US3852697A - Bimetal snap disc - Google Patents

Bimetal snap disc Download PDF

Info

Publication number
US3852697A
US3852697A US00378256A US37825673A US3852697A US 3852697 A US3852697 A US 3852697A US 00378256 A US00378256 A US 00378256A US 37825673 A US37825673 A US 37825673A US 3852697 A US3852697 A US 3852697A
Authority
US
United States
Prior art keywords
disc
temperature
snap
predetermined temperature
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00378256A
Inventor
H Snider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Therm O Disc Inc
Original Assignee
Therm O Disc Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Therm O Disc Inc filed Critical Therm O Disc Inc
Priority to US00378256A priority Critical patent/US3852697A/en
Priority to CA203,316A priority patent/CA973520A/en
Application granted granted Critical
Publication of US3852697A publication Critical patent/US3852697A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting

Abstract

A bimetal snap disc is disclosed for use in thermal controls. The disc is formed of a bimetal material having a positive deflection curve both above and below a predetermined temperature. The disc can be formed to operate at one temperature while being incapable of resetting in response to thermal stresses for use in manually resetting devices or the like. The disc can also be formed for higher temperature operation with relatively small temperature differentials. Also, the disc can be formed to provide one or more operating temperatures both above and below the predetermined temperature.

Description

United States Patent [191 Snider 3,621,434 11/1971 Gcrich 337/348 Primary Examiner.l. D. Miller Assistant ExaminerFred-E. Bell Attorney, Agent, or FirmMcNenny, Farrington, Pearne & Gordon [57] ABSTRACT A bimetal snap disc is disclosed for use in thermal controls. The disc is formed of a bimetal material havinga positive deflection curve both above and below a predetermined temperature. The disc can be formed to operate at one temperature while being incapable of resetting in response to thermal stresses for use in manually resetting devices or the like. The disc can also be formed for higher temperature operation with relatively small temperature differentials. Also, the disc can be formed to provide one or more operating temperatures both above' and below the predetermined temperature.
- 10 Claims, 2'Drawing Figures Dec. 3, 1974 BIMETAL SNAP DISC BACKGROUND OF THE INVENTION This invention relates generally to themially responsive devices employing bimetal as a thermal operator and more particularly to anovel andimproved bimetal snap disc and to a novel and improved device employing a bimetal snap disc as a thermal operator.
PRIOR ART Thermally responsive devices employing a bimetal snap disc operator are well known. In such devices, the bimetal element is formed with a shallow dished shape which causes it to move between two positions of stability with snap action when the bimetal snap disc reaches predetermined operating temperature normally referred to as a calibration temperature. In instances in which the bimetal element senses the'ambient temperature, the device is generally referred to as a thermostat. In other instances, the temperature of the bimetal element is changed in response to other conditions and the devices are used to sense'such other conditions. For example, the device may be a motor controller, a motor protector or a relay. Usually in such latter types of devices, the bimetal element is heated by an adjacent heater or by current flow through the bimetal itself.
The conventional bimetal material used to form such snap discs has been of a type which provides a deflection curve which is positive throughout the temperature range of its use. Generally with such conventional material, the chord height or depth ofthe disc increases as a direct function of the difference between the normal room ambient and the operating temperature of the disc. For example, a disc formed of a given material of such type to provide a high temperature of operation at about 400F. has a greater depth or chord height than a disc formed of a similar material having a high temperature of operation of 200F.
When attempting to form a disc of such conventional material with high operating temperatures, difficulty is encountered because the depth of the disc of chord 7 height must be relatively large. Therefore, the disc must, during operation, be subject to relatively high thermally induced stresses which tend to produce a permanent deflection of the material and result in changes in the calibration temperature of the disc. Further, such discs tend to fatigue and fail because of such high thermally induced stresses.
Further, difficulty is often encountered in forming a relatively high temperature disc with a relatively low differential, temperature. The differential temperature of a disc is the difference between the temperature at which 4 the disc snaps in one direction and the temperature at which the disc snaps in the other direction. This difficulty tends to occur because the differential temperature of a given disc tends to be a direct function of the depth or 'chordheight of the discs.
