US3852729A - Flame failure controls - Google Patents

Flame failure controls Download PDF

Info

Publication number
US3852729A
US3852729A US00338540A US33854073A US3852729A US 3852729 A US3852729 A US 3852729A US 00338540 A US00338540 A US 00338540A US 33854073 A US33854073 A US 33854073A US 3852729 A US3852729 A US 3852729A
Authority
US
United States
Prior art keywords
flame
sensor
circuitry
output device
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00338540A
Inventor
P Cade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fireye Inc
Original Assignee
Electronics Corp of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics Corp of America filed Critical Electronics Corp of America
Priority to US00338540A priority Critical patent/US3852729A/en
Priority to CH265174A priority patent/CH587448A5/xx
Priority to GB908974A priority patent/GB1448776A/en
Priority to BE141588A priority patent/BE811804A/en
Priority to DE2409939A priority patent/DE2409939A1/en
Priority to CA194,057A priority patent/CA1036245A/en
Priority to FR7407663A priority patent/FR2220824B1/fr
Application granted granted Critical
Publication of US3852729A publication Critical patent/US3852729A/en
Assigned to ELECTRONICS CORPORATION OF AMERICA, A CORP. OF DE reassignment ELECTRONICS CORPORATION OF AMERICA, A CORP. OF DE CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). NOVEMBER 25, 1986, DELAWARE Assignors: ELECTRONICS CORPORATION OF AMERICA (MERGED INTO), NELCOA, INC., (CHANGED TO)
Assigned to ALLEN-BRADLEY COMPANY, INC., A CORP. OF WI reassignment ALLEN-BRADLEY COMPANY, INC., A CORP. OF WI MERGER (SEE DOCUMENT FOR DETAILS). SEPTEMBER 28, 1988 DE Assignors: ELECTRONICS CORPORATION OF AMERICA
Assigned to FIREYE, INC., A CORP. OF DE reassignment FIREYE, INC., A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ALLEN-BRADLEY COMPANY, INC., A CORP. OF WI
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/1407Combustion failure responsive fuel safety cut-off for burners

