US3854023A - Microwave oven heating member - Google Patents

Microwave oven heating member Download PDF

Info

Publication number
US3854023A
US3854023A US00391146A US39114673A US3854023A US 3854023 A US3854023 A US 3854023A US 00391146 A US00391146 A US 00391146A US 39114673 A US39114673 A US 39114673A US 3854023 A US3854023 A US 3854023A
Authority
US
United States
Prior art keywords
microwave
heat
article
liquid
permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00391146A
Inventor
M Levinson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00391146A priority Critical patent/US3854023A/en
Application granted granted Critical
Publication of US3854023A publication Critical patent/US3854023A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6491Aspects related to microwave heating combined with other heating techniques combined with the use of susceptors
    • H05B6/6494Aspects related to microwave heating combined with other heating techniques combined with the use of susceptors for cooking
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/02Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay
    • A47J36/027Cooking- or baking-vessels specially adapted for use in microwave ovens; Accessories therefor

Definitions

  • An improved heating member for microwave heating comprising: 1) a microwave oven-reflective, heatconductive container with an obverse surface which limits the depth of penetration of microwave energy into an oven load when said load is located in surface contact thereon and with a reverse surface which shields, from exposure to microwave energy, liquid condensation when received thereon, and 2) a microwave-permeable, liquid-absorptive 7 body disposed to absorb liquid from said reverse surface and transport by capillary action said liquid to a location exposed to said microwave energy.
  • This invention concerns improvements in containers designed toheat food in a microwave oven. It is particularly useful for defrosting and heating frozen convenience foods packaged on aluminum foil trays in paper containers.
  • a microwave oven is a time saving cooking device. But, for microwave cooking, .prior art teaches: 1) conventional methods of preparing and cooking foods and conventional cooking containers must be changed, 2) microwave cooking will not brown, broil, crust and fry without. an'auxilary heat source or a microwave lossy heating element, 3) metal cooking containers have little, if any, utility, and 4) two dinners, cooked simultaneously, take twice the time to cook as one dinner, three dinners three times as long to cook, etc.
  • an operator of a microwave oven need only remove the package from the freezer, insert the package in a microwave oven and energize the oven for the time prescribed for the power level of the oven. During the time interval from the purchase of thefrozen convenience food until it is consumed and the empty food package discarded, there is no special knowledge of microwave cooking, cooking effort or clean up required.
  • An object of this invention is an improved foodheating, serving tray for use in microwave ovens whose thermally-conductive, food-receiving body results in more evenly heated food and whose heat insulating body results in said food both warming faster and cooling slower.
  • the invention concerns a microwave-reflective, heatconductive food container contained within a microwave permeable, non-lossy, heat-insulating, porous body where said body is so disposed as to absorb and disperse lossy liquid which evaporates from a cooking foodstuff and condenses on the reverse side of said food container when a frozen foodstuff, in direct thermal contact with the obverse side of said food container, cools said reverse side below its dew point.
  • FIG. 1 illustrates a cross section of a food package 1 resting on a shelf 2 of a microwave oven (not shown).
  • Food package 1 consists of a container base 3 and a container top 4 which defines a closed heating chamber 5.
  • Resting on the bottom wall 6 of chamber 5 is a food container 8 which receives a foodstuff 9 in direct thermal contact on food container 8s obverse surface 10.
  • Food container 8 is constructed of a microwavereflective, heat-conductive material, as aluminum foil. Because of its microwave-reflective properties, food container 8 shields that portion of foodstuff 9, located in proximety with.
  • Food container 8 must be of such design as not to totally shield foodstuff 8 from exposure to microwave radiation.
  • food container 8 should be of open construction and foodstuff 9 of such dimension as to permit at least a portion of foodstuff 9, remotefrom said obverse surface 10, to receive and convert microwave energy to heat energy.
  • Container base 3 and container cover 4 are constructed of a microwavepermeable, porous material, as cardboard, unglazed ceramic, or open pore plastic foam. Baking temperatures, circa 350 400 F are routine and higher and lower temperatures a function of time,'load size and power level. Low melting point plastic is contraindicated if cooking temperatures higher than said plastics deformation temperature is anticipated.
  • the porous material should be designed to absorb and disperse any liquid condensation it contacts, as the action of blotting paper.
  • a frozen foodstuff 9 located within foodpackage l on the obverse surface 10 of aluminum foil container 8 is placed on a shelf 2 of a microwave oven (not shown) and exposed to microwave energy.
  • Said obverse surface 10 limits the depth of penetration of microwave energy into said foodstuff 9 by receiving said foodstuff in surface contact thereon.
  • Food container 8 is of such open construction and foodstuff 9 is of such dimension as to permit microwave energy' to heat up an area 12 of foodstuff 9 remote from obverse surfacel0.
  • Area 12 which initially receives (for practical purposes) the full power output of a microwave generator (not shown), heats rapidly and evaporates hot vapor which fills closed heating chamber 5.
  • heat-conducting container 8 functions as a heat exchanger to exchange the cold of a foodstuff located on its obverse surface with the latent heat of condensation of a hot vapor condensing to a liquid on a complementary-reverse surface.
  • This invention differs from my above-captioned, related inventions in that a microwave absorptive heating member is not fixed at and so initially present on the reverse side of a microwave-reflective, heat-conductive food container. This improvement means that unshielded area 12 of foodstuff 9 must defrost and warm before hot vapor can evolve and heat reverse surface 7.
  • an exposed surface of foodstuff 9 receives a head start over the rest of frozen foodstuff 9 by first receiving 1) the the amount of heat energy required to defrost (the heat of fusion of a solid to a liquid), 2) the heat energy required to raise its temperature to its evaporation point and 3) the heat of evaporation required to vaporize liquid from area 12.
  • Microwave-permeable, liquid-absorptive container base 3 absorbs condensed liquid, as a blotter, from surface contact with reverse surface 7 and transport said received liquid to a location exposed to microwave energy where said liquid is vaporized and recycled within heating chamber 5.
  • evaporation from external surfaces of food package 1 is prevented by applying a waterproof coating to said external surfaces.
  • Any liquid, which condenses and lies shielded on obversesurface 10, provides more gravy and practically eliminates any need for basting. It should be noted that, as the heating process continues, some liquid in contact with obverse surface 10 will vaporize in response to hotter vapors condensing on reverse surface 7.
  • container top 4 receives and blots splatter and container base 3 receives and blots any accidental spillage.
  • hot liquid remains in liquid absorptive base 3, function to keep food package] hotter, for a longer time, than if said hot liquid remains were not present. Said latter results are similar to a conventional infants feeding dish which is provided with an independant base chamber to receive hot water and is designed to hold food hot for extended periods of time.
  • common table salt crystals 1 1 can be added to or salted on base 3.
  • salt crystals 11 are non lossy but, when subject to melting ice and condensing water, salt water results.
  • Salt water has a lower melting point than water and so limits the large frozen mass of frozen foodstuff 9 from temporarily freezing initial liquid condensation (i.e., forming frost) on reverse surface 7 and thereby, until said frost melts, defeating base 3's Iiquid'absorptive and liquid dispersing function.
  • FIGS. 2 and 3 a food package 13 for use on shelf 2 in a microwave oven (not shown) is illustrated in FIGS. 2 and 3.
  • Container base 14 contains open food container 15. Foodstuffs A, B and C are illustrated resting in individual compartments of food container 15. A
  • removable top 16 mates with container base 14 to form a closed cavity 17.
  • Container bottom 14 and top 16 are held together by a removable seal 18.
  • Bottom 14 and top 16 are made of a heat-insulating material which is permeable to microwave energy. At least a portion of bottom 14 is absortive to liquids and capable of dispersing liquids by capillary action. It is preferred to cover the outside surface of bottom 14 and top 16 with a suitable waterproof coating 19, for example, plastic for paper and glaze for ceramic.
  • Removable seal 18 keeps base 14 and top 16 sealed together during shipping, defrosting and heating. There are innumerable conventional means for securing base 14 to top 16 during shipping and storage with seal 18,
  • gummed-paper or plastic tape which canbe designed to loosen when heated, clamps that melt, pull through threads, tongue and groove arrangements.
  • removable seal 18 is strong enough to permit a build up of explosive vapor pressure in closed cavity 17 during cooking, other safety measures should be taken.
  • Open metal food container is constructed of any metal foil suitable for storing-and cooking food therein. I prefer aluminum.
  • Metal food container 15 must be of such open design that when exposed to microwave radiation said microwave radiation can penetrate at least a portion of each foodstuff A, B and/or C that it is required to crust or brown.
  • Waterproof coating 19 is useful for both esthetic and sanitary purposes and to speed cooking. Waterproof coating 19 prevents liquid from reaching the outside of bottom 14 and top 16 and there waste power by said liquid evaporating and cooling foodpackage 13. The loss of heat from the exterior surface of heat insulating bottom 14 and top 16 by radiation, conduction and convection is minor compared to the large loss associated with a loss of heat, in the form of latent heat of vaporization, to the system frorrr'said exterior surfaces.
  • bottom 14'and/or top 16 some may prefer no waterproof coating 19 on bottom 14'and/or top 16 so 1) a drier heat will surround the foodstuff, and 2) to keep the exterior of food package 1, by the evaporation of liquid from its surface, cool enough to handle without pot holders and the like notwithstanding'that the interior of food package 1 can be at temperatures circa 350F.
  • Others can use a tighter seal 18 and a thicker waterproof coating 19 so that a more moist heat will surround the foodstuff.
  • the even heating of the foodstuff within food package 13 is caused by l) microwave radiation, 2) radiant heat energy equalizing within a closed black body, 3) convected heat transfer within a closed chamber, 4) the equalizing effect of a large, low-mass, heatconductive, aluminum container and 5) the transfer of the heat of vaporization of water when water evaporates from and so cools high loss foodstuffs and as a vapor transfers said heat of vaporization to and condenses on and so heats (and subsequently as" a liquid makes lossy) low-loss foodstuffs;
  • a surprisingly uni-' form serving temperature results even though food package 13 can contain different foodstuffs with different size portions anddifferent loss factors and is'subj ect to thermal runaway and microwave spot heating berous, paper or plastic lid 20 secured by aluminum flap 21 in a manner well known.
  • Lid 20 secures foodstuff D in aluminum foil container 15 during shipping.
