US3855495A - Flash tube with insulator end cap - Google Patents

Flash tube with insulator end cap Download PDF

Info

Publication number
US3855495A
US3855495A US00412814A US41281473A US3855495A US 3855495 A US3855495 A US 3855495A US 00412814 A US00412814 A US 00412814A US 41281473 A US41281473 A US 41281473A US 3855495 A US3855495 A US 3855495A
Authority
US
United States
Prior art keywords
envelope
terminal portion
secured
shoulder
flash tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00412814A
Inventor
C Kokinos
J Pappas
R Cosco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTE Sylvania Inc
Original Assignee
GTE Sylvania Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GTE Sylvania Inc filed Critical GTE Sylvania Inc
Priority to US00412814A priority Critical patent/US3855495A/en
Application granted granted Critical
Publication of US3855495A publication Critical patent/US3855495A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/50Means forming part of the tube or lamps for the purpose of providing electrical connection to it
    • H01J5/54Means forming part of the tube or lamps for the purpose of providing electrical connection to it supported by a separate part, e.g. base
    • H01J5/56Shape of the separate part

Definitions

  • Each end cap includes a shoulder portion comprising a tubular piece of insulating material coaxially secured about an end of the glass envelope by an'insulating adhesive, and a tubular metal terminal portion secured to and coaxially projecting from the insulating shoulder and electrically connected to the electrode at that end of the envelope through a lead-in conductor.
  • Flash tubes generally comprise two spaced apart electrodes within a sealed glass envelope having a rare gas fill, typically xenon, at a sub-atmospheric pressure. Such lamps are connected across a large capacitor charged to a substantial potential, which is, however, insufficient to ionize the xenon fill gas. Upon application of an additional pulse of sufficient voltage, the xenon is ionized, and an electric arc is formed between the two electrodes, discharging the large capacitor through the flash tube, which emits a burst of intense light, usually of short duration. In some cases the pulse voltage is applied between an external trigger wire wrapped around the envelope and the electrodes. However, in other cases an external wire is not flesible since it may result in undesirable arcing between the trigger wire and a proximate lamp reflector or else the high potential applied to the external trigger wire might be hazardous to operating personnel.
  • a rare gas fill typically xenon
  • the lamp may be internally triggered by applying the pulse voltage directly across the lamp electrodes; this is also referred to as injection triggering.
  • the voltage required is about 30 to 50 percent higher than that required to trigger the same lamp with an external trigger wire. This poses no particular problem in itself, since the lamp operating circuit can be designed to supply sufficient pulse voltage to the lamp.
  • a lower trigger voltage will shift the starting characteristic curve (a plot of triggervoltage vs. anode, or supply, voltage) to a lower level and thereby enlarge the reliable operating region.
  • An increased fill pressure results in a brighter light output during flashing and, provides improved light output maintenance, as higher gas pressures enhance conduction of heat from the electrodes to keep them cooler during operation.
  • a higher fill pressure also reduces peak current in the flash tube to thereby provide a longer operating life.
  • Advantages of economy are also provided, as a reduction in the energy and peak voltage required to ignite the flash tube will mean less expensive regulating circuits in the power supply design.
  • Each end cap is electrically connected to the electrodes at its end of the lamp by means of a lead-in conductor and includes a shoulder portion which coaxially fits about the end of the glass envelope and is secured thereto by an insulating adhesive.
  • the metal shoulder of the end cap imparts additional strength to the flash tube structure so that it may be snapped into and removed from its fixture without damage.
  • the metal end cap and particularly the metal shoulder thereof, has an inhibiting effect on lamp starting.
  • the electrical field gradient about the electrode being pulsed plays a significant role in the ignition of a flash tube by means of injection triggering. It appears that any conductors in the vicinity of the electrode, even the metal of the end cap, disturbs the electric field about the electrode by causing a distribution of the field which weakens it and, thus, inhibits lamp starting. This effect is generally not recognizable due to the wash out effect of ground planes typically associated with many flash tube applications. Further, the effect would not ordinarily be anticipated as the end cap is theoretically not a ground plane.
  • FIG. 1 illustrates an injection-triggered flash tube in accordance with the invention
  • FIG. 2 is an enlarged sectional view of an end cap region of the flash tube of FIG. 1 according to one embodiment of the invention.
  • FIG. 3 is a simplified enlarged sectional view of an end cap region of the flash tube of FIG. 1 according to an alternative embodiment of the invention.
  • the flash tube comprises an hermetically sealed, light transmitting envelope 2 formed of an elongated piece of hard glass tubing (e.g., Corning No. 7740 glass) and having a cathode electrode 4 sealed within one end of the envelope and an anode electrode 6 sealed within the other end.
  • the envelope is filled with a rare gas, such as xenon, at a subatmospheric pressure (e.g., 35 Torr) and is constricted to define an exhaust tip 8.
  • an end cap 10 which in accordance with the invention comprises a shoulder portion 12 of insulating material and a metal terminal portion 14 which is electrically connected to the electrode at that end of the lamp.