Definitions

  • a flame failure transition responsive circuit is connected in series between the photo- References Cited conductor and the flame relay and responds to an UNITED ST PATENTS abrupt decrease in the flame signal to insure dropout 2,748,846 6/1956 Smith et a1 431/79 of the flame f 3,651,327 3/1972 Thomson 431/79 12 Claims, 2 Drawing Figures l4 ⁇ TN L IOOK I/Quf //2/2AXZ4 /zAxm 1O 560K? gig/w I (g l l 4.7K 30 i 4.
  • This invention relates to electrical control circuitry and more particularly to control circuitry particularly adapted for use in combustion supervision systems.
  • control systems of the type employed for the supervision of flame in a combustion chamber the system arrangement must reliably and accurately indicate the presence or absence of flame, the absence of flame being promptly detected so that thefuel valve may be closed quickly, thus preventing an excessive amount of unburned fuel from'accumulating in the combustion chamber.
  • Known types of combustion supervision systems monitor the flame by sensing a fluctuating characteristic.
  • the fluctuating characteristic of the flame enables discrimination against steady state sources of similar radiation such as the incandescent refractory in the combustion chamber.
  • the steady state radiation from such sources may be modulated, for example a shimmering effect due to flow of air in the combustion chamber, or spraying of unignited oil into the combustion chamber. In such cases.
  • a fluctuating radiation signal may be sensed which causes the control circuit toerroneously indicate the presence of flame.
  • Another object of the invention is to provide novel and improved combustion supervision circuitry particularly useful with flame sensors responsive to infrared radiation.
  • Still another object of the invention is to provide novel and improved combustion supervision circuitry which provides improved discrimination between flame signals and spurious modulated radiation.
  • a condition responsive system comprising a condition sensor which produces an outputsignal in response to the sensed radiation that has a fluctuating characteristie, and signal processing circuitry responsive to the fluctuating characteristic of the output signal produced by the condition sensor for controlling an output device arranged to assume a first state indicative of the presence of the condition being sensed when the sensor senses that condition and a second state indicative of the absence of the condition when the sensor does not sense that condition.
  • the system includes circuitry responsive to an abrupt change in the magnitude of the output signal produced by the condition sensor for overriding the signal processing circuitry and placing the output device in its second stage, notwithstanding production by the condition sensor of a fluctuating output signal to which the signal processing circuitry would respond.
  • the abrupt change responsive circuitry responds to a change from a flame present to a flame absent condition (e.g., flame failure).
  • the circuitry not responding to a signal change from flame absence to flame presence such as occurs on startup of the burner system.
  • the output device for example. the flame relay
  • the system thus responds to the flame failure transition and overrides the discriminator circuitry that is responsive to the fluctuating signal characteristic and provides prompt, reliable response to the flame failure condition.
  • the flame failure transition responsive circuitry is connected either in series or in shunt with the frequency sensitive (discriminator) circuitry, and includes a re sistance-capacitance network that generates an override signal.
  • An asymmetrically conductive device is connected to the network such that the override signal is produced on flame failure transitions but not on flame startup transitions.
  • This invention has particular utility in conjunction with combustion control systems that employ lead sulfide (infrared sensitive) photoconductors in conjunction with band pass amplifiers tuned to pass a band of fluctuating signals in the subaudio region.
  • Flame relays in prior art systems of that type would occasionally hold in due to continued generation by the photoconductor of fluctuating signals in the pass band after the main flame had been extinguished.
  • the flame failure transition responsive circuit is connected in series between the photoconductor and the pass band amplifier and includes a series capacitor,.a shunt resistor and a shunt diode-the time constant of the circuit being selected to block the amplifier for an interval sufficient to insure drop out of the flame relay.
  • This circuit is single component fail safe in that failure of any one of its three components will not cause the flame relay held in.
  • the invention thus provides improved condition responsive system and particularly improved flame supervision systems.
  • Other objects, features and advantages of the invention will be seen as the following descrip tion of particular embodiments progresses, in conjunction with the drawing.
  • FIG. 1 is a schematic diagram of a system in accordance with the invention for supervising the existence of flame in a combustion chamber
  • FIG. 2 is a portion of a modified circuit arrangement.
  • the circuit shown in FIG. 1 includes a flame sensor '10 in the form ofa lead sulflde cell which is positioned to supervise flame from a fuel burner in a combustion chamber that is under supervision.
  • Cell 10 is connected in a voltage divider network that includes resistor 12 between positive bus 14 and grounded bus 16.
  • Bus 14 is connected through diode 18 to tap 20 of the secondary winding of transformer 22.
  • the transformer primary winding (not shown) is connected by convena low impedance shunt path in response to abrupt decreases in the voltage at junction 24 such as occur when flame is sensed.
  • the system includes a frequency selective discriminator circuitry in the form of a high input impedance electronic amplifier which includes a pair of amplifier stages 32, 34. lnterstage coupling capacitors 36, 38 cooperate with feedback circuits that include capacitors 40, 42, 44, 46 to provide a band pass amplifier circuit which, in this embodiment, peaks at about 10 Hertz and has primary response to signals in the -25 Hertz frequency range.
  • the output from coupling capacitor 38 is applied through an integrator circuit which includes resistor 50 and capacitor 52 to a bistable vacuum tube circuit that includes triode stages 60, 62.
  • Tap 70 of the transformer secondary winding is connected to ground bus 16; and a portion 72 of that winding supplies filament voltage.
  • a third tap 74 is connected to the cathode of stage 62 and the anode of stage 60 is connected to tap 74 through resistor 76.
  • the grid of stage 62 is connected directly to the anode of stage 60 and capacitor 78 is connected between the cathode and grid of stage 62.
  • flame relay coil 80 Connected to the anode of stage 62 is flame relay coil 80 which is shunted by capacitor 82.
