US3856076A - Apparatus for containing the molten reaction products of a reactive cladding process - Google Patents

Apparatus for containing the molten reaction products of a reactive cladding process Download PDF

Info

Publication number
US3856076A
US3856076A US00332869A US33286973A US3856076A US 3856076 A US3856076 A US 3856076A US 00332869 A US00332869 A US 00332869A US 33286973 A US33286973 A US 33286973A US 3856076 A US3856076 A US 3856076A
Authority
US
United States
Prior art keywords
perimeter
substrate
refractory
shell
cladding process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00332869A
Inventor
R Adams
W Rall
R Kachik
A Pignocco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United States Steel Corp
Original Assignee
United States Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Steel Corp filed Critical United States Steel Corp
Priority to US00332869A priority Critical patent/US3856076A/en
Priority to US05/485,193 priority patent/US3933191A/en
Application granted granted Critical
Publication of US3856076A publication Critical patent/US3856076A/en
Assigned to USX CORPORATION, A CORP. OF DE reassignment USX CORPORATION, A CORP. OF DE MERGER (SEE DOCUMENT FOR DETAILS). Assignors: UNITED STATES STEEL CORPORATION (MERGED INTO)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition

Definitions

  • ABSTRACT Method and apparatus for containing the molten reaction products of a reactive cladding process, such as an aluminothermic reduction cladding process, in which a refractory-lined perimeter rests on either a sand bed or a steel base.
  • a second perimeter surrounding the inner perimeter and forming an annular space therewith is also situated on either the sand bed or the steel base.
  • Sand placed in the annular space between the two perimeters chills anymolten reaction products which escape the confines of the inner perimeter, preventing any spread of this material.
  • This invention relates to the cladding of metals and metal alloys to steel substrates by a reactive cladding process, such as the aluminothermic reduction (ATR) method, and more particularly to a method and apparatus for containing the reaction products of such a proce'ssl Procedures for cladding metal and metal alloys to steel substrates by the aluminothermic reduction of metal oxide ores are well known.
  • ATR aluminothermic reduction
  • Patents disclose molding sand for containing his molten reaction products. Burke requires packing to prevent leakage. Guntermann discloses no details of his mold 3. Carpenters box 12 has a refractory lining l4 and an interior steel lining against and extending to the bottom of substrate 10. We have found that such a mold or containment apparatus allows the molten reaction products to move downwardly along the sides and ends of the substrate, coating not only the sides and ends but also washing out the sand beneath the substrate and forming irregular thin coatings on the bottom of the substrate.
  • the substrate is ordinarily preheated to enhance adherence of the reaction product. Because prior art molds are complex and exact-fitting, they are placed prior to heating of the substrate. Preheating then raises the temperature of both the substrate and the containment apparatus.
  • an apparatus for containing the molten reaction products which includes a refractorylined inner perimeter situated around that portion of the substrate to be clad, and a larger outer perimeter placed around the inner perimeter and substrate, and forming an annular space with the inner perimeter.
  • FIG. 1 is a cross-sectioned elevational view of a substrate to be clad, positioned on a steel base, and showing our invented apparatus for containing the molten reaction products.
  • FIG. 2 is a cross-sectioned elevational view similar to FIG. 1, of an alternative embodiment of our invented apparatus, which includes a sand bed rather than a steel base.
  • a ferrous metal substrate (10 is preheated, if desired, then placed on a steel base (12).
  • Inner refractory perimeter (14) which may be a bottomless steel box having upstanding sides (16) lined interiorly with graphite plates (18), is placed on the substrate around the portion of the substrate to be clad.
  • Outer perimeter (20) is placed on base ('12) around the substrate (10) and the inner perimeter (l4), and forms, with the inner perimeter, an annular space (22), which is filled subsequently with sand (24).
  • Lifting members (26) are attached to the perimeters-to facilitate their positioning and removal by overhead cranes.