  • the shoulder portion 12 is formed of a substantially tubular piece of insulating material (e.g., nylon, Teflon, ceramic, a glass filled epoxy, etc.) which is coaxially disposed about the exterior of a respective end of the glass envelope 2 and secured thereto by an insulating adhesive 16 (e.g.,
  • a hole 18 may be provided in the side of the tubular shoulder 12 to facilitate filling the adhesive into the void between the shoulder and envelope.
  • Attachment of the metal terminal portion 14 to the insulating shoulder is facilitated by forming the insulating material to further include a coaxially extending tubular portion 20 of substantially smaller diameter than the shoulder and having an axial bore 22 through which passes the respective lead-in conductor 24.
  • the exterior terminal portion 14 is formed of substantially tubular metal conductor material (e. g., nickel plated brass) and contains a cylindrical cavity 26 within which the extended tubular portion 20 of the insulating material is fitted.
  • the terminal 14 also includes an axial bore 28 which is aligned with bore 22 in the insulating material and through which passes the lead-in conductor 24.
  • Conductor 24 is electrically secured to terminal portion 14, such as by soldering or brazing 30, at the end of the bore 28.
  • the metal terminal portion 14 is electrically connected to its respective electrode 4 (or 6) by means of the lead-in conductor 24, which is sealed through the respective end of glass envelope 2 and connected at one end to the electrode and at the other end to the metal terminal 14.
  • Terminal 14 may be mechanically secured to the insulating shoulder by a number of methods, and in FIG. 2 this is accomplished by a plurality of crimp indentations 32 disposed symmetrically about terminal portion 14 and engaging the extended tubular portion 20 of the insulating material.
  • Shoulder 12 is dimensioned to provide the desired handling strength, while terminal 14 is dimensioned to mate with the clip-in socket on the corresponding lamp fixture.
  • the length of the horizontal portion of the tubular glass envelope in FIG. 1 is approximately 21 inches; the length of each of the two vertical sections of the envelope is about 7.5 inches; the axial length of shoulder 12 is about 0.320 inch; the diameter of the shoulder is about 0.460 inch; and the length and diameter of terminal 14 are 0.500 inch and 0.280 inch, respectively.
  • the lamp is filled with xenon at 35' Torr pressure; the shoulder 12 is formed of nylon, and terminal 14 is a nickel plated brass.
  • the operating voltage range is from 2,000 to 3,500 volts DC; this has also been referred to as the anode or supply voltage.
  • the minimum peak trigger voltage in this injection mode is about 10,000 volts DC (open circuit), with the trigger supply primary voltage being about 400 volts DC. This compares with a trigger voltage of 21,000 volts DC, with a trigger primary voltage of 850 volts DC, when the same type lamp is operated with the end caps being of the conventional metalshouldered type. Test data also indicates that the trigger primary voltage for flash tubes employing metalshouldered end caps can be reduced by increasing the distance between the electrode tip and the metal shoulder; however, maximum reduction of the inhibiting effects upon flash tube ignition caused by the end cap is achieved by use of the non-condutive shoulder.
  • FIG. 3 illustrates an alternative embodiment of the end cap wherein the metal terminal portion 34 includes a flared rim 36 at one end, and the corresponding insulating shoulder portion 38 contains an internal coaxial recess 40 within which the flared rim 36 is seated and secured, e.g., by an adhesive cement 42. Only the metal terminal portion 34 contains a bore 28 for accommodating lead-in wire 24, which is brazed to the terminal at junction 30 at the outer end of the bore.
  • An injection-triggered flash tube comprising: an elongated, light-transmitting envelope which is hermetically sealed; a rare gas in said envelope; a pair of electrodes in said envelope, one disposed at each end thereof; a respective lead-in conductor sealed through each end of said envelope and connected to the electrode thereat; and an end cap at each end of said envelope, each of said end caps having a shoulder portion comprising a substantially tubular piece of insulating material coaxially disposed about and secured to the exterior of a respective end of said envelope, and an exterior terminal portion comprising a substantially tubular metal conductor secured to and coaxially projecting from said insulating shoulder, the piece of insulating material from which said shoulder is formed further including a coaxially extending tubular portion of substantially smaller diameter than said shoulder and having an axial bore through which said respective lead-in conductor passes, said metal terminal portion containing a cylindrical cavity within which the extended tubular portion of said insulating material is fitted and secured, and said terminal portion having an axial bore aligned with the bore in
  • An injection-triggered flash tube comprising: an elongated, light-transmitting envelope which is hermetically sealed; a rare gas in said envelope; a pair of electrodes in said envelope, one disposed at each end thereof; a respective lead-in conductor sealed through each end of said envelope and connected to the electrode thereat; and an end cap at each end of said envelope, each of said end caps having a shoulder portion comprising a substantially tubular piece of insulating material coaxially disposed about and secured to the exterior of a respective end of said envelope, and an exteriorterminal portion comprising a substantially tubular metal conductor secured to and coaxially projecting from said insulating shoulder, said metal terminal portion having a flared rim at one end, said insulating shoulder containing an internal coaxial recess within terminal portion, whereby said terminal portion is elecwhlch the flared of Pomon fitted trically connected to the electrode disposed within said and secured, and said terminal portion containing an axial bore through which said respective lead-in conductor passes and is electrically secured