  • triode stage 62 In operation, with the system in standby condition, triode stage 62 is cut off and relay 80 is de-energized.
  • sensor sees fluctuating infrared radiation from the supervised flame, its resistance drops and is maintained at a low but pulsating value so that the voltage at junction 24 is low and pulsating.
  • diode 30 enables the-charge on capacitor 26 to be dissipated rapidly, the pulsating voltage at junction 24 is then coupled by capacitor 26 to the band pass amplifier; and that amplifier applies a signal to the integrator circuit of resistor 50 and capacitor 52.
  • stage 60 ceases conduction, and causes stage 62 to conduct and energize relay 80 to provide an indication of the presence of the sensed flamecondition.
  • the charge on capacitor 52 will dissipate, allowing the bistable stage 60 to conduct and causing-the stage 62 to cease conduction so that the flame-relay 80 will drop out after a predetermined time delay determined principally by the time constant of the integrator circuit. Should the flame go out, the voltage at junction 24 will rise abruptly. However, a modulated signal may continue to be present, due to continuing fuel spray, for example, and a fluctuating voltage (of much lower magnitude than when flame is sensed, however) will continue to be present at junc-.
  • Network 25 responds to the abrupt transition in voltage level and capacitor 26 applies a positive bias to the grid of tube 32 effectively blocking that amplifier stage and so that no signal is applied to maintain the charge on integrator capacitor 52.
  • the flame relay 80 drops out as it should, terminates the flow of fuel into the combustion chamber by closing the fuel valve, and provides a proper indication of the absence of flame.
  • the blocking condition on tube 32 is maintained by network 25 for a time interval greater than that of the drop out time of flame relay 80.
  • This network is single component fail safe in the system and blocks the spurious modulated signal from the input to the discriminator circuitry for an interval longer than the output relay drop out time.
  • flame signal transition monitoring circuitry is connected in circuit between the photosensor 10 shown in FIG. I and transformer tap 74 (the junction between resistor 76 and capacitor 78).
  • the signal from the photosensor in addition to being coupled by capacitor 26 to the first stage 32 of band pass amplifier, is coupled by capacitor to a time delay network 102 that includes resistor 104, capacitor 106 and diode 108.
  • the output of the time delay network is applied to a programmable unijunction transistor 110 (e.g., type 2N6028) whose control electrode 112 is connected to a voltage divider network that includes resistors I14, 116 That voltage divider network is connected to diode rectifier 118 to tap 74 of the transformer 22 and junction 120 is maintained at about 4 volts.
  • capacitor 106 is charged and triggers put 110 into conduction after a time delay determined by network 102.
  • the resulting signal is applied through resistor 122 to trigger silicon control switch 124 (e.g., type 3N85) and that switch bypasses amplifier stage 60 and places stage 62 in non conducting condition so that flame relay 80 is deenergized and drops out.
  • this time delay network 102 responds to an abrupt increase in the magnitude of signal applied to capacitor 100.
  • the time delay of the override circuitry is independent of the normal drop out time of the flame relay, and may be set to cause drop out of the flame relay in an interval shorter than the normal drop out time provided by the main signal processing circuit between stages 32 and 60.
  • a condition responsive system comprising a radiation sensitive condition sensor for producing an output signal in response to the sensing of a condition to be detected
  • an output device arranged to assume a first state indicative of the condition being sensed when said sensor senses said condition and a second state indicative of the absence of said condition to be sensed when said sensor does not sense said condition
  • discriminator circuitry connecting said sensor and said output device for placing said output device in said first state in response to the production of a fluctuating output signal by said condition sensor
  • circuitry responsive to an abrupt decrease in the condition sensed by said sensor for placing said output device in said second state independent of fluctuations of the signal produced by said sensor.
  • said abrupt decrease responsive circuitry includes time delay circuitry.
  • said discriminator circuitry includes a band pass amplifier tuned to pass signals in the audio and subaudio range, and further including coupling means for applying output signals produced by said condition sensor to said band pass amplifier.
  • a combustion supervision system comprising a flame sensor for producing an output signal in response to the sensing of flame in a supervised combustion chamber
  • an output device arranged to assume a first state indicative of flame when said sensor senses flame and a second state indicative of the absence of flame when said sensor does not sense flame, discriminator circuitry connecting said sensor and said output device for placing said output device in said first state in response to the production of a fluctuating output signal by said flame sensor, and
  • flame failure transition responsive circuitry connected to said flame sensor for placing said output device in said second state in response to an abrupt decrease in flame and independently of fluctuations of the signal produced by said flame sensor.
  • a combustion supervision system comprising a flame sensor for producing an output signal in response to the sensing of flame in a supervised combustion chamber
  • an output device arranged to assume a first state indicative of flame when said sensor senses flame and a second state indicative of the absence of flame when said sensor does not sense flame
  • discriminator circuitry connecting said sensor and sai output device for placing said output device in said first state in response to the production of a fluctuating output signal by said flame sensor
  • flame failure transition responsive circuitry connected to said flame sensor for placing said output device in said second state in response to an abrupt decrease in flame and independently of fluctuations of the signal produced by said flame sensor, said flame failure transition responsive circuitry including time delay circuitry comprising a series capacitor connected in series between said flame sensor and said output device and a circuit of asymmetric resistance characteristics connected in shunt with said flame sensor.
  • said flame sensor is a lead sulfide photocell
  • said discriminator circuitry includes a band pass amplifier tuned to pass signals in the 5-25 Hertz range
  • said output device is the coil of a flame relay, and further including coupling means for applying output signals produced by said photocell to said band pass amplifier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