  • food package 22 is heated in its inverted position to .cook more uniformily a certain densely packed, not-too-liquid foodstuff D, as roast or spinach souffle.
  • the lossy liquid rendered from foodstuff D falls by gravity onto the upper surface of -inverted lid 20 and is not, thereat, shielded by aluminum container 15.
  • lid 20 is microwave permeable, microwaves evenly heat and vaporize lossy liquid falling thereupon and said vapor rises and circulates within enclosed inner chamber 23 and condenses on cold shielded portions of foodstuff D. whereupon, said condensedliquid again falls by gravity to lid 21).
  • FIG. 4 illustrates how multiple dinners, for example, foodstuff E in one foil container 26 and foodstuff F in a seperate foil container 27, can be packaged as one unit, package 24.
  • FIG. 4 illustrates how two packages 22 and 24, stacked in direct thermal contact by an abutment of their exterior adjacent surfaces 25, can be heated simultaneously.
  • the time required to heat mul? tiple food packages in said thermal contact is less than a multiple of the time required to heat one package.
  • Many food packages i.e., TV Dinners
  • the stack can be reshuffled during the heating cycle.
  • Porous body material is initially somewhat lossyas porous material normally absorbs moisture from the surrounding air and frost covers frozen packages. Making bottom 14 and top 16 additionally lossy by the addition of lossy material, as ferrite, as described in mycopending applications, U.S. Ser. Nos. 293,006 and cause 'ofan-irregular metal container.
  • A- microwave oven with a fully variable power control is preferred as too high a power can cause too much browning and crusting as in gas and electric cooking.
  • aluminum foil food container 15 is provided with a microwave-permeable, porous or non poor independent heating member, temperatures, circa 350-400F, are both routine and. swiftly and easily 325,330, is counterindicated (especially when bottom 14 and top 16 are paper whichcan ignite). Care must be exercised to keep plastic and paper bodies from igniting since, surprisingly, without added lossy material reached. Raw pie crusts on frozen pies defrost, rise and brown. The browning and baking results in gas and electric cooking are duplicated and the advantages of microwave cooking (e.g. more gravies, less shrinkage, speed) are enhanced by package 13'.
  • a charge of water 28 can be added initially to porous bottom 14 and top 16 and/or foodstuffs A, B and/or C by a food processor and frozen in place for shipment. Said charge of water 28 (or other lossy liquid) is mandatory if foodstuffs heated are not partially liquid, lossy and/or too well shielded to receive microwave energy. Charge of water 28 can be added to porous bottom 14 or top 16 and there frozen. Frozen water 28 readily melts and evaporates during the initial exposure to microwave energy and condenses on the top surface of foodstuff F and thereupon flash defrosts said top surface to provide a desirable result as more or less crusting.
  • Charge of water 28 can be useful to limit scorching of paper container bottom 14 and top 16, but, if used for this purpose, charge of water 28 will lengthen cooking time. Alternately, charge of water 28 can be added to one portion of a foodstuff on a TV Dinner to slow down its cooking time in relation to a second portion of foodstuff. Some raw frozen dough portions of foodstuff bake so fast in relation to other large mass foodstuffs as to bake and burn before said large mass is heated properly. If immediately prior to defrosting and baking a charge of water 28 is added on top of a raw, frozen dough, said water does not have time to defrost or dilute said dough but, evaporates off the defrosting dough and thereby slows down the baking of said dough. As an alternate to or in conjunction with a charge of water 28, to provide some desirable result, some can cover'with aluminum foil, portions of a TV Dinner during heating (not shown).
  • foodstuff C represents a foodstuff which increases in volume when cooked, for instance, a pie crust 29 which, when heated, rises to dotted line 30.
  • a food processor should provide adequate space to aceomodate rising'baked' products by either employing less raw dough, by'thinning top 16 at location 32 or other such means.
  • the wall of closed cavity 17 at location 32 can be coated with an anti-stick means as teflon (not shown) to prevent crust 29 from stickingto top 16.
  • open metal food container contributes substantially to the baking, browning and crusting of foodstuffs cooked therein.
  • all the microwave energy is channeled into the inside of the pie, foodstuff C, through the raw pie crust 29 by the metal walls of container 15 (this contrasts to a microwave permeable glass container where microwave energy penetrates and enters all sides of the pie simultaneously).
  • the only exit for escaping steam, agoodheatinsulating blanket, is opening 33 in metal container 15.
  • pie crust 29 isbaking bysaid channeled microwave energy, it is not only heated and insulated by said blanket of superheated steam, but it is shielded by bottom 14 and top 16 from being cooled by cool'air that is forced to circulate through conventional microwave oven cavities.
  • the cool ,walls of a microwave oven (not shown), the cool air conventionally forced through :a microwave oven, water'and water vapor and-coating 19 all contribute to keeping paper and/or plastic bottom 14 and top 16 from igniting.
  • While food container 13 has ful shipping container. Frozen convenience foods can be shipped in bulk and food package 13 utilized just for i V v 6 been described as a usedefrosting, heating and serving.
  • a ceramic bottom 14 and top 16 whose outside surfaces are glazed and whose inner surfaces (i.e., walls of closed cavity 17) are unglazed porous ceramic, are excellent for defrosting, heating and serving a TV Dinner (contained in and on an aluminum tray) therein.
  • the weight of top ceramic body 16 can be used to perform the sealing function of removable seal 18.
  • Waterproof coating 19 can be two mating glass trays and bottom 14 and/or top 16 blotting paper to contain aluminum foil food container 13 where after use said blotting paper will be disposed of with splatter, spillage and waste.
  • frozen convenience foods can be shipped in a non-porous package, for example, a frozen food on an aluminum tray within a plastic covered paper container and before heating a porous body added in contact with the reverse surface of said aluminum tray to create food package 13.
  • heatinsulating body 16 After the defrosting and heating interval, if top, heatinsulating body 16 is not removed from bottom, heatinsulating body 14, advantageously, foodstuffs can be held at serving temperatures for extended periods of time therein.
  • hot top 16 can be removed and placed under hot bottom 14 where heat energy stored in hot top 16 in conjunction with top l6s heat-insulating properties combines with hot bottom 14 in keeping foodstuffs A, B and C hotter longer during the dining interval.
  • an improved heating member comprising:
  • a microwave-reflective, heat-conductive body with at least oneobverse surface which shields, from exposure to microwave energy, an adjacent portion of an article when located in contact thereon,
  • a microwave-permeable, liquid-absorptive body disposed to absorb liquid from surface contact with at least a portion of said complementary reverse surface and transfer said liquid to a location exposed to microwave energy
  • said heat conductive body is a heat exchanger to exchange the cold of said article when in said contact with said obverse surface for the heat evolved from vapor condensing to a liquid on said complementary reverse surface.
  • a heating member according to claim 1, which includes:
  • a heating member according to claim 1, which includes:
  • microwave-permeable second body which mates with said microwave-permeable, liquid-absorptive body to completely contain said microwaverefiective body.
  • a heating member according to claim 1, which includes:
  • a heating member according to claim 1, which includes: I
  • microwave-permeable body defines a chamber, said chamber containing said microwavereflective, heat-conductive body, and access means, located in at least one wall of said microwave-permeable bodys chamber, to permit access to said microwave-reflective, heat-conductive body.
  • access means located in at least one wall of said microwave-permeable bodys chamber, to permit access to said microwave-reflective, heat-conductive body.
  • a heating member according to claim 5, which includes:
  • said means to permit microwave energy to selectively heat an area of said article remote from said obverse surface is an opening in said microwave-reflective, heat-conductive body
  • a microwave-permeable lid covering said opening.
  • a heating member which includes:
  • a second heating member where said two independent heating members are joined by an abutment of at least one principal exterior surface of said microwave-permeable, liquid-absorptive body of each member so that, during an exposure to microwave energy, said two heating members chambers are combined by heated vapor intermingling through said abutment of said liquid-absorptive bodies.
  • a heating implement to improve the heating of a microwave-lossy, at-least-partially liquid article inside a microwave ovens chamber by a means for emitting microwaveenergy which comprises:
  • a microwave-permeable, second member where at least a portion of said second memberis liquid absorptive and where said second member'forms a chamber enclosing said firstme mber,
  • said absorptive portion of said second member 6 is disposed in a spaced relationship with said reverse surface to receive at' least part of any condensation of liquid which can occur on said reverse surface and transfer said received condensation to a location where said condensation can be heated to a vapor by said means for emitting microwave energy.
  • an improved heating member comprising:
  • microwave-reflective, heat-conductive body with at where said lid receives said article on said lids upper surface and said article is covered by said microwave-reflective, heat-conductive body, a reverse surface of said microwave-reflective, heatconductive body, complementary to said obverse surface, which shields from exposure to microwave energy, liquid received in surface contact thereon, microwave-permeable, liquid-absorptive body,
  • access means located in at least one wall of said microwave-permeable bodys chamber, to permit access to said microwave-relfective, heat-conductive body, and
  • said heat-conductive body is a heat exchanger to exchange the cold of said article when in said thermal contact with said obverse surface for the heat evolved from vapor condensing to a liquid on said complementary reverse surface.
  • a microwave oven comprising an enclosure for receiving an article and means for emitting microwave energy to said article, for use in said oven, an improved microwave-permeable heating member defining a heating chamber for processing said article therein, access means both to said enclosure and said heating chamber to permit the insertion and removal of said article, said improved heating member comprising in combination:
  • a' microwave-reflective, heat-conductive container withat least one surface designed to shield from exposure to microwave energy a first area of said article when said article is located in contact thereon,
  • rriean s to permit micro wav e energy to selectively heat a second area of said article remote from said surface when said article is located on said surface
  • microwave-permeable lid covering said opening a microwaveereflective, heat-conductive second and second bodies
  • first chamber sealing means designed to initially confine heated vapor evolving from said article on exposure to microwave energy and so enable said vapor to condense on said first area of said article
  • second heating chamber sealing means designed to initially confine heated vapor escaping from said first heating chamber to enable said heated vapor to condense on cool portions of said second body.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Cookers (AREA)
  • Electric Ovens (AREA)