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

An injection-triggered xenon flash tube having an elongated glass envelope with an electrode at each end and a pair of end caps. Each end cap includes a shoulder portion comprising a tubular piece of insulating material coaxially secured about an end of the glass envelope by an insulating adhesive, and a tubular metal terminal portion secured to and coaxially projecting from the insulating shoulder and electrically connected to the electrode at that end of the envelope through a lead-in conductor.

Description

United States Patent [191 Pappas et a1.
[ FLASH TUBE WITH INSULATOR END CAP [75] Inventors: John A. Pappas, Winthrop; Robert J. Cosco, Amesbury; Charles C. Kokinos, Lynn, all of Mass.
[73] Assignee: GTE Sylvania Incorporated,
Danvers, Mass.
22 Filed: Nov. 5, 1973 21 Appl. No.: 412,814
[52] US. Cl 313/318, 313/220, 313/331 [51] Int. Cl. HOlj 5/56 [58] Field of Search 313/217, 218, 219, 268, 313/311, 331, 334, 220, 318
[56] References Cited UNITED STATES PATENTS 2,657,325 10/1953 Homer et a1 313/218 X [111 3,855,495 [451 Dec. 17, 1974 3,363,133 1/1968 Harris et al 313/218 X Primary ExaminerPaul L. Gensler Attorney, Agent, or Firm-Edward J. Coleman [5 7] ABSTRACT An injection-triggered xenon flash tube having an elongated glass envelope with an electrode at each end and a pair of end caps. Each end cap includes a shoulder portion comprising a tubular piece of insulating material coaxially secured about an end of the glass envelope by an'insulating adhesive, and a tubular metal terminal portion secured to and coaxially projecting from the insulating shoulder and electrically connected to the electrode at that end of the envelope through a lead-in conductor.
6 Claims, 3 Drawing Figures FLASH TUBE WITH INSULATOR END CAP BACKGROUND OF THE INVENTION This invention relates generally to electric discharge lamps and, more particularly, to injection-triggered flash tubes having an elongated envelope, such as those employed in photocopying machines.
Flash tubes generally comprise two spaced apart electrodes within a sealed glass envelope having a rare gas fill, typically xenon, at a sub-atmospheric pressure. Such lamps are connected across a large capacitor charged to a substantial potential, which is, however, insufficient to ionize the xenon fill gas. Upon application of an additional pulse of sufficient voltage, the xenon is ionized, and an electric arc is formed between the two electrodes, discharging the large capacitor through the flash tube, which emits a burst of intense light, usually of short duration. In some cases the pulse voltage is applied between an external trigger wire wrapped around the envelope and the electrodes. However, in other cases an external wire is not flesible since it may result in undesirable arcing between the trigger wire and a proximate lamp reflector or else the high potential applied to the external trigger wire might be hazardous to operating personnel.
In those cases, the lamp may be internally triggered by applying the pulse voltage directly across the lamp electrodes; this is also referred to as injection triggering. Usually the voltage required is about 30 to 50 percent higher than that required to trigger the same lamp with an external trigger wire. This poses no particular problem in itself, since the lamp operating circuit can be designed to supply sufficient pulse voltage to the lamp.
With respect to the efficiency and reliability of lamp operation, however, it is desirable to substantially reduce the trigger voltage required to strike an arc in an injection-triggered flash tube. For example, a lower trigger voltage will shift the starting characteristic curve (a plot of triggervoltage vs. anode, or supply, voltage) to a lower level and thereby enlarge the reliable operating region. This permits the fill gas pressure to be increased (which shifts the characteristic curve upward) and yet still retains reliable starting characteristics. An increased fill pressure results in a brighter light output during flashing and, provides improved light output maintenance, as higher gas pressures enhance conduction of heat from the electrodes to keep them cooler during operation. A higher fill pressure also reduces peak current in the flash tube to thereby provide a longer operating life. Advantages of economy are also provided, as a reduction in the energy and peak voltage required to ignite the flash tube will mean less expensive regulating circuits in the power supply design.
SUMMARY OF THE INVENTION I Accordingly, it is an object of the present invention to provide an improved injection-triggered flash tube design.
It is a particular object to provide an injectiontriggered flash tube with improved starting characteristics.
It has been common practice to provide metal end caps as the mounting terminals at each end of the elongated tubular glass envelope of a flash tube. Each end cap is electrically connected to the electrodes at its end of the lamp by means of a lead-in conductor and includes a shoulder portion which coaxially fits about the end of the glass envelope and is secured thereto by an insulating adhesive. The metal shoulder of the end cap imparts additional strength to the flash tube structure so that it may be snapped into and removed from its fixture without damage.