The invention has particular utility in connection with combustion control systems that employ lead sulfide (infrared sensitive) photoconductors in conjunction with band pass amplifiers. Flame relays in such systems would occasionally hold in after flame failure due to continued generation by the photoconductor of fluctuating signals. A flame failure transition responsive circuit is connected in series between the photoconductor and the flame relay and responds to an abrupt decrease in the flame signal to insure dropout of the flame relay.

Description

ite 10 States Patent [1 1 [in 3, Bade a Dec.3,1974
[ FLAME FAILURE CONTROLS 3,742,474 6/1973 Muller ..340/22s.2
751 lnventor: Philli .Cade w' p J mchester Mass' Primary ExaminerGlen R. Swann, Ill [73] Assrgnee: Electronics Corporation of America, Attorney, Agent, or FirmWillis M. Ertman Cambridge, Mass, [221 Filed: Mar. 6, 1973 ABSTRACT [21] A L NO: 338 The invention has particular utility in connection with pp ,540 combustion control systems that employ lead sulfide (infrared sensitive) photoconductors in Conjunction [52] US. Cl 340/228.2, 307/117, 431/79 with band pass amplifiers. Flame relays in such syslint. Cl. G08b 17/12, F23r 5/08 tems would occasionally hold in after flame failure [58] Field of Search 340/228 R, 228.22, 227 R, due to continued generation by the photoconductor of 340/418; 431/79; 307/117 fluctuating signals. A flame failure transition responsive circuit is connected in series between the photo- References Cited conductor and the flame relay and responds to an UNITED ST PATENTS abrupt decrease in the flame signal to insure dropout 2,748,846 6/1956 Smith et a1 431/79 of the flame f 3,651,327 3/1972 Thomson 431/79 12 Claims, 2 Drawing Figures l4 \TN L IOOK I/Quf //2/2AXZ4 /zAxm 1O 560K? gig/w I (g l l 4.7K 30 i 4. 7K A I L N J PATENTEL BEE 3 74 FIG I Alf FIG 2 1 FLAME FAILURE CONTROLS BACKGROUND OF THE INVENTION This invention relates to electrical control circuitry and more particularly to control circuitry particularly adapted for use in combustion supervision systems.
In control systems of the type employed for the supervision of flame in a combustion chamber, the system arrangement must reliably and accurately indicate the presence or absence of flame, the absence of flame being promptly detected so that thefuel valve may be closed quickly, thus preventing an excessive amount of unburned fuel from'accumulating in the combustion chamber. Known types of combustion supervision systems monitor the flame by sensing a fluctuating characteristic. The fluctuating characteristic of the flame enables discrimination against steady state sources of similar radiation such as the incandescent refractory in the combustion chamber. Upon certain circumstances, however, the steady state radiation from such sources may be modulated, for example a shimmering effect due to flow of air in the combustion chamber, or spraying of unignited oil into the combustion chamber. In such cases. a fluctuating radiation signal may be sensed which causes the control circuit toerroneously indicate the presence of flame.
SUMMARY OF INVENTION It is an object of this invention to provide novel and improved control circuitry useful for supervising fuel burning systems.
Another object of the invention is to provide novel and improved combustion supervision circuitry particularly useful with flame sensors responsive to infrared radiation.
Still another object of the invention is to provide novel and improved combustion supervision circuitry which provides improved discrimination between flame signals and spurious modulated radiation.
In accordance with the invention there is provided a condition responsive system comprising a condition sensor which produces an outputsignal in response to the sensed radiation that has a fluctuating characteristie, and signal processing circuitry responsive to the fluctuating characteristic of the output signal produced by the condition sensor for controlling an output device arranged to assume a first state indicative of the presence of the condition being sensed when the sensor senses that condition and a second state indicative of the absence of the condition when the sensor does not sense that condition. The system includes circuitry responsive to an abrupt change in the magnitude of the output signal produced by the condition sensor for overriding the signal processing circuitry and placing the output device in its second stage, notwithstanding production by the condition sensor of a fluctuating output signal to which the signal processing circuitry would respond.
In combustion supervision systems, the abrupt change responsive circuitry responds to a change from a flame present to a flame absent condition (e.g., flame failure). the circuitry not responding to a signal change from flame absence to flame presence such as occurs on startup of the burner system. In response to the deteeted flame failure transition. the output device (for example. the flame relay) typically closes the fuel valve and takes such other action as determined by the system parameters. The system thus responds to the flame failure transition and overrides the discriminator circuitry that is responsive to the fluctuating signal characteristic and provides prompt, reliable response to the flame failure condition.
In particular combustion supervision embodiments. the flame failure transition responsive circuitry is connected either in series or in shunt with the frequency sensitive (discriminator) circuitry, and includes a re sistance-capacitance network that generates an override signal. An asymmetrically conductive device is connected to the network such that the override signal is produced on flame failure transitions but not on flame startup transitions.
