US3852857A - Textile fluid crimping apparatus - Google Patents

Textile fluid crimping apparatus Download PDF

Info

Publication number
US3852857A
US3852857A US00250204A US25020472A US3852857A US 3852857 A US3852857 A US 3852857A US 00250204 A US00250204 A US 00250204A US 25020472 A US25020472 A US 25020472A US 3852857 A US3852857 A US 3852857A
Authority
US
United States
Prior art keywords
yarn
fluid
jet
bore
forwarding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00250204A
Inventor
F Ethridge
M Taylor
S Thompson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese Corp
Original Assignee
Fiber Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fiber Industries Inc filed Critical Fiber Industries Inc
Priority to US00250204A priority Critical patent/US3852857A/en
Priority to JP48048561A priority patent/JPS4941659A/ja
Priority to DE2322160A priority patent/DE2322160A1/en
Priority to NL7306158A priority patent/NL7306158A/xx
Priority to CA170,352A priority patent/CA991831A/en
Priority to BR3242/73A priority patent/BR7303242D0/en
Priority to FR7316140A priority patent/FR2183264B1/fr
Priority to US05/505,717 priority patent/US3977059A/en
Application granted granted Critical
Publication of US3852857A publication Critical patent/US3852857A/en
Assigned to CELANESE CORPORATION A DE CORP reassignment CELANESE CORPORATION A DE CORP ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: FIBER INDUSTRIES INC
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/12Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using stuffer boxes

Definitions

  • EXAMPLE VI A 1000 denier/68 filament drawn polyester yarn prepared from the ester of terephthalic acid and 1.3 butanediol is textured in the apparatus of this invention. Air at 750F and 80 pounds per square inch gauge is supplied to the forwarding jet while air at ambient temperatures and pressures of about 40 pounds per square inch gauge is supplied to'the braking jet. Employing a 14.3% overfeed, a textured yarn of 1300 denier and 40% crimp is obtained.
  • the phrase percent crimp as employed herein defines a measurement of the relaxed steamed length compared with extended steam length of textured yarns which have been steamed to develop recoverable latent crimp.
  • the testing procedure involves 110cm. sample lengths of yarn which are formed into bundles and placed into a steam bath for a period of about 5 minutes. The samples are then dried and conditioned at about 70F and about 65 relative humidity for about 5 minutes.

Abstract

Process and apparatus for crimping filamentary material, the process comprising forcing hot fluid entrained yarn into a crimping chamber in one direction, forcing cold fluid into the crimping chamber from an opposite direction and exhausting both fluids from the crimping chamber either radially and/or axially. The apparatus employs a crimping chamber having axially aligned entrance and exit portions and means within the crimping chamber for radially exhausting fluids.