' Further, difficulty is often encountered when attempting to form a relatively high temperature operat-' ing disc which will not automatically reset in the system in which it is installed. Such discs are generally formed with a sufficiently high differential temperature so that the disc does not encounter one of its operating temperatures in the installed system. For example, if the disc is to operate on increasing temperature at 200F., it is provided with a sufficiently high differential temperature or lower operating temperature so that it does 4 SUMMARY OF THE INVENTION There are a number of aspects to the present invention. In accordance with one aspect of the present invention, a snap disc may be formed of bimetal which cannot under any circumstance snap back to its reset condition as a result of thermally induced forces. In accordance with another aspect of this invention, it is possible to form a relatively high temperature bimetal snap disc having a relatively low'differential temperature. In accordance with still another aspect of this invention, a bimetal snap disc may be provided which snaps from a first position of stability to a second position of stability at two different temperatures, and when the disc is formed for automatic resetting, it snaps back to the first position of stability at two different temperatures.
In accordance with the present invention, a snap disc is formed of a bimetal material having a positive deflection both above and below a'predetermined temperature. One such material is manufactured and sold by Texas Instruments, Inc. under identification number 1,513. It is believed that this material is provided with an alloy on the high expansion side composed of 32 percent nickel, 1 percent, colbalt, 1 percent molydenum and the balance iron. It is further believed that the material forming the low expansion side is 32 percent nickel, 15 percent colbalt, 1 percent molydenum and the balance iron. Such material has a positive deflection on increasing and decreasing temperatures above and below a temperature of about 230F.
A snap disc in accordance with one aspect of this invention utilizing this particular material can be formed to operate for example at temperatures in excess of 550F. with sufficient differential temperature to ensure that it will not automatically reset. Such disc will not automatically reset so long as the internal stresses required to produce reset are not reached above about 230F. since further cooling below such temperature will tend to return the disc to a thermally stressed condition which approaches the initial operating condition.
In accordance with another aspect of this invention, the disc may be formedat relatively high temperatures, for example in the order of 550F. witha relatively narrow temperature differential, for example in the order duced stresses is minimized. Further,the'disc tends to maintain calibrationto a greater degreebecause the disc is not required to experience as great a thermally induced stress. I
BRIEF DESCRIPTION OF THE DRAWINGS l FIG. 1 is a side elevation in longitudinal section of a simple, manual reset thermostat provided with a novel and improved snap disc in accordance with the present invention; and
FIG. 2 is a graph illustrating in full line the deflection characteristics of the bimetalmaterial used to form a snap disc in accordance with the present invention, and
in dotted line the deflection curves of more conventional bimetal materials.
DETAILED DESCRIPTION OF THE DRAWINGS For purposes of simplification, the snap element incorporating thepresent'invention is referred to as a snap disc and the illustrated embodiment is formed as a circular disc.- However, it should be understood that as used herein, the term snap disc is intended to encompass other forms of snap elements which may be, for example, noncircular in shape, but which are formed with a dished portion causing the disc to be provided with two positions of stability between which it moves with snap'action in response to predetermined temperature. conditions of the material forming the disc.
a FIG. 1 illustrates a manual reset thermostat of the type illustrated in. the US. Pat. No. 3,621,434. Such thermostat is illustrated merely to disclose a thermostatic device of the general type which might be used in combination with a bimetal snap disc in accordance with the present invention. It should be understood, however, that the novel and improved snap disc in accordance with .the present invention could be utilized in other types of devices which might or might not be, strictly speaking, thermostats. Further, it should be understood that the bimetal snap disc can be used in devices wherein the disc operates a valve or other type of device in response to some thermal condition. I v
In the illustrated embodiment, abody assembly 10 includes a main body 11, a guide plate 12, and a disc retaining cap 13. The body member ll and the guide plate 12 cooperate to define a switch chamber 14 which encloses a switch consisting of a fixed contact 16, and a movable contact 17. The movable contact 17 is supported on a contact support arm 18 formed of resilient material. Suitable terminals (not illustrated) are connected to the fixed contact 16 and the movable contact support arm 18 so that an electrical connection the two positions of stability in the manner discussed in greater detail below.A bumper 21 is guided within an opening 22 formed in the guide plate 12 and is proportioned so that when the disc is in the position of stability illustrated, the two contacts 16 and 17 engage. However, when the disc snaps from the illustrated position 'to the operated position, the bumper 21 is moved toward the movable contact support arm until it-engages the support arm and thereafter causes the movable contact 17 to move out of engagement with the fixed contact 16. This causes the switch mechanism to be opened and occurs with a snap action.