This invention has particular utility in conjunction with combustion control systems that employ lead sulfide (infrared sensitive) photoconductors in conjunction with band pass amplifiers tuned to pass a band of fluctuating signals in the subaudio region. Flame relays in prior art systems of that type would occasionally hold in due to continued generation by the photoconductor of fluctuating signals in the pass band after the main flame had been extinguished. In a preferred em bodiment, the flame failure transition responsive circuit is connected in series between the photoconductor and the pass band amplifier and includes a series capacitor,.a shunt resistor and a shunt diode-the time constant of the circuit being selected to block the amplifier for an interval sufficient to insure drop out of the flame relay. This circuit is single component fail safe in that failure of any one of its three components will not cause the flame relay held in.
The invention thus provides improved condition responsive system and particularly improved flame supervision systems. Other objects, features and advantages of the invention will be seen as the following descrip tion of particular embodiments progresses, in conjunction with the drawing.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a schematic diagram of a system in accordance with the invention for supervising the existence of flame in a combustion chamber; and
FIG. 2 is a portion ofa modified circuit arrangement.
DESCRIPTION OF PARTICULAR EMBODIMENTS The circuit shown in FIG. 1 includes a flame sensor '10 in the form ofa lead sulflde cell which is positioned to supervise flame from a fuel burner in a combustion chamber that is under supervision. Cell 10 is connected in a voltage divider network that includes resistor 12 between positive bus 14 and grounded bus 16. Bus 14 is connected through diode 18 to tap 20 of the secondary winding of transformer 22. The transformer primary winding (not shown) is connected by convena low impedance shunt path in response to abrupt decreases in the voltage at junction 24 such as occur when flame is sensed.
The system includes a frequency selective discriminator circuitry in the form of a high input impedance electronic amplifier which includes a pair of amplifier stages 32, 34. lnterstage coupling capacitors 36, 38 cooperate with feedback circuits that include capacitors 40, 42, 44, 46 to provide a band pass amplifier circuit which, in this embodiment, peaks at about 10 Hertz and has primary response to signals in the -25 Hertz frequency range.
The output from coupling capacitor 38 is applied through an integrator circuit which includes resistor 50 and capacitor 52 to a bistable vacuum tube circuit that includes triode stages 60, 62. Tap 70 of the transformer secondary winding is connected to ground bus 16; and a portion 72 of that winding supplies filament voltage. A third tap 74 is connected to the cathode of stage 62 and the anode of stage 60 is connected to tap 74 through resistor 76. The grid of stage 62 is connected directly to the anode of stage 60 and capacitor 78 is connected between the cathode and grid of stage 62. Connected to the anode of stage 62 is flame relay coil 80 which is shunted by capacitor 82.
In operation, with the system in standby condition, triode stage 62 is cut off and relay 80 is de-energized. When sensor sees fluctuating infrared radiation from the supervised flame, its resistance drops and is maintained at a low but pulsating value so that the voltage at junction 24 is low and pulsating. In response to this voltage transition, diode 30 enables the-charge on capacitor 26 to be dissipated rapidly, the pulsating voltage at junction 24 is then coupled by capacitor 26 to the band pass amplifier; and that amplifier applies a signal to the integrator circuit of resistor 50 and capacitor 52. When capacitor 52 is sufficiently charged, stage 60 ceases conduction, and causes stage 62 to conduct and energize relay 80 to provide an indication of the presence of the sensed flamecondition. Should the fluctuating signal terminate, the charge on capacitor 52 will dissipate, allowing the bistable stage 60 to conduct and causing-the stage 62 to cease conduction so that the flame-relay 80 will drop out after a predetermined time delay determined principally by the time constant of the integrator circuit. Should the flame go out, the voltage at junction 24 will rise abruptly. However, a modulated signal may continue to be present, due to continuing fuel spray, for example, and a fluctuating voltage (of much lower magnitude than when flame is sensed, however) will continue to be present at junc-.
tion 24. Network 25 responds to the abrupt transition in voltage level and capacitor 26 applies a positive bias to the grid of tube 32 effectively blocking that amplifier stage and so that no signal is applied to maintain the charge on integrator capacitor 52. The flame relay 80 drops out as it should, terminates the flow of fuel into the combustion chamber by closing the fuel valve, and provides a proper indication of the absence of flame. The blocking condition on tube 32 is maintained by network 25 for a time interval greater than that of the drop out time of flame relay 80.
This network is single component fail safe in the system and blocks the spurious modulated signal from the input to the discriminator circuitry for an interval longer than the output relay drop out time.