Abstract

An improved heating member for microwave heating comprising: 1) a microwave oven-reflective, heat-conductive container with an obverse surface which limits the depth of penetration of microwave energy into an oven load when said load is located in surface contact thereon and with a reverse surface which shields, from exposure to microwave energy, liquid condensation when received thereon, and 2) a microwave-permeable, liquid-absorptive body disposed to absorb liquid from said reverse surface and transport by capillary action said liquid to a location exposed to said microwave energy.

Description

United States Patent [1 1 Levinson 1 1 MICROWAVE OVEN HEATING MEMBER [76] Inventor: Melvin L. Levinson, 1 Meinzer St.,
Avenel, NJ. 07001 22 Filed: Aug. 23, 1973 21 Appl. No.: 391,146
Related US. Application Data [63] Continuation-impart of Ser. No. 281,182, Aug. 16, 1972, abandoned, which is a continuation-in-part of Ser. No. 193,940, Oct. 29, 1971, Pat. No. 3,731,037, Continuation-impart of Ser. No. 704,389, Feb. 9., 1968, Pat. No. 3,701,872, which is a continuation-in-part of Ser. No. 470,809, July 9, 1965, abandoned, which is a continuation-in-part of Ser. No. 483,144, Aug. 27, 1965, abandoned.
[52] I 11.8. CI. 219/1055, 99/426 [51] llnt. Cl. H05b 9/06 [58] Field of Search 219/1055; 99/403, 430,
[56] References Cited.
UNITED STATES PATENTS Brown .j. 219/1055 ux Dec. 10, 1974 9/1966 Baker et al. 219/1055 X 2/1973 Constable 219/1055 Primary Examiner-J. V. Truhe Assistant Examiner-Hugh D. Jaeger [5 7] ABSTRACT An improved heating member for microwave heating comprising: 1) a microwave oven-reflective, heatconductive container with an obverse surface which limits the depth of penetration of microwave energy into an oven load when said load is located in surface contact thereon and with a reverse surface which shields, from exposure to microwave energy, liquid condensation when received thereon, and 2) a microwave-permeable, liquid-absorptive 7 body disposed to absorb liquid from said reverse surface and transport by capillary action said liquid to a location exposed to said microwave energy.
14 Claims, 4 Drawing Figures PATENTEU UEEI 0 I974 SHEH 2 0F 2 FIGQZ FIGO 3 MICROWAVE OVEN HEATING MEMBER CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part application of Ser. No. 281,182, filed Aug. 16, 1972, now aban- BACKGROUND 'OF THE INVENTION,
1) Field of the Invention This invention concerns improvements in containers designed toheat food in a microwave oven. It is particularly useful for defrosting and heating frozen convenience foods packaged on aluminum foil trays in paper containers.
2. Description of Prior Art A microwave oven is a time saving cooking device. But, for microwave cooking, .prior art teaches: 1) conventional methods of preparing and cooking foods and conventional cooking containers must be changed, 2) microwave cooking will not brown, broil, crust and fry without. an'auxilary heat source or a microwave lossy heating element, 3) metal cooking containers have little, if any, utility, and 4) two dinners, cooked simultaneously, take twice the time to cook as one dinner, three dinners three times as long to cook, etc.
This invention obviates said prior teachings and teaches that conventional metal cooking containers, in particular, aluminumfoil cooking containers have the same utility in a microwave oven that they enjoy in gas and electric ovens. In my parent application, U.S. Ser.
I No. 483,144, filed Aug. 27, 1965, and abandoned in favor of my U.S. Pat. Nos. 3,701,872and 3,731,037 and my copending related application Nos. 293,006 and 325,330, there are described implements which permit microwave ovens to brown, crust, barbecue, fry and br'oil as do conventional gas or electric ovens. In
said related inventions, there are described implements which permit a permanent lossy member to absorb appreciable amounts of microwave energy and convert said microwave energy to heat energy for application to the surface of a cooking foodstuff thereby assisting ing heat to the bottom of a microwave-reflective, heatconductive food container to timely heat a shielded surface of a foodstuff located topside said food container. This timely heating has express utility in reconstituting frozen convenience foods which are packaged 1 on aluminum trays within paper boxes. This invention teaches how to improve the paper box so that it has utility during the packaging, freezing, shipping, defrostin the crusting, browning and frying of said foodstuff.
My copending application, U.S. Ser. No. 325,330, also describes the utility of a lining porous to lossy liquids which recycles lossy liquid condensing on a metal foil 'containers outer surface.
use of a microwaveabsorptive, heating member to heat a .microwave-reflective, heat-conducting member which heated member thence heats a shielded food- 'stuff. My present invention improves on my-aforementioned U.S. patents and applications by timelyprovid- .No. 483,144, filed Aug. 27, 1965, and abandoned in favor of my copending'related applications, teaches the ing, heating, serving and dining intervals associated with the preparation. and use of frozen convenience foods. For example, a food processor will package and freeze convenience food in my improved container, determine the optimum cooking time and post said cooking time on the containers label. Subsequently, an operator of a microwave oven need only remove the package from the freezer, insert the package in a microwave oven and energize the oven for the time prescribed for the power level of the oven. During the time interval from the purchase of thefrozen convenience food until it is consumed and the empty food package discarded, there is no special knowledge of microwave cooking, cooking effort or clean up required.
, SUMMARY OF THE INVENTION It is an object of this invention to provide an improved, shipping-heating-serving and/or eating container for convenience foods heated in a microwave oven.
An object of this invention is an improved foodheating, serving tray for use in microwave ovens whose thermally-conductive, food-receiving body results in more evenly heated food and whose heat insulating body results in said food both warming faster and cooling slower.
And, it is an object of this invention to provide an improved shipping container for convenience foods that is suitable for gas, electric or microwave cooking, is competively priced with conventional containers and has added utility during microwave cooking and subsequent service.
The invention concerns a microwave-reflective, heatconductive food container contained within a microwave permeable, non-lossy, heat-insulating, porous body where said body is so disposed as to absorb and disperse lossy liquid which evaporates from a cooking foodstuff and condenses on the reverse side of said food container when a frozen foodstuff, in direct thermal contact with the obverse side of said food container, cools said reverse side below its dew point.
BRIEF DESCRIPTION OF THE DRAWINGS BRIEF DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 illustrates a cross section of a food package 1 resting on a shelf 2 of a microwave oven (not shown). Food package 1 consists of a container base 3 and a container top 4 which defines a closed heating chamber 5. Resting on the bottom wall 6 of chamber 5 is a food container 8 which receives a foodstuff 9 in direct thermal contact on food container 8s obverse surface 10. Food container 8 is constructed of a microwavereflective, heat-conductive material, as aluminum foil. Because of its microwave-reflective properties, food container 8 shields that portion of foodstuff 9, located in proximety with. obverse surface 10, from exposure to microwave radiation in a manner well known. Food container 8 must be of such design as not to totally shield foodstuff 8 from exposure to microwave radiation. For example, food container 8 should be of open construction and foodstuff 9 of such dimension as to permit at least a portion of foodstuff 9, remotefrom said obverse surface 10, to receive and convert microwave energy to heat energy. Container base 3 and container cover 4 are constructed of a microwavepermeable, porous material, as cardboard, unglazed ceramic, or open pore plastic foam. Baking temperatures, circa 350 400 F are routine and higher and lower temperatures a function of time,'load size and power level. Low melting point plastic is contraindicated if cooking temperatures higher than said plastics deformation temperature is anticipated. The porous material should be designed to absorb and disperse any liquid condensation it contacts, as the action of blotting paper.
In FIG. 1, a discussion of the operation and utility of food package 1 follows: A frozen foodstuff 9 located within foodpackage l on the obverse surface 10 of aluminum foil container 8 is placed on a shelf 2 of a microwave oven (not shown) and exposed to microwave energy. Said obverse surface 10 limits the depth of penetration of microwave energy into said foodstuff 9 by receiving said foodstuff in surface contact thereon. Food container 8 is of such open construction and foodstuff 9 is of such dimension as to permit microwave energy' to heat up an area 12 of foodstuff 9 remote from obverse surfacel0. Area 12, which initially receives (for practical purposes) the full power output of a microwave generator (not shown), heats rapidly and evaporates hot vapor which fills closed heating chamber 5. Contained by chamber s walls, said hot vapor both condenses on and heats the exposed cool portions of the interior walls of base 3 and top4 and exposed cool portions of container 8 and foodstuff 9. t The obverse surface of heat-conductive container 8 is in direct thermal contact with frozen foodstuff 9. And,- it is foodstuff 9, acting through heat-conductive container 8, which cools reverse surface 7 below its dew point in opposition to condensing hot vapor which heats reverse-surface 7 above itsdew point. It is the large mass of frozen foodstuff9 whose cooling action initially predominates over the heating action of condensing vapor and keeps reverse surface 7 below its dew point. Hence, reverse surface 7, timely, receives the preponderance of condensation heating within chamber 5. Both chamber 5's walls, because of their low mass and heat insulating properties, and the cool exposed portions of foodstuff 9, because of foodstuff 9's poor thermal conductivity, possess only limited capacity to receive condensation heating. v
It can beseen that heat-conducting container 8 functions as a heat exchanger to exchange the cold of a foodstuff located on its obverse surface with the latent heat of condensation of a hot vapor condensing to a liquid on a complementary-reverse surface. This invention differs from my above-captioned, related inventions in that a microwave absorptive heating member is not fixed at and so initially present on the reverse side of a microwave-reflective, heat-conductive food container. This improvement means that unshielded area 12 of foodstuff 9 must defrost and warm before hot vapor can evolve and heat reverse surface 7. With this improvement, in function and results similar to gas and electric heating, an exposed surface of foodstuff 9 (unshielded area 12) receives a head start over the rest of frozen foodstuff 9 by first receiving 1) the the amount of heat energy required to defrost (the heat of fusion of a solid to a liquid), 2) the heat energy required to raise its temperature to its evaporation point and 3) the heat of evaporation required to vaporize liquid from area 12.