Also provided in the device is a reset pin 23 which is guided for longitudinal movement in an opening 24 formed in the body member 11. When thedisc 19 operates to open the switch, the reset pin 23 is engaged by the movable contact. support arm and raised from the position illustrated. After operation of theswitch, the device may be manually reset by pressing on the surface 26 causingthe reset pin 23 to push thedisc back toward its reset condition illustrated. When the disc, is pushed to an unstable intermediate position by the reset pin, it snaps on through to the reset position and the switch is reclosed. In manufacturing a manual reset thermostat of the type illustrated, of course it should be understood that the material selected to form the various elements must be chosen to be capable of withstanding the temperatures expected to be encountered.
Referring to FIG. 2, the disc 19 is formed of a bimetal material having adeflection curve of the type illustrated'at 27. This material which may be of the type designated above has a deflection curve which is positive as the temperature increases and decreases from a predetermined temperatureof about 230F. as illustrated at 28'. Such material deflects in a positive direction as the temperature is increased above the predetermined temperature of the material, and, also deflects inthe same positive direction when the temperature .is decreased below the temperature 28. v The dotted curves [29 and 31 illustrate the types of deflectionswhichare provided by the bimetals heretofore used to form snap discs. It should be noted that both of the materials 29 and 31 havea positive deflection on temperature rise throughout their temperature range of use. Conversely, the deflection is in the opposite direction or negative on temperature dropthroughout their temperature range of use. Conversely, the deflection is in the opposite direction or negative on temperature drop throughout their temperature'range ofuse. l" f When a snap disc is formed of the material represented by the curve 29 and is required to operate on increasing temperature at a relatively high temperature,
for example a temperature in the order of 400F. 600F., it is necessary to deeply form the discand provide it with a relatively large chord height. If the disc is to be nonautomatic and capable of remaining in the operated condition, it must be provided with a very large differential temperature..For example, if the disc must remain in the operated condition when its temperature drops to about 0F. and operates at a temperature in the order of 550F., the disc must'be formed to pro.- vide a differential temperature of at least 550F. It is extremely difficult to form such a disc with conventional materials. ln-any event, when it is possible to form the disc with such a wide differential, difficulty is usually encountered due to fatigue failures of the disc or due to permanent thennally induced distortions when the disc is cycled through such a widetempera ture range which causes loss ofcalibration.
When a disc is formed in accordance with the present invention,.however, for operation at a temperature in the order of 500F. 600F. as illustrated by the v bracket 32, it is only necessary to provide the disc with a shape and a depth so that it will not reset or snap back to its reset condition upon reachinga temperature at 28. Therefore, if the disc has an operating temperature of 600F., and the material forming the disc has a minimum deflection at a temperature of 230F., the required differential temperature to ensure that the disc will not automatically reset is about 370F.
Since the disc material experiences a positive deflection below the predetermined temperature at 28, it cannot thermally reset regardless of the temperature encountered if it does not reset before reaching the temperature at 28. As the temperature of the disc drops below the temperature at the point 28, the positive deflection of the disc material tends to relieve the stresses of the disc. Therefore, the disc is not exposed to excessive thermally induced stresses, so the tendency for fatigue failure is reduced, and the tendency for loss of calibration is minimized. a
In accordance with another aspect of this invention, a disc formed of the material having a deflection curve 27 may be formed to operate at relatively high temperatures for example in the order of 550F. with a differential temperature of as low as about 50F. Such a disc would not, of course, be nonautomatic, but would snap in one direction upon reaching its upper temperature of 550F. and would automatically snap back to its first position when the temperature of the disc dropped to a temperature in the order of 500F. Such disc could be used in a device generally as'illustrated in FIG. 1, but such device would not be provided with means to manually reset the disc because its automatic operation would cause resetting.