Description

Unite States Patent 11 1 Ethridge et al.
1 Dec. 10, 1974 TEXTILE FLUID CRlMPlNG APPARATUS Inventors: Frederick Allen Ethridge; Michael Paul Taylor; Scott Winfield Thompson, all of Charlotte, NC.
Fiber Industries, Inc., Charlotte, N.C.
Filed: May 4, 1972 Appl. No.: 250,204
Assignee:
US. Cl 28/13, 28/l.4, 28/l.6 Int. Cl. D02g 1/20, D02g 1/16, D02g l/l2 Field of Search 28/1.4, 1.3, 1.6
References Cited UNITED STATES PATENTS 6/1972 Castelli 28/l.6 X 4/1973 Ohayon 28/].4
5/l973 Kosaka et al. 28/l.4 X 12/1973 7 Newton 28/].6
Primary Examiner-Louis K. Rimrodt Attorney, Agent, or Firm-Thomas J. Morgan; Robert J. Blanke [5 7] ABSTRACT 8 Claims, 3 Drawing Figures IIIIIIIIIIIII 'AHHHHHHHI'III" v,
This invention relates to the fluid compression of fibrous masses and more particularly to controlled pneumatic stuffer box compression of fibrous masses.
Compressed strand treatment processes wherein the strand is passed through a phase as a compressed fibrous mass for purposes of obtaining a crimped, bulked yarn are wellknown as exemplified by mechanical stuffer box crimping, representative of which is the mechanical stuffer box crimping disclosed in U.S. Pat. No.
3,605,221. In such a system, filaments are forced by means of a pair of nip rolls into a confined area, the confined area or stuffer chamber being formed by doctor blades which make up opposing side walls and stationary back plates. Compression of the fibrous mass which results in crimp, is produced by the nip rolls forcing the filamentary material into the stuffer chamber. On reaching a pre-determined pressure, the doctor blades diverge and release filamentary material. Me: chanical stuffer box crimping while producing a satisfactory end product, lacks processing speed and moreover, the crimped, bulked yarn exhibits certain nonuniformities due to the withdrawal of the yarn over the high friction mechanical restraints present at the exit portion of mechanical stuffer box crimping.
Attempts have been made to overcome the limitations of mechanical stuffer box crimpers by the application of fluid feed or restraint of the yarn plugged in the stuffer box crimping chamber. Exemplary of fluid feed stuffer box crimping are U.S. Pat. No. 3,343,240 and East German Pat. No. l7786. In pneumatic feed stuffer box crimping, filamentary material is fed by means of a fluid under pressure which is preferably hot, into a passageway which subsequently flares into a crimping chamber which may have gas permeable walls to allow radial escape of the texturing fluid while retaining the yarn causing a reduction in yarn running speeds, thereby producing a yarn accumulation or a plug. Yarn, when extractedfrom this plug, is found tohave a desirable degree of crimp; however, a primary difficulty is induced by the need to employ a heated fluid as a filament transfer medium in order to compensate for the lower compaction forces, and to produce sufficient crimp. As a result, the compressed mass must be subjected to special handling on withdrawal from the compression zone to prevent removal of crimp from the still plastic yarn.
Exemplary of efforts to retain the high compression nip roll feed of standard mechanical stuffer box apparatus while employing a fluid pressure to obtaina plug or strand accumulation is US. Pat. No. 3,435,497. How ever, the forces which a nip roll feed exert on a yarn plug are so great so as to prevent a fluid back pressure from successfully exerting a compressive force. Therefore, in order to obtain satisfactory crimping pressures, it is still necessary to employ a high friction mechanical restraint in addition to the pneumatic back pressures, and hence, the same deficiencies which are present in a standard mechanical stuffer box crimping device are still present. As can be seen from the aforementioned pneumatic, mechanical and combination stuffer box crimping apparatus, the continuous transfer of the extended running strand to the head of the compressed mass is easily done. However, the retention of the terminus of the mass with uniform compression while simultaneously extracting and re-extending the strand gives rise to manydifficulties, common among which is the frictional restraint on the yarn plug. Frictional restraint produces a stick-slip motion of the yarn; that is to say, the yarn is either moving freely, resulting in 'uncrimped areas, or being subjected to compressive forces which result in highly crimped areas. The overall result of frictional restraint is a lack of crimp uniformity in the yarn.
It is therefore an object of this invention to provide a process for pneumatic stuffer box crimping of yarn by uniformly compressing the yarn mass while simultaneously and uniformly extracting and re-extending the strand.
It is an additional object of this invention to provide an apparatus for pneumatic stuffer box crimping of yarn wherein the means for uniformly compressing the yarn mass simultaneouslycools the yarn mass.
These and other objects of the invention will be more readily apparent from the following detailed discussion.
In accordance with the present invention, it has now been discovered that a fully pneumatic stuffer box crimping process may be employed for the high speed production of uniformly bulked yarn having desirable crimp form. The apparatus employed comprises a hot, fluid yarn forwarding jet secured to a crimping chamher having fluid openings, such as perforations, therein. Yarn which has been entrained by the hot fluid carried through the yarn processing bore of the yarn forwarding jet into the crimping chamber is caused to undergo a reduction in velocity due to the change in the vector forces of the hot fluid, thereby forming a yarn plug. The exit portion of the crimping chamber is secured to a cold fluid yarn braking jet which causes a cooling fluid to flow into the crimping chamber through the yarn plug. The cooling fluid has the ability to set the yarn in its crimped configuration and provide adequate back pressure to provide crimp producing plug compression. The back pressure provided by'the cold fluid, however, is not a frictional restraint such as will result in a stickslip motion of the yarn with resultant crimp nonuniformity. The hot fluid and the cooling fluid may be either radially and/or axially exhausted.