Quite unexpectedly, we have discovered that the metal end cap, and particularly the metal shoulder thereof, has an inhibiting effect on lamp starting. We believe that the electrical field gradient about the electrode being pulsed plays a significant role in the ignition of a flash tube by means of injection triggering. It appears that any conductors in the vicinity of the electrode, even the metal of the end cap, disturbs the electric field about the electrode by causing a distribution of the field which weakens it and, thus, inhibits lamp starting. This effect is generally not recognizable due to the wash out effect of ground planes typically associated with many flash tube applications. Further, the effect would not ordinarily be anticipated as the end cap is theoretically not a ground plane.
In accordance with the present invention, therefore, we have significantly reduced the starting voltage (trigger pulse) requirements of an injection triggered flash tube by employing an end cap having a shoulder portion which is completely formed of an insulating material. In this manner, the strengthening characteristics of a shouldered base are maintained while reducing the inhibiting effects on lamp starting caused by the proximity of conductive metal in the end cap.
BRIEF DESCRIPTION OF THE DRAWINGS This invention will be more fully described hereinafter in conjunction with the accompanying drawings, in which:
FIG. 1 illustrates an injection-triggered flash tube in accordance with the invention;
FIG. 2 is an enlarged sectional view of an end cap region of the flash tube of FIG. 1 according to one embodiment of the invention; and
FIG. 3 is a simplified enlarged sectional view of an end cap region of the flash tube of FIG. 1 according to an alternative embodiment of the invention.
DESCRIPTION OF PREFERRED EMBODIMENT Referring to FIG. 1, the flash tube comprises an hermetically sealed, light transmitting envelope 2 formed of an elongated piece of hard glass tubing (e.g., Corning No. 7740 glass) and having a cathode electrode 4 sealed within one end of the envelope and an anode electrode 6 sealed within the other end. The envelope is filled with a rare gas, such as xenon, at a subatmospheric pressure (e.g., 35 Torr) and is constricted to define an exhaust tip 8. At each end of the envelope is secured an end cap 10, which in accordance with the invention comprises a shoulder portion 12 of insulating material and a metal terminal portion 14 which is electrically connected to the electrode at that end of the lamp.
A preferred embodiment of an end cap according to the invention is best shown in FIG. 2. The shoulder portion 12 is formed of a substantially tubular piece of insulating material (e.g., nylon, Teflon, ceramic, a glass filled epoxy, etc.) which is coaxially disposed about the exterior of a respective end of the glass envelope 2 and secured thereto by an insulating adhesive 16 (e.g.,
Sauereisen, Silastic, etc.). A hole 18 may be provided in the side of the tubular shoulder 12 to facilitate filling the adhesive into the void between the shoulder and envelope.
Attachment of the metal terminal portion 14 to the insulating shoulder is facilitated by forming the insulating material to further include a coaxially extending tubular portion 20 of substantially smaller diameter than the shoulder and having an axial bore 22 through which passes the respective lead-in conductor 24.
The exterior terminal portion 14 is formed of substantially tubular metal conductor material (e. g., nickel plated brass) and contains a cylindrical cavity 26 within which the extended tubular portion 20 of the insulating material is fitted. The terminal 14 also includes an axial bore 28 which is aligned with bore 22 in the insulating material and through which passes the lead-in conductor 24. Conductor 24 is electrically secured to terminal portion 14, such as by soldering or brazing 30, at the end of the bore 28. In this manner, the metal terminal portion 14 is electrically connected to its respective electrode 4 (or 6) by means of the lead-in conductor 24, which is sealed through the respective end of glass envelope 2 and connected at one end to the electrode and at the other end to the metal terminal 14.
Terminal 14 may be mechanically secured to the insulating shoulder by a number of methods, and in FIG. 2 this is accomplished by a plurality of crimp indentations 32 disposed symmetrically about terminal portion 14 and engaging the extended tubular portion 20 of the insulating material.
Shoulder 12 is dimensioned to provide the desired handling strength, while terminal 14 is dimensioned to mate with the clip-in socket on the corresponding lamp fixture.