  • the sand provides a movable seal which can flow into any irregularities and fill in any gaps which may exist between the perimeter l4) and the substrate (10).
  • the perimeters can be fabricated to any desired size or shape and still effect a reliable seal for the molten products (28) produced in the reactive cladding process.
  • a cold or preheated ferrous metal substrate (40) rests in a sand bed (42) which has been leveled at line (43) even with the upper surface of the substrate.
  • Outer perimeter (44) which may have a refractory lining (46) if desired, is positioned on the sand bed as shown, prior to leveling the sand.
  • Inner refractory-lined perimeter (48) has interior dimensions identical with the dimension of the substrate (40). thus the perimeter (48) is resting on the sand bed (42) outside the substrate but in extremely close proximity thereto.
  • the inner perimeter (48) forms an annular space (50) with the outer perim eter. This annular space is then filled with sand (52).
  • a powdered exothermic reaction mixture such as aluminothermic reduction charge (54) is placed on the substrate (40) inside the inner perimeter (44).
  • Charge (54) may be covered by refractory plates (56), such as graphite, if desired, to contain the heat of reaction of the charge and force such heat into the substrate to enhance the adherence of the cladding material.
  • a torch or flare can be inserted through hole (58) to initiate the ATR reaction.
  • the plates (56) also prevent splashing during the reaction.
  • the assemblies need not be accurately fitted, i.c., it is unnecessary to machine the bottoms of the perimeters to establish an intimate contact between the perimeter and the base or bed on which it rests. It is also unnecessary to place luting material or caulking around the bottom of the perimeter to form a tight seal. Further, since neither perimeter is preheated along with the substrate, the molten reaction product tends to be chilled as it contacts the relatively cool perimeter.
  • the reaction products are in the form of a molten slag phase containing small spheres of the liquid metal phase.
  • the high-melting slag-metal phase instantly solidifies to form a thin layer of solid material or skull on the wall surface. If this skull remains intact on the graphite wall, it forms a natural barrier between the reduced metal phase and the graphite wall.
  • much of the heat of the reaction is passed into the graphite wall, and the temperature of the wall surface rises precipitously.
  • the contacting graphite wall should be as thick as practicable.
  • minimum 2-inch thick graphite walls prevents carbon contamination of stainless steels'and other low-carbon steels from reaching unacceptable carbon levels. With only a moderate amount of'care, these perimeters can be reused many times, thus these perimeters are economically feasible for commercial cladding processes.
  • Apparatus for containing the molten reaction products of a reactive cladding process comprising:
  • said inner perimeter and said outer perimeter defining an annular space for containing an insulating material
  • Apparatus according to claim 1 further comprising means connected to said perimeter shells for positioning said inner and outer perimeters.
  • Apparatus for preventing carbon contamination of low-carbon steels during a reactive cladding process comprising apparatus according to claim 4 wherein said graphite lining is at least 2 inches thick.
  • Apparatus according to claim 1 further comprising a refractory cover comprising at least one refractory plate adapted to fit atop said refractory lining within said inner perimeter shell.
  • an inner perimeter comprising a metal shell interiorly lined with a refractory material, said perimeter having substantially the exact interior dimensions of said substrate, said perimeter being positioned on said leveled sand bed around said substrate,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

Method and apparatus for containing the molten reaction products of a reactive cladding process, such as an aluminothermic reduction cladding process, in which a refractory-lined perimeter rests on either a sand bed or a steel base. A second perimeter surrounding the inner perimeter and forming an annular space therewith is also situated on either the sand bed or the steel base. Sand placed in the annular space between the two perimeters chills any molten reaction products which escape the confines of the inner perimeter, preventing any spread of this material.