The yarn forwarding jet preferably has an elongated bore downstream of the fluid entry ports which are symmetrically arranged at a forwarding angle to the longitudinal axis of the bore. The purpose of the elongated bore is to effect a heat transfer between the fluid and the yarn and apparently initiates a minor crimp in the yarn by subjecting the yarn to fluid turbulence. The bore diameter of the yarn forwarding jet is preferably smaller than the bore diameter of the yarn braking jet in order to cause suchaxial exhaust as does occur to flow primarily out of the yarn bore of the yarn braking jet. It is also preferred that the crimping chamber be enclosed in a shroud having a downwardly directed duct for purposes of preventing the releaseof fluid entrained yarn finishes into the atmosphere.
The hot fluid suitable for use in conjunction with this invention may be hot air, steam or hot, inert gases such as nitrogen. Correspondingly, the cold fluid media for purposes of this invention may be cold gases such as cold air, or cold nitrogen. Filamentary materials suitable for processing in accordance with this invention are any thermoplastic filamentary materials such as polyamides, polyesters, cellulose ethers and esters,
polyolefins, acrylic and vinyl polymers.
A better understanding of the invention may be had from the drawings wherein:
FIG. 1 is a cross-section view of the pneumatic stuffer box apparatus of this invention;
FIG. 2 is an exploded view, less shroud member, of the pneumatic stuffer box crimping apparatus of this invention;
FIG. 3 is a schematic view of an apparatus arrangement using the pneumatic .stuffer box of this invention.
Turning to FIG. 1, a yarn forwarding jet is housed within a heated, fluid plenum chamber housing 2 which for ease of contruction is composed of cover plate member 3 and body member 4. Body member 4 contains fluid feed line 6 which' feeds fluid to plenum chamber 7. Fluid entry ports 8 are symmetrically disposed in yarn forwarding jet 1 at an acute forwarding angle to the longitudinal axis of yarn processing bore 9. Yarn processing bore 9 is flared at its downstream extremity, that portion of yarn processing bore lying between said flared portion and the fluid entry port 8 being elongated and comprising the major portion of the total length of yarn processing bore 9. Yarn forwarding jet 1 is secured to bulking chamber 10, which in turn is secured to yarn braking jet ll. Crimping chamber 10 has perforations ll radially disposed in the walls so as to exhaust gases issuing from yarn forward- 1 ing jet 1 and yarn braking jet 11. The geometry of bulking chamber 10 may be better seen from FIG. 2 of the drawings. A shroud member 12 preferably encloses crimping chamber 10, shroud member 12 having a duct 13 at the bottom thereof for removal of any yarn finishes and the like which may be entrained by exhausting fluids. Shroud member 12 is conveniently secured to retaining members 14 and plenum housing 15. Plenum housing 15 has fluid supply line 16 secured thereto for passage of cold fluid to plenum chamber 17. Yarn braking jet 11 has fluid entry ports 18 symmetrically disposed in yarn braking jet 11 at an acute braking angle to the longitudinal axis of yarn processing bore 19.
A yarn processing sequence in simplified form is set forth in FIG. 3 of the drawings wherein yarn is taken from a drawn yarn supply package and passed over a set of tensioning rolls 32 and then into a pneumatic crimper 33, wherein a heating fluid is fed into feed line 34 and a cooling fluid is fed into feedline 35, both the fluids and the entrained yarn finishes being exhausted through duct member 36. Yarn emerging from fluid crimping device 33 is in a set, crimped configuration and is passed over a second set of tensioning rolls 37 and then onto a take-up bobbin 38.
The processing sequence may be better understood from the following specific examples. While the examples are primarily directed to texturing fully drawn yarns, it should be understood that yarns in any stage subsequent to texturing may be employed, whereby drawing may be accomplished in conjunction with texturing operations in either continous or discontinuous operations. It should also be understood that the examples are given for purposes of illustration and should not be construed as limiting the spirit or scope of this invention.
EXAMPLE I A nylon 66 yarn having a T-cross section and a denier of 8620 and 136 filaments is drawn over a pin heated to 1 10C at a speed of 2090 feet per minute so as to produce a 2145 denier, 136 filament yarn. The drawn yarn is taken up on a supply package as illustrated in FIG. 3 of the drawings and then fed into the pneumatic crimping device of the invention at 33.2% overfeed The yarn forwarding jet employs yarn processing bore diameters of .030 inch and .070 inch, the latter being of course, the downstream diameter. Four equally spaced .020 inch diameter fluid entry ports are employed in the yarn forwarding jet. The crimping chamber is 1.125 inches long and has a inch inside diameter with 96 holes of .031 inch diameter disposed therein. The forwarding jet is supplied with steam at pounds per square inch gauge at 375C while the yarn braking jet is supplied with ambient temperature air at 40 pounds per square inch gauge. The final product is found to have a denier of 2750 and 33.5% crimp.