According to one specific implementation of a flash tube according to the invention, the length of the horizontal portion of the tubular glass envelope in FIG. 1 is approximately 21 inches; the length of each of the two vertical sections of the envelope is about 7.5 inches; the axial length of shoulder 12 is about 0.320 inch; the diameter of the shoulder is about 0.460 inch; and the length and diameter of terminal 14 are 0.500 inch and 0.280 inch, respectively. The lamp is filled with xenon at 35' Torr pressure; the shoulder 12 is formed of nylon, and terminal 14 is a nickel plated brass. The operating voltage range is from 2,000 to 3,500 volts DC; this has also been referred to as the anode or supply voltage. The minimum peak trigger voltage in this injection mode is about 10,000 volts DC (open circuit), with the trigger supply primary voltage being about 400 volts DC. This compares with a trigger voltage of 21,000 volts DC, with a trigger primary voltage of 850 volts DC, when the same type lamp is operated with the end caps being of the conventional metalshouldered type. Test data also indicates that the trigger primary voltage for flash tubes employing metalshouldered end caps can be reduced by increasing the distance between the electrode tip and the metal shoulder; however, maximum reduction of the inhibiting effects upon flash tube ignition caused by the end cap is achieved by use of the non-condutive shoulder.
FIG. 3 illustrates an alternative embodiment of the end cap wherein the metal terminal portion 34 includes a flared rim 36 at one end, and the corresponding insulating shoulder portion 38 contains an internal coaxial recess 40 within which the flared rim 36 is seated and secured, e.g., by an adhesive cement 42. Only the metal terminal portion 34 contains a bore 28 for accommodating lead-in wire 24, which is brazed to the terminal at junction 30 at the outer end of the bore.
Hence, although the invention has been described with respect to a specific embodiment, it will be appreciated that modifications and changes may be made by those skilled in the art without departing from the true spirit and scope of What we claim is: invention.
1. An injection-triggered flash tube comprising: an elongated, light-transmitting envelope which is hermetically sealed; a rare gas in said envelope; a pair of electrodes in said envelope, one disposed at each end thereof; a respective lead-in conductor sealed through each end of said envelope and connected to the electrode thereat; and an end cap at each end of said envelope, each of said end caps having a shoulder portion comprising a substantially tubular piece of insulating material coaxially disposed about and secured to the exterior of a respective end of said envelope, and an exterior terminal portion comprising a substantially tubular metal conductor secured to and coaxially projecting from said insulating shoulder, the piece of insulating material from which said shoulder is formed further including a coaxially extending tubular portion of substantially smaller diameter than said shoulder and having an axial bore through which said respective lead-in conductor passes, said metal terminal portion containing a cylindrical cavity within which the extended tubular portion of said insulating material is fitted and secured, and said terminal portion having an axial bore aligned with the bore in the extended tubular portion of said insulating material and through which said respective lead-in conductor passes and is electrically secured to said metal tenninal portion, whereby said terminal portion is electrically connected to the electrode disposed within said respective end of the envelope.
2. A flash tube according to claim 1 wherein said insulating shoulder portion of each end cap is secured to the exterior of an end of said envelope by an insulating adhesive.
3. A flash tube according to claim 1 wherein said respective lead-in conductor is electrically secured to said metal terminal portion at the outer end of said bore, and said terminal portion is mechanically secured to the extended tubular portion of said insulating material by crimp indentations about said terminal portion.
4. A flash tube according to claim 1 wherein said rare gas is xenon.
5. A flash tube according to claim 4 wherein said envelope is formed of glass tubing.
6. An injection-triggered flash tube comprising: an elongated, light-transmitting envelope which is hermetically sealed; a rare gas in said envelope; a pair of electrodes in said envelope, one disposed at each end thereof; a respective lead-in conductor sealed through each end of said envelope and connected to the electrode thereat; and an end cap at each end of said envelope, each of said end caps having a shoulder portion comprising a substantially tubular piece of insulating material coaxially disposed about and secured to the exterior of a respective end of said envelope, and an exteriorterminal portion comprising a substantially tubular metal conductor secured to and coaxially projecting from said insulating shoulder, said metal terminal portion having a flared rim at one end, said insulating shoulder containing an internal coaxial recess within terminal portion, whereby said terminal portion is elecwhlch the flared of Pomon fitted trically connected to the electrode disposed within said and secured, and said terminal portion containing an axial bore through which said respective lead-in conductor passes and is electrically secured to said metal 5 respective end of the envelope.