In accordance with still another aspect of the present invention, a disc can be formed to operate from a first position of stability to a second position at two different temperatures, one of which is above the temperature 28 and the other which is below the temperature .28. Such disc, for example, can be formed to operate at about 450F. at the point 35 on the curve 27. Since the same amount of positive deflection occurs at the point 33 when thetemperature of the disc reaches a temperature of about '75F., such disc will snap from a first position of stability to a second position of stability at upon reaching either of the temperatures at 35 and 33. If the differential temperature of the disc is sufficiently great, such disc will not, under any circumstances, reset thermally since the thermally induced stressed required for resetting cannot occur. In someinstances, a disc is provided with only one operating temperature. If the required thermal stress for operation cannot be obtained above absolute zero and below the predetermined temperature, the disc cannot operate below the predetermined temperature. Such disc could, however, have acalibration temperature at which it operated I above the predetermined temperature.
If the disc is provided with a sufficiently low differential temperature, for example about 50F, it would snap on increasing temperature from the first position of stability'to the second on reaching 450F. and would snap back to its first position of stability when reaching 400F. as indicated by the point 34. Such a disc would have two operating temperatures below the predetermined temperature 28 and would snap in one direction on reaching a temperature of about -75F. and would return or automatically reset to its initial position on reaching a point 36 on the curve at 0F.
Generally speaking, a disc formed of a material having the deflection curve 27 should be calibrated to operate at above 400F. or below 0F. since the activity of the material, i.e., the deflection produced by a given change in temperature, is relatively low between about 0F. and 400F. as indicated by the relatively flat slope of the curve 27 between these two points.
It should be understood that a disc in accordance with the present invention may be formed of other bimetal materials so long as the material exhibits a positive deflection curve and on both increasing and decreasing temperatures from a predetermined temperature. It should also be understood that a nonautomatic disc in accordance with the invention can also be used in devices which are not provided with means to reset the disc once it operates. Such device is often referred to as a thermal fuse since it can only operate once.
Although preferred embodiments of this invention are illustrated, it shouldbe understood that various modifications and rearrangements of parts may be resorted to without departing from the scope of the invention disclosed and claimed herein.
What is claimed is: l. A snap disc comprising a piece of bimetal formed 1 of a material having a deflection curve which is positive as the temperature of the material varies from a predetermined temperature in either direction said disc having a portion formed with a shallow dished shape, said disc providing two positions of stability between which it moves for snap action, said disc when in said first position snapping to said second position upon reaching a calibration temperature different than said predetering third and fourth calibration temperatures, one of which is above said predetermined temperature and the other of which is below said predetermined temperature. I I I 5.. A snap disc as set forth in claim 4 wherein said deflection curve includes portions of relatively low activity and portions of substantially greater activityand said calibration temperatures are located at points along said portions of substantially greater activity.
6. A snap disc as set forth in'claim 1 wherein said calibration temperature is above said predetermined temperature, and said snap disc operates to snap back to said first position upon reaching a second calibration temperature which is also above said predetermined temperature.
7. A snap disc as set forth in claim 6 wherein said disc snaps from said first position to said second position at a temperature of at least about 550F. and has a difierential temperature in the order of F.
' 8. A snap disc as set forth in claim I wherein said calibration temperature is above said predetermined temperature, and said disc is incapable of snapping back to said first position solely in response to thermally induced forces.
9. A snap disc as set forth in claim I wherein said bimetal is formed with a high expansion side consisting first and second positions of, stability and operating to snap from said first position to said second position at a temperature above said predetermined temperature, said disc after snapping to said second position remaining in said second position in all temperatures encountered including said predetermined temperature, said switch means or the like being operated when said disc is snapped from said first position to said second positron.