EXAMPLE II An 8620 denier/136 filament nylon 66 T-cross section yarn is spunand drawn at 2090 feet per minute to produce a 2145 denier 136 filament yarn which is taken up on the feed package as illustrated in FIG. 3. As further illustrated in FIG. 3, the yarn is fed to the pneumatic stuffer box crimper of this invention and textured at 41.6% overfeed using air at 180 pounds per square inch gauge and 428C temperature as the hot fluid. Air at ambient temperatures is employed as the cooling fluid at 60 pounds per square inch gauge. The resulting textured yarn is found to have a denier of 2750 and a 40% crimp.
EXAMPLE 111 Using the process substantially as illustrated in FIG. 3 of the drawings, a 2176 denier/138 filament nylon 66 yarn is wound on a supply package, the yarn having been spun as 8745 denier/138 filament T-cross section, drawn at 2090 feet per minute. The yarn is fed from the supply package to the pneumatic stuffer box crimper of this invention at a 33% overfeed. Steam at 135 pounds per square inch gauge and 385C is fed to the forwarding jet. Air at ambient temperatures and 60 pounds per square inch gauge is fed to the braking jet. The end product is a textured yarn having about 35% crimp.
EXAMPLE IV A polyethylene terephthalate yarn having 8.4 grams per denier tenacity and 13.2% elongation at break was EXAMPLE V A 4000 denier/68 filament T-cross section, nylon 6 yarn is spun and drawn' at 2060 feet per minute using.
a cold draw roll. The drawn yarn is then fed into the stuffer box crimper of this invention at 42% overfeed. Hot air at pounds per square inch gauge and 1000F is supplied to the forwarding jet. A braking jet is supplied with air at ambient temperatures and 60 pounds per square inch gauge pressure. A textured yarn of 1350 denier and 37.5% crimp is obtained.
EXAMPLE VI EXAMPLE VII A 1000 denier/68 filament drawn polyester yarn prepared from the ester of terephthalic acid and 1.3 butanediol is textured in the apparatus of this invention. Air at 750F and 80 pounds per square inch gauge is supplied to the forwarding jet while air at ambient temperatures and pressures of about 40 pounds per square inch gauge is supplied to'the braking jet. Employing a 14.3% overfeed, a textured yarn of 1300 denier and 40% crimp is obtained.
The phrase percent crimp as employed herein defines a measurement of the relaxed steamed length compared with extended steam length of textured yarns which have been steamed to develop recoverable latent crimp. The testing procedure involves 110cm. sample lengths of yarn which are formed into bundles and placed into a steam bath for a period of about 5 minutes. The samples are then dried and conditioned at about 70F and about 65 relative humidity for about 5 minutes. The samples are then weighted with a 7.25 X per denier weight for about one minute and the length measured, the measurement being defined as L, The 7.25 X 10 grams per denier weight is then removed and a weight of .15 grams per denier is placed on the end of the sample for about seconds and the sample length again measured and recorded as L Percent crimp is then calculated as (L L1)'/L X 100.
Having thus disclosed the invention, we claim: 1. Apparatus for fluid crimping yarn comprising a yarn forwarding jet having a hot fluid supply connected thereto, said yarn forwarding jet having an elongated bore, the length of the bore being sufficient to effect a heat transfer between yarn processing fluid and the yarn, a yarn braking jet having a cold fluid supply connected thereto and a compaction chamber disposed intermediate and in contact with said forwarding jet and said braking jet, said compaction chamber having a means for exhausting said hot gas and said cold gas, whereby a yarn plug which has formed in said chamber is subjected to a cooling fluid flow from said braking jet to provide crimp-producing plug compression and to set said yarn in its crimped configuration without stickslip motion of the yarn.
I 2. The apparatus of claim 1 wherein said exhausting means radially exhaust said hot gas and said cold gas.
3. The apparatus of claim 2 wherein said yarn forwarding jet has a yarn processing bore, the downstream portion of which is flared,- whereby the formation of a yarn plug will not substantially impede the flow of fluid.
4. The apparatus of claim 1 wherein said compaction chamber has a plurality of gas exhausting perforations therein.
5. The apparatus of claim 4 wherein said perforations are sufficiently small to prevent filaments from being entrained by exhausting gas.
6. The apparatus of claim 1 wherein said compaction chamber is surrounded by a shroud member whereby yarn finishes carried off by exhausting fluids will not be discharged into the atmosphere.
7. The apparatus of claim 1 wherein said forwarding jet has fluid entry ports which are symetrically arranged at a forwarding angle to the longitudinal axis of the said elongated bore said fluid entry ports conducting hot fluid from said hot fluid supply to said elongated bore.
8. The apparatus of claim 1 wherein the bore diameter of said yarn forwarding jet is smaller than the bore diameter of said yarn braking yet.
I UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent 2 I 9%? 927 Dated June 2 I 1975 lnvent fl Frederick Allen Ethridge; Michael Paul Taylor;
Scott Winfield Thompson It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
[75] Inventor: Cancel the word "Frederick" and substitute therefore the word Fredrick Signed and Scaled this twenty-ninth Day Of July 1975 [SEAL] Attest:
RUTH C. MASON C. MARSHALL DANN iltcsting Officer (mnmissiunor nj'lunnls and Tradcmurks