In a second embodiment illustrated in FIG. 2, flame signal transition monitoring circuitry is connected in circuit between the photosensor 10 shown in FIG. I and transformer tap 74 (the junction between resistor 76 and capacitor 78). The signal from the photosensor, in addition to being coupled by capacitor 26 to the first stage 32 of band pass amplifier, is coupled by capacitor to a time delay network 102 that includes resistor 104, capacitor 106 and diode 108. The output of the time delay network is applied to a programmable unijunction transistor 110 (e.g., type 2N6028) whose control electrode 112 is connected to a voltage divider network that includes resistors I14, 116 That voltage divider network is connected to diode rectifier 118 to tap 74 of the transformer 22 and junction 120 is maintained at about 4 volts. In response to an abrupt increase in voltage at junction 24, capacitor 106 is charged and triggers put 110 into conduction after a time delay determined by network 102. The resulting signal is applied through resistor 122 to trigger silicon control switch 124 (e.g., type 3N85) and that switch bypasses amplifier stage 60 and places stage 62 in non conducting condition so that flame relay 80 is deenergized and drops out. It will be noted that this time delay network 102 responds to an abrupt increase in the magnitude of signal applied to capacitor 100. In this circuit arrangement the time delay of the override circuitry is independent of the normal drop out time of the flame relay, and may be set to cause drop out of the flame relay in an interval shorter than the normal drop out time provided by the main signal processing circuit between stages 32 and 60.
While particular embodiments of the invention have been shown and described, various modifications thereof will be apparent to those skilled in the art. For example, the invention is also applicable to solid state versions of combustion control systems. It is not intended that the invention be limited to the disclosed embodiments or to details thereof and departures may be made therefrom within the spirit and scope of the invention as defined in the claims.
What is claimed is:
l. A condition responsive system comprising a radiation sensitive condition sensor for producing an output signal in response to the sensing of a condition to be detected,
an output device arranged to assume a first state indicative of the condition being sensed when said sensor senses said condition and a second state indicative of the absence of said condition to be sensed when said sensor does not sense said condition,
discriminator circuitry connecting said sensor and said output device for placing said output device in said first state in response to the production of a fluctuating output signal by said condition sensor, and
circuitry responsive to an abrupt decrease in the condition sensed by said sensor for placing said output device in said second state independent of fluctuations of the signal produced by said sensor.
2. The system as claimed in claim 1 wherein said abrupt decrease responsive circuitry includes time delay circuitry.
3. The system as claimed in claim I wherein said abrupt decrease responsive circuitry is connected between said sensor and said discriminator circuitry.
4. The system as claimed in claim I wherein said abrupt decrease responsive circuitry is connected between said sensor and said output device in shunt with said discriminator circuitry.
5. The system as claimed in claim 1 wherein said sen sor is a photoconductor. I
6. The system as claimed in claim 1 wherein said condition tobe detected is flame in a combustion chamber and said output device is the coil of a flame relay.
7. The system as claimed in claim 1 wherein said discriminator circuitry includes a band pass amplifier tuned to pass signals in the audio and subaudio range, and further including coupling means for applying output signals produced by said condition sensor to said band pass amplifier.
8. A combustion supervision system comprising a flame sensor for producing an output signal in response to the sensing of flame in a supervised combustion chamber,
an output device arranged to assume a first state indicative of flame when said sensor senses flame and a second state indicative of the absence of flame when said sensor does not sense flame, discriminator circuitry connecting said sensor and said output device for placing said output device in said first state in response to the production of a fluctuating output signal by said flame sensor, and
flame failure transition responsive circuitry connected to said flame sensor for placing said output device in said second state in response to an abrupt decrease in flame and independently of fluctuations of the signal produced by said flame sensor.
9. A combustion supervision system comprising a flame sensor for producing an output signal in response to the sensing of flame in a supervised combustion chamber,
an output device arranged to assume a first state indicative of flame when said sensor senses flame and a second state indicative of the absence of flame when said sensor does not sense flame,
discriminator circuitry connecting said sensor and sai output device for placing said output device in said first state in response to the production of a fluctuating output signal by said flame sensor, and
flame failure transition responsive circuitry connected to said flame sensor for placing said output device in said second state in response to an abrupt decrease in flame and independently of fluctuations of the signal produced by said flame sensor, said flame failure transition responsive circuitry including time delay circuitry comprising a series capacitor connected in series between said flame sensor and said output device and a circuit of asymmetric resistance characteristics connected in shunt with said flame sensor.
10. The system as claimed in claim 9 wherein said flame failure transition responsive circuitry is con nected between said flame sensor and said discriminator circuitry.
11'. The system as claimed in claim 9 wherein said flame failure transition responsive circuitry is connected between said flame sensor and said output device in shunt with said discriminator.
12. The system as claimed in claim 8 wherein said flame sensor is a lead sulfide photocell, said discriminator circuitry includes a band pass amplifier tuned to pass signals in the 5-25 Hertz range, and said output device is the coil of a flame relay, and further including coupling means for applying output signals produced by said photocell to said band pass amplifier.