Microwave-permeable, liquid-absorptive container base 3 absorbs condensed liquid, as a blotter, from surface contact with reverse surface 7 and transport said received liquid to a location exposed to microwave energy where said liquid is vaporized and recycled within heating chamber 5. Optionally, if desired, evaporation from external surfaces of food package 1 (which evaporation would'cool package 1) is prevented by applying a waterproof coating to said external surfaces.
Any liquid, which condenses and lies shielded on obversesurface 10, provides more gravy and practically eliminates any need for basting. It should be noted that, as the heating process continues, some liquid in contact with obverse surface 10 will vaporize in response to hotter vapors condensing on reverse surface 7.
Advantageously, when a foodstuff 9 is broiled (350400F) within food package 1, container top 4 receives and blots splatter and container base 3 receives and blots any accidental spillage. Advantageously, after microwave heating is terminated, hot liquid remains in liquid absorptive base 3, function to keep food package] hotter, for a longer time, than if said hot liquid remains were not present. Said latter results are similar to a conventional infants feeding dish which is provided with an independant base chamber to receive hot water and is designed to hold food hot for extended periods of time.
The overall results of heating a TV Dinner, food package 1, in'a microwave oven, are similar to the results that are obtained by heating the identical portions of food on an identical aluminum foil food container (notwithstanding the fact that food package ls paper shipping container must be removed and discarded prior to heating) in a gas or electric oven. In gas, electric or microwaves, positive means for an operator to control the level of heating power applied (i.e., variable power control) is recommended for high power can causecharring and low powertoo eyen a heating.
To control the amount of browning, common table salt crystals 1 1 can be added to or salted on base 3. Initially, salt crystals 11 are non lossy but, when subject to melting ice and condensing water, salt water results. Salt water has a lower melting point than water and so limits the large frozen mass of frozen foodstuff 9 from temporarily freezing initial liquid condensation (i.e., forming frost) on reverse surface 7 and thereby, until said frost melts, defeating base 3's Iiquid'absorptive and liquid dispersing function.
In another embodiment, a food package 13 for use on shelf 2 in a microwave oven (not shown) is illustrated in FIGS. 2 and 3. Container base 14 contains open food container 15. Foodstuffs A, B and C are illustrated resting in individual compartments of food container 15. A
removable top 16 mates with container base 14 to form a closed cavity 17. Container bottom 14 and top 16 are held together by a removable seal 18.
Bottom 14 and top 16 are made of a heat-insulating material which is permeable to microwave energy. At least a portion of bottom 14 is absortive to liquids and capable of dispersing liquids by capillary action. It is preferred to cover the outside surface of bottom 14 and top 16 with a suitable waterproof coating 19, for example, plastic for paper and glaze for ceramic.
Removable seal 18 keeps base 14 and top 16 sealed together during shipping, defrosting and heating. There are innumerable conventional means for securing base 14 to top 16 during shipping and storage with seal 18,
for instance, gummed-paper or plastic tape which canbe designed to loosen when heated, clamps that melt, pull through threads, tongue and groove arrangements.
If removable seal 18 is strong enough to permit a build up of explosive vapor pressure in closed cavity 17 during cooking, other safety measures should be taken.
' Open metal food container is constructed of any metal foil suitable for storing-and cooking food therein. I prefer aluminum. Metal food container 15 must be of such open design that when exposed to microwave radiation said microwave radiation can penetrate at least a portion of each foodstuff A, B and/or C that it is required to crust or brown.
Waterproof coating 19 is useful for both esthetic and sanitary purposes and to speed cooking. Waterproof coating 19 prevents liquid from reaching the outside of bottom 14 and top 16 and there waste power by said liquid evaporating and cooling foodpackage 13. The loss of heat from the exterior surface of heat insulating bottom 14 and top 16 by radiation, conduction and convection is minor compared to the large loss associated with a loss of heat, in the form of latent heat of vaporization, to the system frorrr'said exterior surfaces. Still; some may prefer no waterproof coating 19 on bottom 14'and/or top 16 so 1) a drier heat will surround the foodstuff, and 2) to keep the exterior of food package 1, by the evaporation of liquid from its surface, cool enough to handle without pot holders and the like notwithstanding'that the interior of food package 1 can be at temperatures circa 350F. Others can use a tighter seal 18 and a thicker waterproof coating 19 so that a more moist heat will surround the foodstuff.
In operation, the even heating of the foodstuff within food package 13 is caused by l) microwave radiation, 2) radiant heat energy equalizing within a closed black body, 3) convected heat transfer within a closed chamber, 4) the equalizing effect of a large, low-mass, heatconductive, aluminum container and 5) the transfer of the heat of vaporization of water when water evaporates from and so cools high loss foodstuffs and as a vapor transfers said heat of vaporization to and condenses on and so heats (and subsequently as" a liquid makes lossy) low-loss foodstuffs; A surprisingly uni-' form serving temperature results even though food package 13 can contain different foodstuffs with different size portions anddifferent loss factors and is'subj ect to thermal runaway and microwave spot heating berous, paper or plastic lid 20 secured by aluminum flap 21 in a manner well known. Lid 20 secures foodstuff D in aluminum foil container 15 during shipping. In this embodiment, food package 22 is heated in its inverted position to .cook more uniformily a certain densely packed, not-too-liquid foodstuff D, as roast or spinach souffle. Inverted, the lossy liquid rendered from foodstuff D falls by gravity onto the upper surface of -inverted lid 20 and is not, thereat, shielded by aluminum container 15. Because lid 20 is microwave permeable, microwaves evenly heat and vaporize lossy liquid falling thereupon and said vapor rises and circulates within enclosed inner chamber 23 and condenses on cold shielded portions of foodstuff D. whereupon, said condensedliquid again falls by gravity to lid 21). This process continues to recycle within the chamber 23 formed by foil container 15 and lid 20. As foddstuff D, in inverted container 15, continues to heat, steam pressure builds up and steam escapes around lid 20 of foil container 15. Once outside foil container 15, said steam on escaping is initially confined by bottom 14 and top 16 within closed cavity 17 and condenses on and heats the outside of foil, heat-conductive container 15 whence, as liquid it drips down off foil container 15 onto porous top 16 where it is absorbed, dispersed and changed back into steam and the process recycled. Inverting food container 22 (with lid 20 engaged), during the heating interval, results in less crusting. Notwithstanding, satisfactory results are also obtained heating container 22 in its upright position. In the latter case, foodstuff D must be cooked at a lower power level for a longer time to prevent excessive browning and crustmg.
FIG. 4 illustrates how multiple dinners, for example, foodstuff E in one foil container 26 and foodstuff F in a seperate foil container 27, can be packaged as one unit, package 24. FIG. 4 illustrates how two packages 22 and 24, stacked in direct thermal contact by an abutment of their exterior adjacent surfaces 25, can be heated simultaneously. The time required to heat mul? tiple food packages in said thermal contactis less than a multiple of the time required to heat one package. The more packages heated together and the more area indirect thermal contact the less area exposed to heat loss therefrom. Many food packages (i.e., TV Dinners) can be stacked together in direct thermal contact and heated in a microwave oven where the heat equalizing operation of the invention occurs throughout the stack.
If necessary, to accomodate the operation of fixedpower output ovens, the stack can be reshuffled during the heating cycle. I
Porous body material is initially somewhat lossyas porous material normally absorbs moisture from the surrounding air and frost covers frozen packages. Making bottom 14 and top 16 additionally lossy by the addition of lossy material, as ferrite, as described in mycopending applications, U.S. Ser. Nos. 293,006 and cause 'ofan-irregular metal container. A- microwave oven with a fully variable power control is preferred as too high a power can cause too much browning and crusting as in gas and electric cooking.
In FIG. 4, aluminum foil food container 15 is provided with a microwave-permeable, porous or non poor independent heating member, temperatures, circa 350-400F, are both routine and. swiftly and easily 325,330, is counterindicated (especially when bottom 14 and top 16 are paper whichcan ignite). Care must be exercised to keep plastic and paper bodies from igniting since, surprisingly, without added lossy material reached. Raw pie crusts on frozen pies defrost, rise and brown. The browning and baking results in gas and electric cooking are duplicated and the advantages of microwave cooking (e.g. more gravies, less shrinkage, speed) are enhanced by package 13'.