Claims (8)

1. Apparatus for fluid crimping yarn comprising a yarn forwarding jet having a hot fluid supply connected thereto, said yarn forwarding jet having an elongated bore, the length of the bore being sufficient to effect a heat transfer between yarn processing fluid and the yarn, a yarn braking jet having a cold fluid supply connected thereto and a compaction chamber disposed intermediate and in contact with said forwarding jet and said braking jet, said compaction chamber having a means for exhausting said hot gas and said cold gas, whereby a yarn plug which has formed in said chamber is subjected to a cooling fluid flow from said braking jet to provide crimp-producing plug compression and to set said yarn in its crimped configuration without stick-slip motion of the yarn.
2. The apparatus of claim 1 wherein said exhausting means radially exhaust said hot gas and said cold gas.
3. The apparatus of claim 2 wherein said yarn forwarding jet has a yarn processing bore, the downstream portion of which is flared, whereby the formation of a yarn plug will not substantially impede the flow of fluid.
4. The apparatus of claim 1 wherein said compaction chamber has a plurality of gas exhausting perforations therein.
5. The apparatus of claim 4 wherein said perforations are sufficiently small to prevent filaments from being entrained by exhausting gas.
6. The apparatus of claim 1 wherein said compaction chamber is surrounded by a shroud member whereby yarn finishes carried off by exhausting fluids will not be discharged into the atmosphere.
7. The apparatus of claim 1 wherein said forwarding jet has fluid entry ports which are symetrically arranged at a forwarding angle to the longitudinal axis of the said elongated bore said fluid entry ports conducting hot fluid from said hot fluid supply to said elongated bore.
8. The apparatus of claim 1 wherein the bore diameter of said yarn forwarding jet is smaller than the bore diameter of said yarn braking yet.
US00250204A 1972-05-04 1972-05-04 Textile fluid crimping apparatus Expired - Lifetime US3852857A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US00250204A US3852857A (en) 1972-05-04 1972-05-04 Textile fluid crimping apparatus
DE2322160A DE2322160A1 (en) 1972-05-04 1973-05-02 PROCESS FOR CURLING FEMES BY THE EFFECT OF FLUID AND DEVICE FOR THIS
JP48048561A JPS4941659A (en) 1972-05-04 1973-05-02
CA170,352A CA991831A (en) 1972-05-04 1973-05-03 Textile fluid crimping process and apparatus
NL7306158A NL7306158A (en) 1972-05-04 1973-05-03
BR3242/73A BR7303242D0 (en) 1972-05-04 1973-05-04 TORCHING PROCESS THROUGH FLUID TEXTILE MATERIAL AND APPARATUS
FR7316140A FR2183264B1 (en) 1972-05-04 1973-05-04
US05/505,717 US3977059A (en) 1972-05-04 1974-09-13 Textile fluid crimping process and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00250204A US3852857A (en) 1972-05-04 1972-05-04 Textile fluid crimping apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/505,717 Division US3977059A (en) 1972-05-04 1974-09-13 Textile fluid crimping process and apparatus