Claims (10)

1. A snap disc comprising a piece of bimetal formed of a material having a deflection curve which is positive as the temperature of the material varies from a predetermined temperature in either direcTion said disc having a portion formed with a shallow dished shape, said disc providing two positions of stability between which it moves for snap action, said disc when in said first position snapping to said second position upon reaching a calibration temperature different than said predetermined temperature.
2. A snap disc as set forth in claim 1 wherein said disc provides first and second calibration temperatures, one of which is above said predetermined temperature and the other of which is below said predetermined temperature.
3. A snap disc as set forth in claim 2 wherein said disc is incapable of snapping back to said first position solely in response to thermally induced forces.
4. A snap disc as set forth in claim 2 wherein said disc operates to snap back to said first position upon reaching third and fourth calibration temperatures, one of which is above said predetermined temperature and the other of which is below said predetermined temperature.
5. A snap disc as set forth in claim 4 wherein said deflection curve includes portions of relatively low activity and portions of substantially greater activity and said calibration temperatures are located at points along said portions of substantially greater activity.
6. A snap disc as set forth in claim 1 wherein said calibration temperature is above said predetermined temperature, and said snap disc operates to snap back to said first position upon reaching a second calibration temperature which is also above said predetermined temperature.
7. A snap disc as set forth in claim 6 wherein said disc snaps from said first position to said second position at a temperature of at least about 550*F. and has a differential temperature in the order of 50*F.
8. A snap disc as set forth in claim 1 wherein said calibration temperature is above said predetermined temperature, and said disc is incapable of snapping back to said first position solely in response to thermally induced forces.
9. A snap disc as set forth in claim 1 wherein said bimetal is formed with a high expansion side consisting of about 32 percent nickel, 1 percent colbalt, 1 percent molydenum and the balance iron; and a low expansion side consisting of 32 percent nickel, 15 percent colbalt, 1 percent molydenum and the balance iron.
10. A snap disc device comprising body means, switch means or the like on said body means, and a bimetallic snap disc formed of a material having a positive deflection as the temperature of the material varies away from the predetermined temperature in either direction a predetermined temperature, said disc having first and second positions of stability and operating to snap from said first position to said second position at a temperature above said predetermined temperature, said disc after snapping to said second position remaining in said second position in all temperatures encountered including said predetermined temperature, said switch means or the like being operated when said disc is snapped from said first position to said second position.
US00378256A 1973-07-11 1973-07-11 Bimetal snap disc Expired - Lifetime US3852697A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00378256A US3852697A (en) 1973-07-11 1973-07-11 Bimetal snap disc
CA203,316A CA973520A (en) 1973-07-11 1974-06-25 Bimetal snap disc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00378256A US3852697A (en) 1973-07-11 1973-07-11 Bimetal snap disc

Publications (1)

Publication Number Publication Date
US3852697A true US3852697A (en) 1974-12-03

Family

ID=23492374

Family Applications (1)

Application Number Title Priority Date Filing Date
US00378256A Expired - Lifetime US3852697A (en) 1973-07-11 1973-07-11 Bimetal snap disc

Country Status (2)

Country Link
US (1) US3852697A (en)
CA (1) CA973520A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001751A (en) * 1975-10-22 1977-01-04 Therm-O-Disc Incorporated Non-resettable thermostat
US4758876A (en) * 1985-12-04 1988-07-19 Texas Instruments Incorporated Thermal protective device with bimetal for semiconductor devices and the like
US5854585A (en) * 1997-04-10 1998-12-29 Texas Instruments Incorporated Manual reset electrical equipment protector apparatus
US20050033275A1 (en) * 2002-02-19 2005-02-10 Aesculap Ag & Co. Kg Surgical appliance
US20060082432A1 (en) * 2004-06-10 2006-04-20 Toshiharu Hayashi Manual-reset thermostat
US20080285253A1 (en) * 2007-05-16 2008-11-20 Scheiber Joseph J Thermal assembly coupled with an appliance
US20090115566A1 (en) * 2005-11-07 2009-05-07 Chia-Yi Hsu Manually Resettable Thermostat
US20140205863A1 (en) * 2013-01-23 2014-07-24 Robert Bosch Gmbh Rechargeable battery
US9911567B2 (en) * 2015-06-08 2018-03-06 Littlfuse, Inc. Disconnect switch with integrated thermal breaker
US10245042B2 (en) * 2012-03-13 2019-04-02 Medtronic Xomed, Inc. Check valve vented sterilizable powered surgical handpiece
US11837426B2 (en) * 2019-07-30 2023-12-05 MP Hollywood Switches with integral overcurrent protection components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2824194A (en) * 1956-08-01 1958-02-18 Metals & Controls Corp Switch structures
US3470517A (en) * 1967-10-27 1969-09-30 Therm O Disc Inc Thermostat with manual reset
US3621434A (en) * 1970-02-02 1971-11-16 Therm O Disc Inc Manual reset thermostat