A charge of water 28 can be added initially to porous bottom 14 and top 16 and/or foodstuffs A, B and/or C by a food processor and frozen in place for shipment. Said charge of water 28 (or other lossy liquid) is mandatory if foodstuffs heated are not partially liquid, lossy and/or too well shielded to receive microwave energy. Charge of water 28 can be added to porous bottom 14 or top 16 and there frozen. Frozen water 28 readily melts and evaporates during the initial exposure to microwave energy and condenses on the top surface of foodstuff F and thereupon flash defrosts said top surface to provide a desirable result as more or less crusting. Charge of water 28 can be useful to limit scorching of paper container bottom 14 and top 16, but, if used for this purpose, charge of water 28 will lengthen cooking time. Alternately, charge of water 28 can be added to one portion of a foodstuff on a TV Dinner to slow down its cooking time in relation to a second portion of foodstuff. Some raw frozen dough portions of foodstuff bake so fast in relation to other large mass foodstuffs as to bake and burn before said large mass is heated properly. If immediately prior to defrosting and baking a charge of water 28 is added on top of a raw, frozen dough, said water does not have time to defrost or dilute said dough but, evaporates off the defrosting dough and thereby slows down the baking of said dough. As an alternate to or in conjunction with a charge of water 28, to provide some desirable result, some can cover'with aluminum foil, portions of a TV Dinner during heating (not shown).
In FIG. 2, foodstuff C represents a foodstuff which increases in volume when cooked, for instance, a pie crust 29 which, when heated, rises to dotted line 30. A food processor should provide adequate space to aceomodate rising'baked' products by either employing less raw dough, by'thinning top 16 at location 32 or other such means. The wall of closed cavity 17 at location 32 can be coated with an anti-stick means as teflon (not shown) to prevent crust 29 from stickingto top 16.
In operation, in FIG. 2, open metal food container contributes substantially to the baking, browning and crusting of foodstuffs cooked therein. For example, in the baking of a frozen pie whose crust29 is at opening 33 of open metal food container 15, all the microwave energy is channeled into the inside of the pie, foodstuff C, through the raw pie crust 29 by the metal walls of container 15 (this contrasts to a microwave permeable glass container where microwave energy penetrates and enters all sides of the pie simultaneously). The only exit for escaping steam, agoodheatinsulating blanket, is opening 33 in metal container 15. While pie crust 29 isbaking bysaid channeled microwave energy, it is not only heated and insulated by said blanket of superheated steam, but it is shielded by bottom 14 and top 16 from being cooled by cool'air that is forced to circulate through conventional microwave oven cavities. The cool ,walls of a microwave oven (not shown), the cool air conventionally forced through :a microwave oven, water'and water vapor and-coating 19 all contribute to keeping paper and/or plastic bottom 14 and top 16 from igniting.
While food container 13 has ful shipping container. Frozen convenience foods can be shipped in bulk and food package 13 utilized just for i V v 6 been described as a usedefrosting, heating and serving. Although, generally to fragile for shipping containers, a ceramic bottom 14 and top 16 whose outside surfaces are glazed and whose inner surfaces (i.e., walls of closed cavity 17) are unglazed porous ceramic, are excellent for defrosting, heating and serving a TV Dinner (contained in and on an aluminum tray) therein. In operation, the weight of top ceramic body 16 can be used to perform the sealing function of removable seal 18. Waterproof coating 19 can be two mating glass trays and bottom 14 and/or top 16 blotting paper to contain aluminum foil food container 13 where after use said blotting paper will be disposed of with splatter, spillage and waste.
Optionally, frozen convenience foods can be shipped in a non-porous package, for example, a frozen food on an aluminum tray within a plastic covered paper container and before heating a porous body added in contact with the reverse surface of said aluminum tray to create food package 13.
After the defrosting and heating interval, if top, heatinsulating body 16 is not removed from bottom, heatinsulating body 14, advantageously, foodstuffs can be held at serving temperatures for extended periods of time therein. Optionally, after a heating interval is completed, hot top 16 can be removed and placed under hot bottom 14 where heat energy stored in hot top 16 in conjunction with top l6s heat-insulating properties combines with hot bottom 14 in keeping foodstuffs A, B and C hotter longer during the dining interval.
Although this invention has been described with a certain degree of particularity, it is understood that the present disclosure has been made only by way of example and that numerous changes in the details of construction and the combination and arrangement of parts may be resorted to without departing from the spirit and scope of the invention.
I claim:
1. For use in a microwave oven, an improved heating member comprising:
a microwave-reflective, heat-conductive body with at least oneobverse surface which shields, from exposure to microwave energy, an adjacent portion of an article when located in contact thereon,
means to permit microwave energy to selectively heat an area of said article remote from said obverse surface when said article is located in said contact with said obverse surface,
a reverse surface of said microwave-reflective, heatconductive body, complementary to said obverse surface, which shields, from exposure to microwave energy, liquid received in surface contact thereon,
a microwave-permeable, liquid-absorptive body disposed to absorb liquid from surface contact with at least a portion of said complementary reverse surface and transfer said liquid to a location exposed to microwave energy, and
where said heat conductive body is a heat exchanger to exchange the cold of said article when in said contact with said obverse surface for the heat evolved from vapor condensing to a liquid on said complementary reverse surface.
2. A heating member, according to claim 1, which includes:
salt crystals disposed with 'said liquid-absorptive body.
3. A heating member, according to claim 1, which includes:
a microwave-permeable second body which mates with said microwave-permeable, liquid-absorptive body to completely contain said microwaverefiective body.
4. A heating member, according to claim 1, which includes:
where said microwave permeable, liquid-absorptive body is porous ceramic. 5. A heating member, according to claim 1, which includes: I
where said microwave-permeable body defines a chamber, said chamber containing said microwavereflective, heat-conductive body, and access means, located in at least one wall of said microwave-permeable bodys chamber, to permit access to said microwave-reflective, heat-conductive body. 6. A heating member, according to claimS, which includes:
sealing means for said access means. g 7. A heating member, according to claim 5, which includes:
water-proofing means located on at least a part of the exterior of said chamber., 8. A heating member, according to claim 5, which in- I cludes:
where said means to permit microwave energy to selectively heat an area of said article remote from said obverse surface is an opening in said microwave-reflective, heat-conductive body, and
a microwave-permeable lid covering said opening.
9. A heating membenaccording to claim 5, which includes:
a predetermined amount of a lossy liquid selectively placed within said microwave-permeable bodys chamber.
10. A heating member, according to claim 6, which includes:
a second heating member where said two independent heating members are joined by an abutment of at least one principal exterior surface of said microwave-permeable, liquid-absorptive body of each member so that, during an exposure to microwave energy, said two heating members chambers are combined by heated vapor intermingling through said abutment of said liquid-absorptive bodies.
11. A heating implement to improve the heating of a microwave-lossy, at-least-partially liquid article inside a microwave ovens chamber by a means for emitting microwaveenergywhich comprises:
a microwave-reflective, heat-conductive first memher with at least one obverse surface, which receives said article in contact thereupon, and a complementary reverse surface to-said obve'rse surface,
a microwave-permeable, second member .where at least a portion of said second memberis liquid absorptive and where said second member'forms a chamber enclosing said firstme mber,
access means in a-wall of said second member to permit access to said first member from a location external to said second member, and
where said absorptive portion of said second member 6 is disposed in a spaced relationship with said reverse surface to receive at' least part of any condensation of liquid which can occur on said reverse surface and transfer said received condensation to a location where said condensation can be heated to a vapor by said means for emitting microwave energy.
ii. For use in a microwave oven, an improved heating member comprising:
' a microwave-reflective, heat-conductive body with at where said lid receives said article on said lids upper surface and said article is covered by said microwave-reflective, heat-conductive body, a reverse surface of said microwave-reflective, heatconductive body, complementary to said obverse surface, which shields from exposure to microwave energy, liquid received in surface contact thereon, microwave-permeable, liquid-absorptive body,
- which defines a chamber, said chamber containing said microwave-reflective, heat-conductive body, disposed to absorb liquid from surface contact with, at least, a portion of said complementary reverse surface and transfer said liquid to a location exposed to microwave energy,
access means, located in at least one wall of said microwave-permeable bodys chamber, to permit access to said microwave-relfective, heat-conductive body, and
where said heat-conductive body is a heat exchanger to exchange the cold of said article when in said thermal contact with said obverse surface for the heat evolved from vapor condensing to a liquid on said complementary reverse surface.
13; In a microwave oven comprising an enclosure for receiving an article and means for emitting microwave energy to said article, for use in said oven, an improved microwave-permeable heating member defining a heating chamber for processing said article therein, access means both to said enclosure and said heating chamber to permit the insertion and removal of said article, said improved heating member comprising in combination:
a' microwave-reflective, heat-conductive containerwithat least one surface designed to shield from exposure to microwave energy a first area of said article when said article is located in contact thereon,
rriean s to permit micro wav e energy to selectively heat a second area of said article remote from said surface when said article is located on said surface,
microwave-permeable lid covering said opening a microwaveereflective, heat-conductive second and second bodies,
first chamber sealing means designed to initially confine heated vapor evolving from said article on exposure to microwave energy and so enable said vapor to condense on said first area of said article, and
second heating chamber sealing means designed to initially confine heated vapor escaping from said first heating chamber to enable said heated vapor to condense on cool portions of said second body.