Publications (1)

Publication Number Publication Date
US3852857A true US3852857A (en) 1974-12-10

Family

ID=22946732

Family Applications (1)

Application Number Title Priority Date Filing Date
US00250204A Expired - Lifetime US3852857A (en) 1972-05-04 1972-05-04 Textile fluid crimping apparatus

Country Status (7)

Country Link
US (1) US3852857A (en)
JP (1) JPS4941659A (en)
BR (1) BR7303242D0 (en)
CA (1) CA991831A (en)
DE (1) DE2322160A1 (en)
FR (1) FR2183264B1 (en)
NL (1) NL7306158A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956807A (en) * 1975-05-02 1976-05-18 Eastman Kodak Company Jet apparatus for forwarding and entangling tow
US3982310A (en) * 1973-12-07 1976-09-28 Imperial Chemical Industries Yarn crimping process and apparatus
US3983610A (en) * 1974-10-24 1976-10-05 Akzona Incorporated Apparatus for producing textured yarn
US4095317A (en) * 1974-10-24 1978-06-20 Akzona Incorporated Process for producing textured yarn
US4100659A (en) * 1974-03-05 1978-07-18 Basf Aktiengesellschaft Process for texturizing filaments
US4261084A (en) * 1977-05-17 1981-04-14 Neumuenstersche Maschinen Und Apparatebau Gesellschaft Mbh. Device for crimping synthetic plastic fibers
US4268940A (en) * 1978-05-16 1981-05-26 Teijin Limited Process and apparatus for crimping filament yarn
US4521945A (en) * 1978-12-27 1985-06-11 Akzona Incorporated Yarn bulking jet
US4782566A (en) * 1985-07-15 1988-11-08 Maschinenfabrik Rieter Ag Method of texturizing continuous filament threads
US4809412A (en) * 1985-12-04 1989-03-07 E. I. Du Pont De Nemours And Company Apparatus for producing a novelty nub yarn
US4949441A (en) * 1989-10-13 1990-08-21 Ethridge Fredrick A Polylaminar apparatus for fluid treatment of yarn
US5035110A (en) * 1985-12-04 1991-07-30 E. I. Du Pont De Nemours And Company Nub yarn

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2709680C2 (en) * 1977-03-05 1985-07-18 Basf Farben + Fasern Ag, 2000 Hamburg Process for the removal of textured yarns

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3669328A (en) * 1969-06-21 1972-06-13 Luigi Castelli Yarn feeding and tensioning apparatus
US3727275A (en) * 1970-06-18 1973-04-17 Rhodiaceta Process and apparatus for interlacing strands
US3729831A (en) * 1970-12-07 1973-05-01 Mitsubishi Rayon Co Process and apparatus for continuously relaxing textile yarns
US3778872A (en) * 1971-04-12 1973-12-18 Phillips Petroleum Co Method and apparatus for texturing yarn

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH527931A (en) * 1970-12-16 1972-09-15 Neumuenster Masch App Device for crimping threads