Description

United States Patent 11 1 Adams et a1.
[ APPARATUS FOR CONTAINING THE MOLTEN REACTION PRODUCTS OF A REACTIVE CLADDING PROCESS [73] Assignee: United States Steel Corporation, Pittsburgh, Pa.
22 Filed: Feb. 15, 1973 21 Appl. No.: 332,869
52 U.S.Cl ..164/332,29/498.5,164/9, 164/54, 164/92 511 lm. c1 B22d 19/00 [58] Field of Search 164/332, 333, 334, 9, 10, 164/11, 53, 54, 92; 29/4985 [56] References Cited 1 1 Dec. 24, 1974 Huber 164/54 X 2,294,169 8/1942 Francis et al. 164/53 2,489,280 11/1949 Flora et al. 164/332 X 2,932,863 4/1960 Ahlert 164/333 X 3,264,696 8/1966 Funk 164/54 3,396,776 8/1968 Funk 164/92 X 3,421,570 1/1969 Guntermann 164/53 Primary Examiner-Andrew R. Juhasz Assistant Examiner-Ronald J. Shore Attorney, Agent, or Firm-Ralph H. Dougherty [57] ABSTRACT Method and apparatus for containing the molten reaction products of a reactive cladding process, such as an aluminothermic reduction cladding process, in which a refractory-lined perimeter rests on either a sand bed or a steel base. A second perimeter surrounding the inner perimeter and forming an annular space therewith is also situated on either the sand bed or the steel base. Sand placed in the annular space between the two perimeters chills anymolten reaction products which escape the confines of the inner perimeter, preventing any spread of this material. UNITED STATES PATENTS 1,298,373 3/1919 Mott, Jr. et al ..164/333 16 Claims,2Drawing Figures /4 f 20 22 J v 26 26 r: 28 I. :-1\ 2 I APPARATUS FOR CONTAINING THE MOLTEN REACTION PRODUCTS OF A REACTIVE CLADDING PROCESS This invention relates to the cladding of metals and metal alloys to steel substrates by a reactive cladding process, such as the aluminothermic reduction (ATR) method, and more particularly to a method and apparatus for containing the reaction products of such a proce'ssl Procedures for cladding metal and metal alloys to steel substrates by the aluminothermic reduction of metal oxide ores are well known. However, the containment of super-heated reaction products is an especially severe problem when cladding large substrates. We have found that cast ceramic perimeters which are used satisfactorily on small pilot plant scale cladding operations are cumbersome, unreliable and totally inadequate when scaled up to commercial sized applicatrons.
The following prior art patents disclose molds for containing the molten ATR reaction products:
Ca enter ct a]. Patent Both of the Funk patents disclose molding sand for containing his molten reaction products. Burke requires packing to prevent leakage. Guntermann discloses no details of his mold 3. Carpenters box 12 has a refractory lining l4 and an interior steel lining against and extending to the bottom of substrate 10. We have found that such a mold or containment apparatus allows the molten reaction products to move downwardly along the sides and ends of the substrate, coating not only the sides and ends but also washing out the sand beneath the substrate and forming irregular thin coatings on the bottom of the substrate.
The substrate is ordinarily preheated to enhance adherence of the reaction product. Because prior art molds are complex and exact-fitting, they are placed prior to heating of the substrate. Preheating then raises the temperature of both the substrate and the containment apparatus.
We have invented an apparatus for containing the molten reaction products which includes a refractorylined inner perimeter situated around that portion of the substrate to be clad, and a larger outer perimeter placed around the inner perimeter and substrate, and forming an annular space with the inner perimeter.
This annular space is filled with sand. Unexpectedly, we have found that any molten reaction product, which escapes from the inner perimeter by passing beneath it, solidifies immediately upon coming in contact with the sand forming a barrier to the migration of any additional molten reaction product through the same passage. Our perimeters are emplaced after the substrate has been preheated, and thus are at a lower temperature than the substrate.
It is the primary object of the subject invention to provide an apparatus for containing the molten reaction products of aluminothermic reduction cladding processes on the surface to be clad.
It is another object of our invention to provide a means for halting the migration of any molten reaction product immediately upon its escape from the container apparatus.
It is also an object to provide such apparatus which is readily and inexpensively fabricated.
It is another object to provide such apparatus which is quickly and easily installed and removed.