Claims (14)

1. For use in a microwave oven, an improved heating member comprising: a microwave-reflective, heat-conductive body with at least one obverse surface which shields, from exposure to microwave energy, an adjacent portion of an article when located in contact thereon, means to permit microwave energy to selectively heat an area of said article remote from said obverse surface when said article is located in said contact with said obverse surface, a reverse surface of said microwave-reflective, heat-conductive body, complementary to said obverse surface, which shields, from exposure to microwave energy, liquid received in surface contact thereon, a microwave-permeable, liquid-absorptive body disposed to absorb liquid from surface contact with at least a portion of said complementary reverse surface and traNsfer said liquid to a location exposed to microwave energy, and where said heat conductive body is a heat exchanger to exchange the cold of said article when in said contact with said obverse surface for the heat evolved from vapor condensing to a liquid on said complementary reverse surface.
2. A heating member, according to claim 1, which includes: salt crystals disposed with said liquid-absorptive body.
3. A heating member, according to claim 1, which includes: a microwave-permeable second body which mates with said microwave-permeable, liquid-absorptive body to completely contain said microwave-reflective body.
4. A heating member, according to claim 1, which includes: where said microwave-permeable, liquid-absorptive body is porous ceramic.
5. A heating member, according to claim 1, which includes: where said microwave-permeable body defines a chamber, said chamber containing said microwave-reflective, heat-conductive body, and access means, located in at least one wall of said microwave-permeable bodys chamber, to permit access to said microwave-reflective, heat-conductive body.
6. A heating member, according to claim 5, which includes: sealing means for said access means.
7. A heating member, according to claim 5, which includes: water-proofing means located on at least a part of the exterior of said chamber.
8. A heating member, according to claim 5, which includes: where said means to permit microwave energy to selectively heat an area of said article remote from said obverse surface is an opening in said microwave-reflective, heat-conductive body, and a microwave-permeable lid covering said opening.
9. A heating member, according to claim 5, which includes: a predetermined amount of a lossy liquid selectively placed within said microwave-permeable body''s chamber.
10. A heating member, according to claim 6, which includes: a second heating member where said two independent heating members are joined by an abutment of at least one principal exterior surface of said microwave-permeable, liquid-absorptive body of each member so that, during an exposure to microwave energy, said two heating member''s chambers are combined by heated vapor intermingling through said abutment of said liquid-absorptive bodies.
11. A heating implement to improve the heating of a microwave-lossy, at-least-partially liquid article inside a microwave oven''s chamber by a means for emitting microwave energy which comprises: a microwave-reflective, heat-conductive first member with at least one obverse surface, which receives said article in contact thereupon, and a complementary reverse surface to said obverse surface, a microwave-permeable, second member where at least a portion of said second member is liquid absorptive and where said second member forms a chamber enclosing said first member, access means in a wall of said second member to permit access to said first member from a location external to said second member, and where said absorptive portion of said second member is disposed in a spaced relationship with said reverse surface to receive at least part of any condensation of liquid which can occur on said reverse surface and transfer said received condensation to a location where said condensation can be heated to a vapor by said means for emitting microwave energy.
12. For use in a microwave oven, an improved heating member comprising: a microwave-reflective, heat-conductive body with at least one obverse surface which shields, from exposure to microwave energy, an adjacent portion of an article when located in thermal contact therewith, means to permit microwave energy to selectively heat an area of said article remote from said obverse surface when said article is located in said thermal contact with said obverse surface, said means comprising an opening in said microwave-reflective, heat-conductive body, a microwave-permeable lid coverIng said opening where said lid receives said article on said lid''s upper surface and said article is covered by said microwave-reflective, heat-conductive body, a reverse surface of said microwave-reflective, heat-conductive body, complementary to said obverse surface, which shields from exposure to microwave energy, liquid received in surface contact thereon, a microwave-permeable, liquid-absorptive body, which defines a chamber, said chamber containing said microwave-reflective, heat-conductive body, disposed to absorb liquid from surface contact with, at least, a portion of said complementary reverse surface and transfer said liquid to a location exposed to microwave energy, access means, located in at least one wall of said microwave-permeable body''s chamber, to permit access to said microwave-relfective, heat-conductive body, and where said heat-conductive body is a heat exchanger to exchange the cold of said article when in said thermal contact with said obverse surface for the heat evolved from vapor condensing to a liquid on said complementary reverse surface.
13. In a microwave oven comprising an enclosure for receiving an article and means for emitting microwave energy to said article, for use in said oven, an improved microwave-permeable heating member defining a heating chamber for processing said article therein, access means both to said enclosure and said heating chamber to permit the insertion and removal of said article, said improved heating member comprising in combination: a microwave-reflective, heat-conductive container with at least one surface designed to shield from exposure to microwave energy a first area of said article when said article is located in contact thereon, means to permit microwave energy to selectively heat a second area of said article remote from said surface when said article is located on said surface, and where said heating member completely encloses said container.
14. For use in a microwave oven, an improved heating member which comprises: a microwave-permeable first body, a microwave-reflective, heat-conductive second body which mates with said first body to form a first heating chamber designed to heat an article therein and where said second body includes means both, when said heating member is exposed to microwave energy, to shield a first area of said article from direct exposure to said microwave energy and to permit a second area of said article to be subjected to direct exposure to microwave energy, a microwave-permeable third body which defines a second heating chamber which contains said first and second bodies, first chamber sealing means designed to initially confine heated vapor evolving from said article on exposure to microwave energy and so enable said vapor to condense on said first area of said article, and second heating chamber sealing means designed to initially confine heated vapor escaping from said first heating chamber to enable said heated vapor to condense on cool portions of said second body.
US00391146A 1968-02-09 1973-08-23 Microwave oven heating member Expired - Lifetime US3854023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00391146A US3854023A (en) 1968-02-09 1973-08-23 Microwave oven heating member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70438968A 1968-02-09 1968-02-09
US00391146A US3854023A (en) 1968-02-09 1973-08-23 Microwave oven heating member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US05381182 Continuation-In-Part 1972-08-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/529,052 Continuation-In-Part US3985990A (en) 1973-09-24 1974-12-03 Microwave oven baking utensil