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2824194A (en) * 1956-08-01 1958-02-18 Metals & Controls Corp Switch structures
US3470517A (en) * 1967-10-27 1969-09-30 Therm O Disc Inc Thermostat with manual reset
US3621434A (en) * 1970-02-02 1971-11-16 Therm O Disc Inc Manual reset thermostat

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001751A (en) * 1975-10-22 1977-01-04 Therm-O-Disc Incorporated Non-resettable thermostat
US4758876A (en) * 1985-12-04 1988-07-19 Texas Instruments Incorporated Thermal protective device with bimetal for semiconductor devices and the like
US5854585A (en) * 1997-04-10 1998-12-29 Texas Instruments Incorporated Manual reset electrical equipment protector apparatus
US20050033275A1 (en) * 2002-02-19 2005-02-10 Aesculap Ag & Co. Kg Surgical appliance
US7740628B2 (en) * 2002-02-19 2010-06-22 Aesculap Ag Surgical appliance
US20060082432A1 (en) * 2004-06-10 2006-04-20 Toshiharu Hayashi Manual-reset thermostat
US7218200B2 (en) * 2004-06-10 2007-05-15 Wako Electronics Co., Ltd. Manual-reset thermostat
US20090115566A1 (en) * 2005-11-07 2009-05-07 Chia-Yi Hsu Manually Resettable Thermostat
US7663467B2 (en) * 2005-11-07 2010-02-16 Chia-Yi Hsu Manually resettable thermostat
US20080284558A1 (en) * 2007-05-16 2008-11-20 Scheiber Joesph J Appliance assembly with thermal fuse and temperature sensing device assembly
US20080285253A1 (en) * 2007-05-16 2008-11-20 Scheiber Joseph J Thermal assembly coupled with an appliance
US7920044B2 (en) * 2007-05-16 2011-04-05 Group Dekko, Inc. Appliance assembly with thermal fuse and temperature sensing device assembly
US8174351B2 (en) 2007-05-16 2012-05-08 Group Dekko, Inc. Thermal assembly coupled with an appliance
US10245042B2 (en) * 2012-03-13 2019-04-02 Medtronic Xomed, Inc. Check valve vented sterilizable powered surgical handpiece
US20140205863A1 (en) * 2013-01-23 2014-07-24 Robert Bosch Gmbh Rechargeable battery
US9941549B2 (en) * 2013-01-23 2018-04-10 Samsung Sdi Co., Ltd. Rechargeable battery
US9911567B2 (en) * 2015-06-08 2018-03-06 Littlfuse, Inc. Disconnect switch with integrated thermal breaker
US11837426B2 (en) * 2019-07-30 2023-12-05 MP Hollywood Switches with integral overcurrent protection components

Also Published As

Publication number Publication date
CA973520A (en) 1975-08-26

Similar Documents

Publication Publication Date Title
US3852697A (en) Bimetal snap disc
US20050231318A1 (en) Trip-free limit switch and reset mechanism
EP0491914A1 (en) Balanced snap action thermal actuator
US3943480A (en) Thermostat
US4339740A (en) Thermally responsive switches
US2488049A (en) Thermostatic switch
CA1044289A (en) Thermostat
US4032071A (en) Thermally responsive valve having dual operating temperatures
US4319214A (en) Creepless, snap action thermostat
US4068820A (en) Valve
US3239633A (en) Narrow temperature differential thermostatic control
US2704312A (en) Thermostatic switches
WO1990005988A1 (en) Snap action thermal actuator
US3735319A (en) Adjustable thermostat
US5685481A (en) Trip-free high limit control
US3611235A (en) Thermostat with built-in circuit breaker
US2717936A (en) Thermostatic switch
US3293394A (en) Temperature responsive control device with snap acting switch
US2295456A (en) Control apparatus
US3213228A (en) Snap-acting mechanisms
US2724030A (en) Condition responsive control device
US4403206A (en) Balanced switch for thermostats or the like
US3869690A (en) Double acting snap switch
US3275773A (en) Over-center snap switch
US2988621A (en) Thermoresponsive snap action switch