It is another object to provide a reliable containment apparatus that does not require an exact fit.
It is also an object to provide a reusable containment apparatus.
It is a further object to provide a containment apparatus, installation of which is completed after the substrate is preheated.
It is a still further object to provide an apparatus for preventing carbon pickup by low carbon steels during the reactive cladding process.
These and other objects will become more readily apparent by reference to the following detailed specification and the appended drawing in which:
FIG. 1 is a cross-sectioned elevational view of a substrate to be clad, positioned on a steel base, and showing our invented apparatus for containing the molten reaction products.
FIG. 2 is a cross-sectioned elevational view similar to FIG. 1, of an alternative embodiment of our invented apparatus, which includes a sand bed rather than a steel base.
As shown in FIG. 1, a ferrous metal substrate (10 is preheated, if desired, then placed on a steel base (12). Inner refractory perimeter (14), which may be a bottomless steel box having upstanding sides (16) lined interiorly with graphite plates (18), is placed on the substrate around the portion of the substrate to be clad. Outer perimeter (20) is placed on base ('12) around the substrate (10) and the inner perimeter (l4), and forms, with the inner perimeter, an annular space (22), which is filled subsequently with sand (24). Lifting members (26) are attached to the perimeters-to facilitate their positioning and removal by overhead cranes. The sand provides a movable seal which can flow into any irregularities and fill in any gaps which may exist between the perimeter l4) and the substrate (10). The perimeters can be fabricated to any desired size or shape and still effect a reliable seal for the molten products (28) produced in the reactive cladding process.
In the alternative embodiment of FIG. 2, a cold or preheated ferrous metal substrate (40) rests in a sand bed (42) which has been leveled at line (43) even with the upper surface of the substrate. Outer perimeter (44), which may have a refractory lining (46) if desired, is positioned on the sand bed as shown, prior to leveling the sand. Inner refractory-lined perimeter (48) has interior dimensions identical with the dimension of the substrate (40). thus the perimeter (48) is resting on the sand bed (42) outside the substrate but in extremely close proximity thereto. The inner perimeter (48) forms an annular space (50) with the outer perim eter. This annular space is then filled with sand (52). A powdered exothermic reaction mixture, such as aluminothermic reduction charge (54), is placed on the substrate (40) inside the inner perimeter (44). Charge (54) may be covered by refractory plates (56), such as graphite, if desired, to contain the heat of reaction of the charge and force such heat into the substrate to enhance the adherence of the cladding material. A torch or flare can be inserted through hole (58) to initiate the ATR reaction. The plates (56) also prevent splashing during the reaction.
Wehave found that the assemblies need not be accurately fitted, i.c., it is unnecessary to machine the bottoms of the perimeters to establish an intimate contact between the perimeter and the base or bed on which it rests. It is also unnecessary to place luting material or caulking around the bottom of the perimeter to form a tight seal. Further, since neither perimeter is preheated along with the substrate, the molten reaction product tends to be chilled as it contacts the relatively cool perimeter.
We have also found that direct contact of the superheated reduced metal product from ATR reactions that take place in containment apparatus having thin graphite walls or thin graphite linings on metal walls resulted in carbon contamination that was unacceptably high for certain grades of stainless steels and thus limited the applicability of the process. Attempts to provide a barrier between the graphite walls and molten metal by coating the walls with refractory materials, such as zirconium silicate and zirconium oxide, were generally unsuccessful.
. We have discovered that increasing the thicknessof the graphite wall (18) (FIG. 1) dramatically lowers the carbon contamination of the reduced metal phase. During one series of experiments, it was established that increasing the wall thickness from 1 inch to 2 inches reduced the average carbon content of the metal phase by a factor of 3. The exact cause of this mechanism is unknown. The theory of this effect to which we subscribe, but do not wish to be held is as follows:
Immediately after the ATR reaction is completed, the reaction products are in the form of a molten slag phase containing small spheres of the liquid metal phase. Upon contacting the cold graphite wall (18) of our inner perimeter, the high-melting slag-metal phase instantly solidifies to form a thin layer of solid material or skull on the wall surface. If this skull remains intact on the graphite wall, it forms a natural barrier between the reduced metal phase and the graphite wall. However, during the ensuing time required for the bulk of the ATR products to solidify, much of the heat of the reaction is passed into the graphite wall, and the temperature of the wall surface rises precipitously. If this heat is not conducted into an adequate heat sink, the temperature of the skull-coated wall surface can rise to the point where the skull remelts permitting the direct contact of the molten metal with the graphite. Severe carbon contamination of the metal phase can thus result. However, when the graphite wall is sufficiently massive (greater than 2 inches in'thickness), the heat is transferred continuously into the bulk of the graphite and the skull temperature does not rise above its melting point. When the skull remains intact, molten metal cannot contact the graphite and carbon contamination is thereby minimized.
To obtain the lowest possible carbon contents, the contacting graphite wall should be as thick as practicable. Experiments indicate that minimum 2-inch thick graphite walls prevents carbon contamination of stainless steels'and other low-carbon steels from reaching unacceptable carbon levels. With only a moderate amount of'care, these perimeters can be reused many times, thus these perimeters are economically feasible for commercial cladding processes.
It can readily be seen from the foregoing that we have invented a method and apparatus for containing the molten reaction products of an aluminothermic reaction process, which apparatus will prevent material loss from the migration of such molten products onto surfaces from which their removal is time consuming and may be extremely difficult. We have also invented a method and apparatus which will prevent carbon pickup from a graphite-lined mold by low carbon and stainless steels during the reactive cladding process.
We claim:
1. Apparatus for containing the molten reaction products of a reactive cladding process, comprising:
a base,
a metal substrate resting on said base,
an outer perimeter shell of predetermined size and configuration resting on said base around said substrate, said shell being substantially larger than said substrate,
a refractory-lined inner perimeter shell of predetermined size and configuration resting on said substrate, enclosing exactly that portion of said substrate to be clad, and spaced from said outer perimeter,
said inner perimeter and said outer perimeter defining an annular space for containing an insulating material, and
insulating material in said space.
2. Apparatus according to claim 1 further comprising means connected to said perimeter shells for positioning said inner and outer perimeters.
3. Apparatus according to claim 2 wherein said positioning means are flanges fixed to said perimeter shells.
4. Apparatus according to claim 1 wherein said inner perimeter is lined with graphite.
5. Apparatus according to claim 1 wherein said insulating material is particulate matter.
6. Apparatus according to claim 5 wherein said particulate matter is sand.
7. Apparatus according to claim 1 wherein said base is metal.
8. Apparatus for preventing carbon contamination of low-carbon steels during a reactive cladding process comprising apparatus according to claim 4 wherein said graphite lining is at least 2 inches thick.
9. Apparatus according to claim 1 wherein the height of the refractory lining of said inner perimeter shell is less than the height of said shell.
10. Apparatus according to claim 1 further comprising a refractory cover comprising at least one refractory plate adapted to fit atop said refractory lining within said inner perimeter shell.
11. Apparatus'according to claim 10 wherein said refractory plate is graphite.
12. Apparatus according to claim 10 wherein said an inner perimeter comprising a metal shell interiorly lined with a refractory material, said perimeter having substantially the exact interior dimensions of said substrate, said perimeter being positioned on said leveled sand bed around said substrate,
an outer perimeter shell of predetermined size and configuration resting on said sand bed around said inner perimeter, said outer perimeter being substantially larger than said inner perimeter whereby said inner and outer perimeters form an annular thick.