Publications (1)

Publication Number Publication Date
US3854023A true US3854023A (en) 1974-12-10

Family

ID=27013416

Family Applications (1)

Application Number Title Priority Date Filing Date
US00391146A Expired - Lifetime US3854023A (en) 1968-02-09 1973-08-23 Microwave oven heating member

Country Status (1)

Country Link
US (1) US3854023A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941967A (en) * 1973-09-28 1976-03-02 Asahi Kasei Kogyo Kabushiki Kaisha Microwave cooking apparatus
US3965323A (en) * 1975-02-26 1976-06-22 Corning Glass Works Method and apparatus for providing uniform surface browning of foodstuff through microwave energy
US3974354A (en) * 1975-06-04 1976-08-10 General Motors Corporation Microwave utensil with reflective surface handle
US4013798A (en) * 1973-11-21 1977-03-22 Teckton, Inc. Selectively ventable food package and micro-wave shielding device
US4027132A (en) * 1975-04-17 1977-05-31 Levinson Melvin L Microwave pie baking
US4121510A (en) * 1977-02-17 1978-10-24 Frank R. Jarnot Combination cooking rack and pan
US4162334A (en) * 1977-04-27 1979-07-24 Alfred University Research Foundation Inc. Method for baking in terra sigillata coated pan
US4168334A (en) * 1977-04-27 1979-09-18 Alfred University Research Foundation, Inc. Terra sigillata coated ceramic cookware
US4190757A (en) * 1976-10-08 1980-02-26 The Pillsbury Company Microwave heating package and method
US4306133A (en) * 1979-02-14 1981-12-15 Levinson Melvin L Microwave pie baking
US4316070A (en) * 1979-08-21 1982-02-16 Prosise Robert L Cookware with liquid microwave energy moderator
US4318931A (en) * 1976-06-29 1982-03-09 International Telephone And Telegraph Corporation Method of baking firm bread
US4388335A (en) * 1979-06-20 1983-06-14 International Telephone And Telegraph Corporation Microwave baking with metal pans
US4398077A (en) * 1980-10-06 1983-08-09 Raytheon Company Microwave cooking utensil
US4400401A (en) * 1980-02-19 1983-08-23 Beauvais Max P Method of microwave sterilizing canned food
US4439656A (en) * 1981-04-06 1984-03-27 The Stouffer Corporation Apparatus and method for the reconstitution of frozen foods in a microwave oven
US4464405A (en) * 1982-05-24 1984-08-07 Christopher Eugene L De Method for making pizza shells
US4641005A (en) * 1979-03-16 1987-02-03 James River Corporation Food receptacle for microwave cooking
US4705927A (en) * 1986-08-14 1987-11-10 Aluminum Company Of America Cooking utensil for combined microwave and steam cooking
WO1989002210A1 (en) * 1987-08-26 1989-03-09 Deposition Technology, Inc. Method and container for producing batter-based baked goods
US4825025A (en) * 1979-03-16 1989-04-25 James River Corporation Food receptacle for microwave cooking
US4841112A (en) * 1988-02-01 1989-06-20 The Stouffer Corporation Method and appliance for cooking a frozen pot pie with microwave energy
FR2628187A1 (en) * 1988-03-03 1989-09-08 Pralus Georges APPARATUS FOR COOKING OR HEATING MISCELLANEOUS PRODUCTS BY APPLYING MICROWAVES AND OVEN USING THE SAME
US4891482A (en) * 1988-07-13 1990-01-02 The Stouffer Corporation Disposable microwave heating receptacle and method of using same
US4952764A (en) * 1989-04-27 1990-08-28 Harrington Lawrence S Adjustable fin bacon rack for microwave oven
US4991497A (en) * 1989-07-10 1991-02-12 Kfc Corporation Method and apparatus for simulating open flame broiled meat products
US5077066A (en) * 1987-11-12 1991-12-31 The Clorox Company Method for preparing frozen comestibles for consumption
US5144107A (en) * 1990-04-11 1992-09-01 The Stouffer Corporation Microwave susceptor sheet stock with heat control
US5220141A (en) * 1991-03-26 1993-06-15 International Paper Company Treatment of paperboard with polar organic compounds to provide microwave interactive stock
US5230914A (en) * 1991-05-02 1993-07-27 Luigino's, Inc. Metal foil food package for microwave cooking
US5416304A (en) * 1990-11-13 1995-05-16 Kraft General Foods, Inc. Microwave-reflective device and method of use
US5770840A (en) * 1995-12-12 1998-06-23 Conagra Frozen Foods Microwave cooking container for food items
US6380524B1 (en) 1999-08-09 2002-04-30 Karl Keller Microwavable food package having valve and method of use
US6455084B2 (en) * 2000-05-18 2002-09-24 John Jay Johns Microwavable steamer bags
US20030049354A1 (en) * 2001-08-27 2003-03-13 R. Charles Murray Packaging for use in heating food in a microwave oven and method of use
US6607764B1 (en) * 1997-12-18 2003-08-19 Karl Keller Ventable, microwave-safe food package
US20050199619A1 (en) * 2004-03-09 2005-09-15 Michael Richardson Microwavable metallic container
US20050199617A1 (en) * 2004-03-09 2005-09-15 Richardson Michael D. Microwavable metallic container
US20060127549A1 (en) * 2001-08-27 2006-06-15 Murray R C Heatable package with frangible seal and method of manufacture
US20070125430A1 (en) * 2003-10-16 2007-06-07 Murray R C Packaging release valve for microwavable food items
US20070284368A1 (en) * 2004-03-09 2007-12-13 Ball Corporation Microwavable Metallic Container
US20080069485A1 (en) * 2006-09-19 2008-03-20 France David W Food product, cooking apparatus, and storing device
US20080138474A1 (en) * 2001-08-27 2008-06-12 Pouch Pac Innovations, Llc Heatable package with multi-purpose valve and method of manufacture
US20090311396A1 (en) * 2008-06-12 2009-12-17 Ilan Zadik Samson Cooking accessory and method
US20140065265A1 (en) * 2012-09-06 2014-03-06 Frito-Lay North America, Inc. Package for Microwaving Dry Foods
US20140166644A1 (en) * 2012-11-19 2014-06-19 Alan Troy Hale Radiation-shielding container
US9162809B2 (en) * 2010-05-27 2015-10-20 Torus Pak Research And Development S.A.R.L. Food package with supplementary food container
US20170280930A1 (en) * 2013-03-15 2017-10-05 Simple Wise Designs, LLC Microwavable Cooking Sheet, System and Method
US10017317B2 (en) 2005-04-28 2018-07-10 Torus Pak Research And Development S.A.R.L. Food package and method for transfer of food

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3219460A (en) * 1962-11-20 1965-11-23 Lever Brothers Ltd Frozen food package and method for producing same
US3271169A (en) * 1963-02-01 1966-09-06 Litton Prec Products Inc Food package for microwave heating
US3716687A (en) * 1970-08-18 1973-02-13 Hirst Microwave Ind Ltd Method and apparatus for cooking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3219460A (en) * 1962-11-20 1965-11-23 Lever Brothers Ltd Frozen food package and method for producing same
US3271169A (en) * 1963-02-01 1966-09-06 Litton Prec Products Inc Food package for microwave heating
US3716687A (en) * 1970-08-18 1973-02-13 Hirst Microwave Ind Ltd Method and apparatus for cooking