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3669328A (en) * 1969-06-21 1972-06-13 Luigi Castelli Yarn feeding and tensioning apparatus
US3727275A (en) * 1970-06-18 1973-04-17 Rhodiaceta Process and apparatus for interlacing strands
US3729831A (en) * 1970-12-07 1973-05-01 Mitsubishi Rayon Co Process and apparatus for continuously relaxing textile yarns
US3778872A (en) * 1971-04-12 1973-12-18 Phillips Petroleum Co Method and apparatus for texturing yarn

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982310A (en) * 1973-12-07 1976-09-28 Imperial Chemical Industries Yarn crimping process and apparatus
US4100659A (en) * 1974-03-05 1978-07-18 Basf Aktiengesellschaft Process for texturizing filaments
US3983610A (en) * 1974-10-24 1976-10-05 Akzona Incorporated Apparatus for producing textured yarn
US4095317A (en) * 1974-10-24 1978-06-20 Akzona Incorporated Process for producing textured yarn
US3956807A (en) * 1975-05-02 1976-05-18 Eastman Kodak Company Jet apparatus for forwarding and entangling tow
US4261084A (en) * 1977-05-17 1981-04-14 Neumuenstersche Maschinen Und Apparatebau Gesellschaft Mbh. Device for crimping synthetic plastic fibers
US4268940A (en) * 1978-05-16 1981-05-26 Teijin Limited Process and apparatus for crimping filament yarn
US4521945A (en) * 1978-12-27 1985-06-11 Akzona Incorporated Yarn bulking jet
US4782566A (en) * 1985-07-15 1988-11-08 Maschinenfabrik Rieter Ag Method of texturizing continuous filament threads
US4809412A (en) * 1985-12-04 1989-03-07 E. I. Du Pont De Nemours And Company Apparatus for producing a novelty nub yarn
US5035110A (en) * 1985-12-04 1991-07-30 E. I. Du Pont De Nemours And Company Nub yarn
US4949441A (en) * 1989-10-13 1990-08-21 Ethridge Fredrick A Polylaminar apparatus for fluid treatment of yarn
WO1991005894A1 (en) * 1989-10-13 1991-05-02 Fredrick Allen Ethridge Polylaminar apparatus for fluid treatment of yarn

Also Published As

Publication number Publication date
JPS4941659A (en) 1974-04-19
NL7306158A (en) 1973-11-06
DE2322160A1 (en) 1973-12-13
FR2183264A1 (en) 1973-12-14
CA991831A (en) 1976-06-29
FR2183264B1 (en) 1977-04-29
BR7303242D0 (en) 1974-07-25

Similar Documents

Publication Publication Date Title
US3852857A (en) Textile fluid crimping apparatus
US3009309A (en) Fluid jet twist crimping process
US3343240A (en) Method and apparatus for bulking synthetic fibers
US3380242A (en) Yarn and method of making same
US3286321A (en) Method of treating multifilament yarn
US3703754A (en) Process for producing textured thermoplastic yarns
US3296677A (en) Crimping apparatus and process
US3389444A (en) Apparatus for entangling multifilament yarns
US3438101A (en) Process and apparatus for texturizing yarn
US3832759A (en) Process and apparatus for texturizing yarn
US3703753A (en) Method for producing a bulked yarn and apparatus therefor
US3340585A (en) Yarn crimping method and apparatus
US3256582A (en) Apparatus and method for bulking yarn
US4059068A (en) Apparatus for treating filamentary products
US3977059A (en) Textile fluid crimping process and apparatus
US3372446A (en) Jet crimping and texturizing apparatus
US3895420A (en) Process for crimping filaments and yarns
US3644968A (en) Apparatus for relaxing yarns
US3831231A (en) Method for producing a yarn having latent bulking characteristics
US4020196A (en) Process for treating filamentary products
US3413697A (en) Apparatus for production of high-shrink yarn
US4074405A (en) Apparatus for texturizing yarn
US3478401A (en) Method and apparatus for treating textile yarn
US4133087A (en) Method and apparatus for texturizing continuous filaments
US4030169A (en) Method and apparatus for treating yarn

Legal Events

Date Code Title Description
AS Assignment

Owner name: CELANESE CORPORATION A DE CORP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FIBER INDUSTRIES INC;REEL/FRAME:004239/0763

Effective date: 19841230