Claims (6)

1. An injection-triggered flash tube comprising: an elongated, light-transmitting envelope which is hermetically sealed; a rare gas in said envelope; a pair of electrodes in said envelope, one disposed at each end thereof; a respective lead-in conductor sealed through each end of said envelope and connected to the Electrode thereat; and an end cap at each end of said envelope, each of said end caps having a shoulder portion comprising a substantially tubular piece of insulating material coaxially disposed about and secured to the exterior of a respective end of said envelope, and an exterior terminal portion comprising a substantially tubular metal conductor secured to and coaxially projecting from said insulating shoulder, the piece of insulating material from which said shoulder is formed further including a coaxially extending tubular portion of substantially smaller diameter than said shoulder and having an axial bore through which said respective lead-in conductor passes, said metal terminal portion containing a cylindrical cavity within which the extended tubular portion of said insulating material is fitted and secured, and said terminal portion having an axial bore aligned with the bore in the extended tubular portion of said insulating material and through which said respective lead-in conductor passes and is electrically secured to said metal terminal portion, whereby said terminal portion is electrically connected to the electrode disposed within said respective end of the envelope.
2. A flash tube according to claim 1 wherein said insulating shoulder portion of each end cap is secured to the exterior of an end of said envelope by an insulating adhesive.
3. A flash tube according to claim 1 wherein said respective lead-in conductor is electrically secured to said metal terminal portion at the outer end of said bore, and said terminal portion is mechanically secured to the extended tubular portion of said insulating material by crimp indentations about said terminal portion.
4. A flash tube according to claim 1 wherein said rare gas is xenon.
5. A flash tube according to claim 4 wherein said envelope is formed of glass tubing.
6. An injection-triggered flash tube comprising: an elongated, light-transmitting envelope which is hermetically sealed; a rare gas in said envelope; a pair of electrodes in said envelope, one disposed at each end thereof; a respective lead-in conductor sealed through each end of said envelope and connected to the electrode thereat; and an end cap at each end of said envelope, each of said end caps having a shoulder portion comprising a substantially tubular piece of insulating material coaxially disposed about and secured to the exterior of a respective end of said envelope, and an exterior terminal portion comprising a substantially tubular metal conductor secured to and coaxially projecting from said insulating shoulder, said metal terminal portion having a flared rim at one end, said insulating shoulder containing an internal coaxial recess within which the flared rim of said terminal portion is fitted and secured, and said terminal portion containing an axial bore through which said respective lead-in conductor passes and is electrically secured to said metal terminal portion, whereby said terminal portion is electrically connected to the electrode disposed within said respective end of the envelope.
US00412814A 1973-11-05 1973-11-05 Flash tube with insulator end cap Expired - Lifetime US3855495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00412814A US3855495A (en) 1973-11-05 1973-11-05 Flash tube with insulator end cap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00412814A US3855495A (en) 1973-11-05 1973-11-05 Flash tube with insulator end cap