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941967A (en) * 1973-09-28 1976-03-02 Asahi Kasei Kogyo Kabushiki Kaisha Microwave cooking apparatus
US4013798A (en) * 1973-11-21 1977-03-22 Teckton, Inc. Selectively ventable food package and micro-wave shielding device
US3965323A (en) * 1975-02-26 1976-06-22 Corning Glass Works Method and apparatus for providing uniform surface browning of foodstuff through microwave energy
US4027132A (en) * 1975-04-17 1977-05-31 Levinson Melvin L Microwave pie baking
US3974354A (en) * 1975-06-04 1976-08-10 General Motors Corporation Microwave utensil with reflective surface handle
US4318931A (en) * 1976-06-29 1982-03-09 International Telephone And Telegraph Corporation Method of baking firm bread
US4190757A (en) * 1976-10-08 1980-02-26 The Pillsbury Company Microwave heating package and method
US4121510A (en) * 1977-02-17 1978-10-24 Frank R. Jarnot Combination cooking rack and pan
US4162334A (en) * 1977-04-27 1979-07-24 Alfred University Research Foundation Inc. Method for baking in terra sigillata coated pan
US4168334A (en) * 1977-04-27 1979-09-18 Alfred University Research Foundation, Inc. Terra sigillata coated ceramic cookware
US4306133A (en) * 1979-02-14 1981-12-15 Levinson Melvin L Microwave pie baking
US4641005A (en) * 1979-03-16 1987-02-03 James River Corporation Food receptacle for microwave cooking
US4825025A (en) * 1979-03-16 1989-04-25 James River Corporation Food receptacle for microwave cooking
US4388335A (en) * 1979-06-20 1983-06-14 International Telephone And Telegraph Corporation Microwave baking with metal pans
US4316070A (en) * 1979-08-21 1982-02-16 Prosise Robert L Cookware with liquid microwave energy moderator
US4400401A (en) * 1980-02-19 1983-08-23 Beauvais Max P Method of microwave sterilizing canned food
US4398077A (en) * 1980-10-06 1983-08-09 Raytheon Company Microwave cooking utensil
US4439656A (en) * 1981-04-06 1984-03-27 The Stouffer Corporation Apparatus and method for the reconstitution of frozen foods in a microwave oven
US4464405A (en) * 1982-05-24 1984-08-07 Christopher Eugene L De Method for making pizza shells
US4705927A (en) * 1986-08-14 1987-11-10 Aluminum Company Of America Cooking utensil for combined microwave and steam cooking
WO1989002210A1 (en) * 1987-08-26 1989-03-09 Deposition Technology, Inc. Method and container for producing batter-based baked goods
US5077066A (en) * 1987-11-12 1991-12-31 The Clorox Company Method for preparing frozen comestibles for consumption
US4841112A (en) * 1988-02-01 1989-06-20 The Stouffer Corporation Method and appliance for cooking a frozen pot pie with microwave energy
FR2628187A1 (en) * 1988-03-03 1989-09-08 Pralus Georges APPARATUS FOR COOKING OR HEATING MISCELLANEOUS PRODUCTS BY APPLYING MICROWAVES AND OVEN USING THE SAME
US5026957A (en) * 1988-03-03 1991-06-25 Georges Pralus Apparatus for baking or heating various products by application of microwaves and oven applying same
US4891482A (en) * 1988-07-13 1990-01-02 The Stouffer Corporation Disposable microwave heating receptacle and method of using same
US4952764A (en) * 1989-04-27 1990-08-28 Harrington Lawrence S Adjustable fin bacon rack for microwave oven
US4991497A (en) * 1989-07-10 1991-02-12 Kfc Corporation Method and apparatus for simulating open flame broiled meat products
US5144107A (en) * 1990-04-11 1992-09-01 The Stouffer Corporation Microwave susceptor sheet stock with heat control
US5416304A (en) * 1990-11-13 1995-05-16 Kraft General Foods, Inc. Microwave-reflective device and method of use
US5220141A (en) * 1991-03-26 1993-06-15 International Paper Company Treatment of paperboard with polar organic compounds to provide microwave interactive stock
US5230914A (en) * 1991-05-02 1993-07-27 Luigino's, Inc. Metal foil food package for microwave cooking
US5770840A (en) * 1995-12-12 1998-06-23 Conagra Frozen Foods Microwave cooking container for food items
US6607764B1 (en) * 1997-12-18 2003-08-19 Karl Keller Ventable, microwave-safe food package
US6380524B1 (en) 1999-08-09 2002-04-30 Karl Keller Microwavable food package having valve and method of use
US6455084B2 (en) * 2000-05-18 2002-09-24 John Jay Johns Microwavable steamer bags
US20030049354A1 (en) * 2001-08-27 2003-03-13 R. Charles Murray Packaging for use in heating food in a microwave oven and method of use
US20080138474A1 (en) * 2001-08-27 2008-06-12 Pouch Pac Innovations, Llc Heatable package with multi-purpose valve and method of manufacture
US20060127549A1 (en) * 2001-08-27 2006-06-15 Murray R C Heatable package with frangible seal and method of manufacture
US20070284369A1 (en) * 2001-08-27 2007-12-13 Ppi Technologies, Inc. Packaging for use in heating food in a microwave oven and method of use
US20070125430A1 (en) * 2003-10-16 2007-06-07 Murray R C Packaging release valve for microwavable food items
US20050199617A1 (en) * 2004-03-09 2005-09-15 Richardson Michael D. Microwavable metallic container
US20050199619A1 (en) * 2004-03-09 2005-09-15 Michael Richardson Microwavable metallic container
US20070108198A1 (en) * 2004-03-09 2007-05-17 Ball Corporation Microwavable Metallic Container
US20070108197A1 (en) * 2004-03-09 2007-05-17 Ball Corporation Microwavable Metallic Container
US20070102425A1 (en) * 2004-03-09 2007-05-10 Ball Corporation Microwavable Metallic Container
US7112771B2 (en) 2004-03-09 2006-09-26 Ball Corporation Microwavable metallic container
US20070284368A1 (en) * 2004-03-09 2007-12-13 Ball Corporation Microwavable Metallic Container
US8080770B2 (en) 2004-03-09 2011-12-20 Ball Corporation Microwavable metallic container
US7378625B2 (en) 2004-03-09 2008-05-27 Ball Corporation Microwavable metallic container
US20070108196A1 (en) * 2004-03-09 2007-05-17 Ball Corporation Microwavable Metallic Container
US7812292B2 (en) 2004-03-09 2010-10-12 Ball Corporation Microwavable metallic container
US10017317B2 (en) 2005-04-28 2018-07-10 Torus Pak Research And Development S.A.R.L. Food package and method for transfer of food
US20080069485A1 (en) * 2006-09-19 2008-03-20 France David W Food product, cooking apparatus, and storing device
US20090311396A1 (en) * 2008-06-12 2009-12-17 Ilan Zadik Samson Cooking accessory and method
US8318227B2 (en) * 2008-06-12 2012-11-27 Ilan Zadik Samson Cooking accessory and method
US9162809B2 (en) * 2010-05-27 2015-10-20 Torus Pak Research And Development S.A.R.L. Food package with supplementary food container
US20140065265A1 (en) * 2012-09-06 2014-03-06 Frito-Lay North America, Inc. Package for Microwaving Dry Foods
US9193515B2 (en) * 2012-09-06 2015-11-24 Frito-Lay North America, Inc. Package for microwaving dry foods
US20140166644A1 (en) * 2012-11-19 2014-06-19 Alan Troy Hale Radiation-shielding container
US20170280930A1 (en) * 2013-03-15 2017-10-05 Simple Wise Designs, LLC Microwavable Cooking Sheet, System and Method

Similar Documents

Publication Publication Date Title
US3854023A (en) Microwave oven heating member
US3985991A (en) Methods of microwave heating in metal containers
US4439656A (en) Apparatus and method for the reconstitution of frozen foods in a microwave oven
US3985990A (en) Microwave oven baking utensil
US3731037A (en) Microwave kiln to cook food
US4103431A (en) Microwave drying
US4280032A (en) Egg cooking in a microwave oven
US3881027A (en) Method of microwave baking
JPS61165526A (en) Heat-cooking vessel for microwave oven
US2915397A (en) Cooking device and method
JPS6470378A (en) Throwaway vessel for food
BR102019007157B1 (en) Device and method for microwave heating with inversion
US3667452A (en) Container for the preservation and consumption of different cooked foods
JPH0249611A (en) Vessel for cooking food with microwave oven
JPS61135615A (en) Cooking container for electronic range
KR0177173B1 (en) Frozen cooked noodle placing in the tray for cooking in oven or oven toaster
EP1159856B1 (en) Heating a product intended for consumption in a microwave apparatus
JP7292911B2 (en) Food container and microwave heating method
US6066840A (en) Apparatus for controlling the temperature of food in a casserole dish and method for controlling the temperature of food in a casserole dish
KR102486358B1 (en) cooking container for microwave
US3433652A (en) Package for foodstuffs
JP3334097B2 (en) Cooking utensils such as cooked rice
JPH0425988Y2 (en)
JPH0240855Y2 (en)
JPH05503433A (en) microwave cooking kit

Legal Events

Date Code Title Description
PS Patent suit(s) filed