Claims (12)

1. A condition responsive system comprising a radiation sensitive condition sensor for producing an output signal in response to the sensing of a condition to be detected, an output device arranged to assume a first state indicative of the condition being sensed when said sensor senses said condition and a second state indicative of the absence of said condition to be sensed when said sensor does not sense said condition, discriminator circuitry connecting said sensor and said output device for placing said output device in said first state in response to the production of a fluctuating output signal by said condition sensor, and circuitry responsive to an abrupt decrease in the condition sensed by said sensor for placing said output device in said second state independent of fluctuations of the signal produced by said sensor.
2. The system as claimed in claim 1 wherein said abrupt decrease responsive circuitry includes time delay circuitry.
3. The system as claimed in claim 1 wherein said abrupt decrease responsive circuitry is connected between said sensor and said discriminator circuitry.
4. The system as claimed in claim 1 wherein said abrupt decrease responsive circuitry is connected between said sensor and said output device in shunt with said discriminator circuitry.
5. The system as claimed in claim 1 wherein said sensor is a photoconductor.
6. The system as claimed in claim 1 wherein said condition to be detected is flame in a combustion chamber and said output device is the coil of a flame relay.
7. The system as claimed in claim 1 wherein said discriminator circuitry includes a band pass amplifier tuned to pass signals in the audio and subaudio range, and further including coupling means for applying output signals produced by said condition sensor to said band pass amplifier.
8. A combustion supervision system comprising a flame sensor for producing an output signal in response to the sensing of flame in a supervised combustion chamber, an output device arranged to assume a first state indicative of flame when said sensor senses flame and a second state indicative of the absence of flame when said sensor does not sense flame, discriminator circuitry connecting said sensor and said output device for placing said output device in said first state in response to the production of a fluctuating output signal by said flame sensor, and flame failure transition responsive circuitry connected to said flame sensor for placing said output device in said second state in response to an abrupt decrease in flame and independently of fluctuations of the signal produced by said flame sensor.
9. A combustion supervision system comprising a flame sensor for producing an output signal in response to the sensing of flame in a supervised combustion chamber, an output device arranged to assume a first state indicative of flame when said sensor senses flame and a second state indicative of the absence of flame when said sensor does not sense flame, discriminator circuitry connecting said sensor and sai output device for placing said output device in said first state in response to the production of a fluctuating output signal by said flame sensor, and flame failure transition responsive circuitry connected to said flame sensor for placing said output device in said second state in response to an abrupt decrease in flame and independently of fluctuations of the signal produced by said flame sensor, said flame failure transition responsive circuitry including time delay circuitry comprising a series capacitor connected in series between said flame sensor and said output device and a circuit of asymmetric resistance characteristics connected in shunt with said flame sensor.
10. The system as claimed in claim 9 wherein said flame failure transition responsive circuitry is connected between said flame sensor and said discriminator circuitry.
11. The system as claimed in claim 9 wherein said flame failure transition responsive circuitry is connected between said flame sensor and said output device in shunt with said discriminator.
12. The system as claimed in claim 8 wherein said flame sensor is a lead sulfide photocell, said discriminator circuitry includes a band pass amplifier tuned to pass signals in the 5-25 Hertz range, and said output device is the coil of a flame relay, and further including coupling means for applying output signals produced by said photocell to said band pass amplifier.
US00338540A 1973-03-06 1973-03-06 Flame failure controls Expired - Lifetime US3852729A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US00338540A US3852729A (en) 1973-03-06 1973-03-06 Flame failure controls
CH265174A CH587448A5 (en) 1973-03-06 1974-02-25
GB908974A GB1448776A (en) 1973-03-06 1974-02-28 Radiation senstiive system having condition responsive circuitry
DE2409939A DE2409939A1 (en) 1973-03-06 1974-03-01 ELECTRONIC CONTROL DEVICE
BE141588A BE811804A (en) 1973-03-06 1974-03-01 FLAME MONITORING KIT IN A COMBUSTION CHAMBER
CA194,057A CA1036245A (en) 1973-03-06 1974-03-05 Flame failure controls
FR7407663A FR2220824B1 (en) 1973-03-06 1974-03-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00338540A US3852729A (en) 1973-03-06 1973-03-06 Flame failure controls

Publications (1)

Publication Number Publication Date
US3852729A true US3852729A (en) 1974-12-03

Family

ID=23325191

Family Applications (1)

Application Number Title Priority Date Filing Date
US00338540A Expired - Lifetime US3852729A (en) 1973-03-06 1973-03-06 Flame failure controls

Country Status (7)