Claims (16)

1. Apparatus for containing the molten reaction products of a reactive cladding process, comprising: a base, a metal substrate resting on said base, an outer perimeter shell of predetermined size and configuration resting on said base around said substrate, said shell being substantially larger than said substrate, a refractory-lined inner perimeter shell of predetermined size and configuration resting on said substrate, enclosing exactly that portion of said substrate to be clad, and spaced from said outer perimeter, said inner perimeter and said outer perimeter defining an annular space for containing an insulating material, and insulating material in said space.
2. Apparatus according to claim 1 further comprising means connected to said perimeter shells for positioning said inner and outer perimeters.
3. Apparatus according to claim 2 wherein said positioning means are flanges fixed to said perimeter shells.
4. Apparatus according to claim 1 wherein said inner perimeter is lined with graphite.
5. Apparatus according to claim 1 wherein said insulating material is particulate matter.
6. Apparatus according to claim 5 wherein said particulate matter is sand.
7. Apparatus according to claim 1 wherein said base is metal.
8. Apparatus for preventing carbon contamination of low-carbon steels during a reactive cladding process comprising apparatus according to claim 4 wherein said graphite lining is at least 2 inches thick.
9. Apparatus according to claim 1 wherein the height of the refractory lining of said inner perimeter shell is less than the height of said shell.
10. Apparatus according to claim 1 further comprising a refractory cover comprising at least one refractory plate adapted to fit atop said refractory lining within said inner perimeter shell.
11. Apparatus according to claim 10 wherein said refractory plate is graphite.
12. Apparatus according to claim 10 wherein said cover is provided with an access hole through which the reactive cladding process is initiated.
13. Apparatus according to claim 1 wherein said outer perimeter is interiorly lined with refractory material.
14. Apparatus for containing the molten reaction products of a reactive cladding process comprising: a sand bed, a metal substrate resting on said sand bed, the top of said substrate being at the same level as the level of the sand, an inner perimeter comprising a metal shell interiorly lined with a refractory material, said perimeter having substantially the exact interior dimensions of said substrate, said perimeter being positioned on said leveled sand bed around said substrate, an outer perimeter shell of predetermined size and configuration resting on said sand bed around said inner perimeter, said outer perimeter being substantially larger than said inner perimeter whereby said inner and outer perimeters form an annular space therebetween, and insulating material in said space.
15. Apparatus according to claim 14 wherein said refractory material is graphite.
16. Apparatus for preventing carbon contamination of low carbon and stainless steels during a reactive cladding process comprising apparatus according to claim 15 wherein said graphite lining is at least 2 inches thick.
US00332869A 1973-02-15 1973-02-15 Apparatus for containing the molten reaction products of a reactive cladding process Expired - Lifetime US3856076A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00332869A US3856076A (en) 1973-02-15 1973-02-15 Apparatus for containing the molten reaction products of a reactive cladding process
US05/485,193 US3933191A (en) 1973-02-15 1974-07-02 Method for containing the molten reaction products of a reactive cladding process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00332869A US3856076A (en) 1973-02-15 1973-02-15 Apparatus for containing the molten reaction products of a reactive cladding process

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/485,193 Division US3933191A (en) 1973-02-15 1974-07-02 Method for containing the molten reaction products of a reactive cladding process

Publications (1)

Publication Number Publication Date
US3856076A true US3856076A (en) 1974-12-24

Family

ID=23300212

Family Applications (1)

Application Number Title Priority Date Filing Date
US00332869A Expired - Lifetime US3856076A (en) 1973-02-15 1973-02-15 Apparatus for containing the molten reaction products of a reactive cladding process

Country Status (1)

Country Link
US (1) US3856076A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942578A (en) * 1973-02-15 1976-03-09 United States Steel Corporation Method of repairing large castings
US3946793A (en) * 1973-02-15 1976-03-30 United States Steel Corporation Method of forming a high-temperature abrasion-resistant coating on a ferrous metal substrate
US4005742A (en) * 1974-10-25 1977-02-01 United States Steel Corporation Method of restoring ingot mold stools and closed-bottom ingot mold
FR2344359A1 (en) * 1976-03-15 1977-10-14 Uss Eng & Consult Repairing jaw of ingot handling tongs - using exothermic mixt. in refractory mould ignited to run molten metal onto point for building up
USRE29646E (en) * 1976-03-08 1978-05-30 United States Steel Corporation Method or restoring ingot mold stools and closed-bottom ingot mold
US4475581A (en) * 1981-01-31 1984-10-09 Klockner-Werke Ag Method and apparatus for fabricating glad ingots
US5215139A (en) * 1991-11-08 1993-06-01 Orgo-Thermit Inc. Method and mold for aluminothermic welding of rails