Publications (1)

Publication Number Publication Date
US3855495A true US3855495A (en) 1974-12-17

Family

ID=23634603

Family Applications (1)

Application Number Title Priority Date Filing Date
US00412814A Expired - Lifetime US3855495A (en) 1973-11-05 1973-11-05 Flash tube with insulator end cap

Country Status (1)

Country Link
US (1) US3855495A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2625554A1 (en) * 1975-06-06 1976-12-30 Gte Sylvania Inc FLASH TUBE TYPE ARC DISCHARGE LAMP
US4004189A (en) * 1974-12-02 1977-01-18 Gte Sylvania Incorporated Three-electrode short duration flash tube
US4052635A (en) * 1975-09-29 1977-10-04 U.S. Philips Corporation Electric discharge lamp
US4102558A (en) * 1977-08-29 1978-07-25 Developmental Sciences, Inc. Non-shocking pin for fluorescent type tubes
US4130774A (en) * 1977-11-14 1978-12-19 Gte Sylvania Incorporated Flash tube having improved end cap construction
US4295075A (en) * 1979-12-14 1981-10-13 Gte Products Corporation Arc discharge lamp having ceramic arc tube
US4714858A (en) * 1984-08-17 1987-12-22 U.S. Philips Corporation Capped electric lamp comprising a metal sleeve having a corner depression to engage an associated recess in an insulator body
US4952838A (en) * 1989-01-11 1990-08-28 Precision Lamp, Inc. Surface mount miniature incandescent lamp assembly
US4970428A (en) * 1988-12-26 1990-11-13 Kabushiki Kaisha Hybec Double-ended miniature lamp
EP0762459A2 (en) * 1995-08-30 1997-03-12 Ushiodenki Kabushiki Kaisha Lamp device
US5757110A (en) * 1994-12-06 1998-05-26 Koito Manufacturing Co., Ltd. Electrical discharge lamp with ultraviolet filtering globe having rear end part supported insulating base
US5785543A (en) * 1995-12-04 1998-07-28 Litton Systems, Inc. High voltage flashlamp connector method and apparatus
US20060193131A1 (en) * 2005-02-28 2006-08-31 Mcgrath William R Circuit devices which include light emitting diodes, assemblies which include such circuit devices, and methods for directly replacing fluorescent tubes
US20070248347A1 (en) * 2006-04-21 2007-10-25 Feng Chang Power connection device for a flash tube and a camera module
US20140153231A1 (en) * 2012-12-03 2014-06-05 Osram Gmbh Lighting device including interconnected parts
US20150098015A1 (en) * 2013-10-04 2015-04-09 Canon Kabushiki Kaisha Light emitting device having function for protection against static electricity, and image pickup apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2657325A (en) * 1950-12-23 1953-10-27 Sylvania Electric Prod Electrode for electric discharge lamps
US3363133A (en) * 1966-02-28 1968-01-09 Sylvania Electric Prod Electric discharge device having polycrystalline alumina end caps

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2657325A (en) * 1950-12-23 1953-10-27 Sylvania Electric Prod Electrode for electric discharge lamps
US3363133A (en) * 1966-02-28 1968-01-09 Sylvania Electric Prod Electric discharge device having polycrystalline alumina end caps