Country Link
US (1) US3852729A (en)
BE (1) BE811804A (en)
CA (1) CA1036245A (en)
CH (1) CH587448A5 (en)
DE (1) DE2409939A1 (en)
FR (1) FR2220824B1 (en)
GB (1) GB1448776A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947218A (en) * 1975-01-23 1976-03-30 Honeywell Inc. Safety circuit for monitoring a flickering flame
US4113419A (en) * 1976-04-12 1978-09-12 Electronics Corporation Of America Burner control apparatus
US4235587A (en) * 1979-04-09 1980-11-25 Honeywell Inc. Flame responsive control circuit
US4319873A (en) * 1979-04-12 1982-03-16 American Stabilis, Inc. Flame detection and proof control device
US6389330B1 (en) 1997-12-18 2002-05-14 Reuter-Stokes, Inc. Combustion diagnostics method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995221A (en) * 1975-03-20 1976-11-30 Electronics Corporation Of America Flame responsive system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2748846A (en) * 1952-01-25 1956-06-05 Honeywell Regulator Co Combustion safeguard apparatus
US3651327A (en) * 1970-08-25 1972-03-21 Electronics Corp America Radiation sensitive condition responsive system
US3742474A (en) * 1971-03-04 1973-06-26 Cerberus Ag Flame detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2748846A (en) * 1952-01-25 1956-06-05 Honeywell Regulator Co Combustion safeguard apparatus
US3651327A (en) * 1970-08-25 1972-03-21 Electronics Corp America Radiation sensitive condition responsive system
US3742474A (en) * 1971-03-04 1973-06-26 Cerberus Ag Flame detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947218A (en) * 1975-01-23 1976-03-30 Honeywell Inc. Safety circuit for monitoring a flickering flame
US4113419A (en) * 1976-04-12 1978-09-12 Electronics Corporation Of America Burner control apparatus
US4235587A (en) * 1979-04-09 1980-11-25 Honeywell Inc. Flame responsive control circuit
US4319873A (en) * 1979-04-12 1982-03-16 American Stabilis, Inc. Flame detection and proof control device
US6389330B1 (en) 1997-12-18 2002-05-14 Reuter-Stokes, Inc. Combustion diagnostics method and system

Also Published As

Publication number Publication date
CA1036245A (en) 1978-08-08
CH587448A5 (en) 1977-04-29
BE811804A (en) 1974-07-01
FR2220824A1 (en) 1974-10-04
GB1448776A (en) 1976-09-08
FR2220824B1 (en) 1977-10-07
DE2409939A1 (en) 1974-09-19

Similar Documents

Publication Publication Date Title
US3255441A (en) Smoke, flame, critical temperature and rate of temperature rise detector
US3399398A (en) Combustible gas monitoring system
US3728706A (en) System for indicating aerosols in the atmosphere
US3038106A (en) Electrical network automatically responsive to a change in condition
US2352143A (en) Control apparatus
US2313943A (en) Control apparatus
US4155081A (en) Rechargeable battery backup power source for an ionization smoke detector device
US3852729A (en) Flame failure controls
US3995221A (en) Flame responsive system
US4739245A (en) Overvoltage alarm circuit for vehicle generator with false actuator prevention
US4461615A (en) Combustion control device
US4188181A (en) Gas burner control system
CA1043445A (en) Infra-red dynamic flame detector
US2748846A (en) Combustion safeguard apparatus
US4163226A (en) Alarm condition detecting apparatus and method
US3740574A (en) Ionic flame monitor
US2797745A (en) rowell
US2852702A (en) Condition responsive apparatus
US3750123A (en) Smoke sensing circuit with battery standby
US3947218A (en) Safety circuit for monitoring a flickering flame
US3651327A (en) Radiation sensitive condition responsive system
EP0010767B1 (en) Burner control system
US4081795A (en) Apparatus and method for detecting the occurrence of an alarm condition
US3902841A (en) Infrared dynamic flame detector
US2579884A (en) Flame failure safeguard

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALLEN-BRADLEY COMPANY, INC., A CORP. OF WI

Free format text: MERGER;ASSIGNOR:ELECTRONICS CORPORATION OF AMERICA;REEL/FRAME:005145/0648

Effective date: 19880928

Owner name: ELECTRONICS CORPORATION OF AMERICA, A CORP. OF DE

Free format text: CHANGE OF NAME;ASSIGNORS:ELECTRONICS CORPORATION OF AMERICA (MERGED INTO);NELCOA, INC., (CHANGED TO);REEL/FRAME:005208/0341

Effective date: 19861114

AS Assignment

Owner name: FIREYE, INC., A CORP. OF DE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ALLEN-BRADLEY COMPANY, INC., A CORP. OF WI;REEL/FRAME:005903/0528

Effective date: 19911028