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1298373A (en) * 1918-09-25 1919-03-25 Abram Cox Stove Company Mold for casting shells.
US1312401A (en) * 1919-08-05 Apparatus for bonding rails and the like
US2294169A (en) * 1941-03-25 1942-08-25 Charles B Francis Casting iron and steel
US2489280A (en) * 1945-06-30 1949-11-29 Hastings Mfg Co Mold and liner for castings
US2932863A (en) * 1956-08-15 1960-04-19 Electro Thermit G M B H Method and apparatus for welding
US3264696A (en) * 1962-06-13 1966-08-09 Charles F Funk Method of cladding metal surfaces
US3396776A (en) * 1965-10-20 1968-08-13 Jennings B Thompson Method of cladding metal
US3421570A (en) * 1967-02-20 1969-01-14 Elektro Thermit Gmbh Aluminothermic welding process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1312401A (en) * 1919-08-05 Apparatus for bonding rails and the like
US1298373A (en) * 1918-09-25 1919-03-25 Abram Cox Stove Company Mold for casting shells.
US2294169A (en) * 1941-03-25 1942-08-25 Charles B Francis Casting iron and steel
US2489280A (en) * 1945-06-30 1949-11-29 Hastings Mfg Co Mold and liner for castings
US2932863A (en) * 1956-08-15 1960-04-19 Electro Thermit G M B H Method and apparatus for welding
US3264696A (en) * 1962-06-13 1966-08-09 Charles F Funk Method of cladding metal surfaces
US3396776A (en) * 1965-10-20 1968-08-13 Jennings B Thompson Method of cladding metal
US3421570A (en) * 1967-02-20 1969-01-14 Elektro Thermit Gmbh Aluminothermic welding process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942578A (en) * 1973-02-15 1976-03-09 United States Steel Corporation Method of repairing large castings
US3946793A (en) * 1973-02-15 1976-03-30 United States Steel Corporation Method of forming a high-temperature abrasion-resistant coating on a ferrous metal substrate
US4005742A (en) * 1974-10-25 1977-02-01 United States Steel Corporation Method of restoring ingot mold stools and closed-bottom ingot mold
USRE29646E (en) * 1976-03-08 1978-05-30 United States Steel Corporation Method or restoring ingot mold stools and closed-bottom ingot mold
FR2344359A1 (en) * 1976-03-15 1977-10-14 Uss Eng & Consult Repairing jaw of ingot handling tongs - using exothermic mixt. in refractory mould ignited to run molten metal onto point for building up
US4475581A (en) * 1981-01-31 1984-10-09 Klockner-Werke Ag Method and apparatus for fabricating glad ingots
US5215139A (en) * 1991-11-08 1993-06-01 Orgo-Thermit Inc. Method and mold for aluminothermic welding of rails

Similar Documents

Publication Publication Date Title
US2369233A (en) Method and apparatus for producing metal
US3856076A (en) Apparatus for containing the molten reaction products of a reactive cladding process
US3933191A (en) Method for containing the molten reaction products of a reactive cladding process
US2060133A (en) Process for treating metals
US3206301A (en) Process for the continuous treatment of steel
US4157110A (en) Method of producing ingots of unalloyed and alloyed steels
JPH03168589A (en) Method and apparatus for continuous discharging molten metal and slag
US3236636A (en) Method of treating molten metal
US2787537A (en) Method of producing metal
HU217925B (en) Reaction cup for aluminothermic rail welding device
US2358171A (en) Ingot mold
US3380509A (en) Method of pressure treatment of metallic melts, especially steel melts
US4202401A (en) Apparatus for electroslag casting of heavy ingots
US4936553A (en) Method for retaining slag during the discharge of molten metal from a vessel
US1058158A (en) Treatment of slag.
US3477682A (en) Ingot mold with hot top and refractory lining for inducing progressive axial solidification
US3322390A (en) Ingot mold for effervescent steel
US3063827A (en) Slag-lined furnace tapping pots
US2913785A (en) Casting of ingots
US2870006A (en) Process for melting metals
GB1323077A (en) Method and apparatus for the production of bottom poured ingots
CN107633890A (en) The external-cooling type that lead is filled into irradiated fuel store container fills lead system and method
SU710766A1 (en) Steel casting method
US517197A (en) Casting crucible-steel ingots
RU2225775C2 (en) Chill mold

Legal Events

Date Code Title Description
AS Assignment

Owner name: USX CORPORATION, A CORP. OF DE, STATELESS

Free format text: MERGER;ASSIGNOR:UNITED STATES STEEL CORPORATION (MERGED INTO);REEL/FRAME:005060/0960

Effective date: 19880112