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004189A (en) * 1974-12-02 1977-01-18 Gte Sylvania Incorporated Three-electrode short duration flash tube
DE2625554A1 (en) * 1975-06-06 1976-12-30 Gte Sylvania Inc FLASH TUBE TYPE ARC DISCHARGE LAMP
US4052635A (en) * 1975-09-29 1977-10-04 U.S. Philips Corporation Electric discharge lamp
US4102558A (en) * 1977-08-29 1978-07-25 Developmental Sciences, Inc. Non-shocking pin for fluorescent type tubes
US4130774A (en) * 1977-11-14 1978-12-19 Gte Sylvania Incorporated Flash tube having improved end cap construction
US4295075A (en) * 1979-12-14 1981-10-13 Gte Products Corporation Arc discharge lamp having ceramic arc tube
US4714858A (en) * 1984-08-17 1987-12-22 U.S. Philips Corporation Capped electric lamp comprising a metal sleeve having a corner depression to engage an associated recess in an insulator body
US4970428A (en) * 1988-12-26 1990-11-13 Kabushiki Kaisha Hybec Double-ended miniature lamp
US4952838A (en) * 1989-01-11 1990-08-28 Precision Lamp, Inc. Surface mount miniature incandescent lamp assembly
US5757110A (en) * 1994-12-06 1998-05-26 Koito Manufacturing Co., Ltd. Electrical discharge lamp with ultraviolet filtering globe having rear end part supported insulating base
EP0762459A3 (en) * 1995-08-30 1997-10-08 Ushio Electric Inc Lamp device
EP0762459A2 (en) * 1995-08-30 1997-03-12 Ushiodenki Kabushiki Kaisha Lamp device
US5785543A (en) * 1995-12-04 1998-07-28 Litton Systems, Inc. High voltage flashlamp connector method and apparatus
US20060193131A1 (en) * 2005-02-28 2006-08-31 Mcgrath William R Circuit devices which include light emitting diodes, assemblies which include such circuit devices, and methods for directly replacing fluorescent tubes
US20090303720A1 (en) * 2005-02-28 2009-12-10 Leddynamics, Inc. LED Lighting Device
US20070248347A1 (en) * 2006-04-21 2007-10-25 Feng Chang Power connection device for a flash tube and a camera module
US7634192B2 (en) * 2006-04-21 2009-12-15 Altek Corporation Power connection device for a flash tube and a camera module
US20140153231A1 (en) * 2012-12-03 2014-06-05 Osram Gmbh Lighting device including interconnected parts
US10422513B2 (en) * 2012-12-03 2019-09-24 Ledvance Gmbh Lighting device including interconnected parts
US20150098015A1 (en) * 2013-10-04 2015-04-09 Canon Kabushiki Kaisha Light emitting device having function for protection against static electricity, and image pickup apparatus
JP2015092230A (en) * 2013-10-04 2015-05-14 キヤノン株式会社 Light-emitting device with protection function against static electricity, and imaging apparatus
US9438781B2 (en) * 2013-10-04 2016-09-06 Canon Kabushiki Kaisha Light emitting device having function for protection against static electricity, and image pickup apparatus

Similar Documents

Publication Publication Date Title
US3855495A (en) Flash tube with insulator end cap
EP0313027B1 (en) Arc discharge lamp with ultraviolet radiation starting source
US5990599A (en) High-pressure discharge lamp having UV radiation source for enhancing ignition
US5325024A (en) Light source including parallel driven low pressure RF fluorescent lamps
US6172462B1 (en) Ceramic metal halide lamp with integral UV-enhancer
EP1550147B1 (en) Mercury free metal halide lamp
CA1154076A (en) High intensity discharge lamp containing electronic starting aid
US6995513B2 (en) Coil antenna/protection for ceramic metal halide lamps
US3849691A (en) High intensity lamp containing arc extinguishing base
US3849690A (en) Flash tube having improved cathode
US6633127B2 (en) High-pressure discharge lamp having construction for preventing breakdown
US4625141A (en) Low wattage metal halide discharge lamp electrically biased to reduce sodium loss
US3265917A (en) Fail-safe arc discharge lamp with integral arc extinguishing means
US4780649A (en) Metal vapor lamp having low starting voltage
US2488716A (en) Electric high-pressure discharge tube
US2950417A (en) Series electric lamp
JP2003513428A (en) Lighting system
US3849699A (en) Single base, self-igniting fluorescent lamp
US5028845A (en) High-pressure series arc discharge lamp construction
US4205258A (en) Internal shorting fuse for a high-intensity discharge lamp
US4910433A (en) Emitterless SDN electrode
US20080224614A1 (en) Looped Frame Arc Tube Mounting Assembly for Metal Halide Lamp
US2709767A (en) Electric discharge device
US3855491A (en) Hollow cathode discharge lamp for generating radiation characteristic of the gas fill within the envelope
US3356888A (en) Two-electrode spark gap with interposed insulator