid
DE1179913B (en) * 1955-12-06 1964-10-22 Forschungsgesellschaft Der Iaw Device for dispersing powdery substances

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995838A (en) * 1974-01-23 1976-12-07 Supraton Auer & Zucker Ohg Arrangement for the production of a suspension of highly swellable substances
US4034966A (en) * 1975-11-05 1977-07-12 Massachusetts Institute Of Technology Method and apparatus for mixing particles
US4087862A (en) * 1975-12-11 1978-05-02 Exxon Research & Engineering Co. Bladeless mixer and system
US4153373A (en) * 1977-03-14 1979-05-08 United States Gypsum Company Apparatus and process for preparing calcined gypsum
US4199547A (en) * 1977-12-12 1980-04-22 Irkutsky Gosudarstvenny NauchnoIssledovatelsky Institut Redkikh I Tsvetnykh Metallov "Irgiredmet" Device for producing foam plastics
DE2900931A1 (en) * 1978-08-24 1980-03-13 Geosource Inc METHOD AND DEVICE FOR MIXING FLOWABLE MATERIALS WITH SOLID BODIES
US4495086A (en) * 1981-08-19 1985-01-22 Ransburg Japan, Limited Method and apparatus for preparing emulsions
US4838701A (en) * 1986-06-02 1989-06-13 Dowell Schlumberger Incorporated Mixer
US7175684B1 (en) 1999-07-30 2007-02-13 Honeywell International, Inc. Prilling method
US20030205072A1 (en) * 2000-11-09 2003-11-06 Van Der Merwe Pieter Gideo Soil improving and fertilising composition
US6689181B2 (en) 2000-11-15 2004-02-10 Honeywell International Inc. Ammonium sulfate nitrate
US20060164914A1 (en) * 2003-02-28 2006-07-27 Okutama Kogyo Co., Ltd. Mixing device and slurrying device
US7575364B2 (en) * 2003-02-28 2009-08-18 Okutama Kogyo Co., Ltd. Mixing device and slurrying device
KR101170174B1 (en) * 2003-02-28 2012-07-31 오쿠타마 고교 가부시키가이샤 Mixing device and slurrying device
US20090107196A1 (en) * 2007-10-26 2009-04-30 Jung Philip O Control of Particle Formation
US7575365B2 (en) 2007-10-26 2009-08-18 Uop Llc Viscosity control of particle formation by adjusting agitation speed
CN109364788A (en) * 2018-11-21 2019-02-22 盐城师范学院 Mudflat aquaculture field birds mixed fodder blender
CN109364788B (en) * 2018-11-21 2024-05-28 盐城师范学院 Poultry mixed feed stirrer for beach farm

Also Published As

Publication number Publication date
BE790515A (en) 1973-02-15
AT334329B (en) 1976-01-10
LU66339A1 (en) 1973-02-05
JPS5414773B2 (en) 1979-06-09
SE7513945L (en) 1975-12-10
DE2252421A1 (en) 1973-05-03
JPS5047253A (en) 1975-04-26
IE36791B1 (en) 1977-02-16
NO133228C (en) 1976-03-31
NL7214415A (en) 1973-04-27
CA967946A (en) 1975-05-20
AU4814572A (en) 1974-04-26
GB1420305A (en) 1976-01-07
AU474503B2 (en) 1976-07-22
IE36791L (en) 1973-04-25
ATA913772A (en) 1976-05-15
NO133228B (en) 1975-12-22
DK131027C (en) 1975-10-27
IT975360B (en) 1974-07-20
DK131027B (en) 1975-05-20

Similar Documents

Publication Publication Date Title
US3994480A (en) Mixing method
US3856269A (en) Mixing apparatus
US4191480A (en) Continuous flow static mixer for mixing powder and/or suspension materials with liquid materials
US3009826A (en) Process of forming a dispersion of aerosol particles and process for coating solid particles with said dispersion
US4267131A (en) Method for intimate contacting of plural phases and phase contactor apparatus therefor
US3986706A (en) Mixing method
JPS5827981B2 (en) Kotonal Souno Butsu Shitsuosetsu Yokusa Cell Hohou
US2774660A (en) Granulation of fertilizers
US3830631A (en) Apparatus for the preparation of porous, particulate sulfur
US3631608A (en) Process and apparatus for treating particalized substances in a fluidized bed
US3347620A (en) Process for carrying out a reaction between a plurality of reactants on rotating surfaces
US4382065A (en) Fluidized bed apparatus and method of using
EP0101907B1 (en) Countercurrent washing tower and countercurrent washing method using same
US20200282374A1 (en) Material processing system and method
SU856372A3 (en) Method and device for granulating liquid material
US4185547A (en) Apparatus for manufacturing readily soluble granular substances from powdered materials
US2059230A (en) Apparatus for granulating molten materials
US4255391A (en) Apparatus for introducing and mixing a liquid in an essentially liquid medium
JPS5911331A (en) Spherodizing of thermoplastic particle
RU2277011C1 (en) Granulator
RU2591962C1 (en) Granulator
US4329164A (en) Process for the granulation of glass melts
US3168989A (en) Process and equipment for the production of granulated material
SU1225611A1 (en) Mixer of granulated materials
SU1005880A1 (en) Apparatus for granulating powder in fluidized bed

Legal Events

Date Code Title Description
AS Assignment

Owner name: IMPERIAL CHEMICAL INDUSTRIES PLC., IMPERIAL CHEMIC

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ALBRIGHT AND WILSON LIMITED;REEL/FRAME:004269/0492

Effective date: 19840606