US3852187A - Hydrodesulfurization process for producing fuel oil and fcc feed - Google Patents

Hydrodesulfurization process for producing fuel oil and fcc feed Download PDF

Info

Publication number
US3852187A
US3852187A US00346183A US34618373A US3852187A US 3852187 A US3852187 A US 3852187A US 00346183 A US00346183 A US 00346183A US 34618373 A US34618373 A US 34618373A US 3852187 A US3852187 A US 3852187A
Authority
US
United States
Prior art keywords
feed
sulfur
oil
hydrodesulfurization
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00346183A
Inventor
R Christman
J Mckinney
T Readal
S Yanik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Gulf Research and Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gulf Research and Development Co filed Critical Gulf Research and Development Co
Priority to US00346183A priority Critical patent/US3852187A/en
Application granted granted Critical
Publication of US3852187A publication Critical patent/US3852187A/en
Assigned to CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A CORP. OF DE. reassignment CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen

Definitions

  • ABSTRACT Gantz Assistant Examiner-James W. Hellwege [57] ABSTRACT A process is described for fixed bed hydrodesulfurizing a non-asphaltic oilfeed or feed blend for a zeolitic FCC riser cracking system in which cracking occurs at a space velocity sufficiently high to prevent formation of a catalyst bed. It is shown that sulfur dioxide emissions from the zeolite catalyst regenerator associated with the riser are reduced to a lower extent than total sulfur removal from the feed oil. This indicates uneven sulfur removal in the hydrodesulfurization step whereby a smaller portion of sulfur is removed from the heavy portion of the feed from which the coke is derived than from the lighter portion of the feed.
  • the present invention demonstrates a synergistic effect upon sulfur removal from the heavy portion of the feedby widening the boiling rangeof the feed and the synergistic effect is converted to practical advantage by reducing the amount of hydrodesulfurization catalyst in proportion to said synergistic effect, thereby keeping hydrocracking at a speci fied low level.
  • the boiling range is widened by blending a sulfur-containing furnace oil feed with a heavy gas oil FCC hydrodesulfurization feed.
  • the further discovery is demonstrated herein that the ratio of gasoline to total conversion during the subsequent riser cracking step is enhanced by reducing the amount of said hydrodesulfurization catalyst aspermitted by said synergistic effect.
  • the furnace oil portion of the total feed can be removed from the hydrodesulfurization product for use as fuel while the higher boiling portion is charged to the FCC process.
  • the present invention is directed to the hydrodesulfurization of non-asphaltic distillate or extract oils.
  • the present invention is particularly directed to the hydrodesulfurization of distillate or extract oils prior to riser cracking of the oils with a zeolite catalyst at a low riser residence time without catalyst bed formation in the riser reaction flow path.
  • the sulfur content of the feed is reduced by hydrodesulfurization in order to reduce sulfur emissions to the atmosphere.
  • Suitable hydrodesulfurization conditions include a temperature range of 650 to 800F., generally, and 670 to 800F., preferably, a pressure range of 500 to 1800 psig, generally, 800 to 1500 psig, preferably, and 800 to 1200 psig, most preferably, a space velocity range of 0.5 to LHSV, based upon the heavy portion of the total feed only (e.g..650 to 1050F. feed), generally, and 0.7 to
  • 2 LHSV preferably, and a circulation rate of 1000 to 8000 SCF/B, generally, and 2000 to 3000 SCF/B, preferably, based on the heavy feed portion of the total feed (i.e. the 650 to 1050F. feed portion) of hydrogen or a gas containing generally about 75 to 80 percent hydrogen.
  • Hydrogen consumption varies depending on process conditions, feed sulfur content, etc. and can continuous catalyst regeneration, removal of sulfur from the feed stream results in a reduction insulfur emitted in the product gases from the riser and also results in a reduction in sulfur emitted from the flue gases of the regenerator. However, we have found that the reduction of sulfur emitted from the riser is greater than the reduction of sulfur emitted from the regenerator.
  • sulfur off-gas formation in the regenerator is due to the presence of sulfur-containing coke which forms on the zeolite cracking catalyst when the liquid feed first contacts hot regenerated catalyst at the bottom of the riser.
  • the coke is formed from the highest boiling portions of the feed which fail to vaporize and most of the sulfur present in the coke which reaches the regenerator is the sulfur present in the highest boiling hydrocarbon feed molecules.
  • SCF/B based on said heavy of the hydrodesulfurization is the removal of the sulfur from the heavy oil portion and it is the heavy oil portion in which most of the sulfur is concentrated.
  • the following table shows how hydrodesulfurization of the aforementioned gas oil feed stream changed the distribution of sulfur in the various streams associated with an FCC riser.
  • the non-desulfurized feed contained 1.75 weight percent sulfur.
  • the desulfurization feed contained 0.2] weight percent sulfur.
  • the low boiling mole cules assist the high boiling molecules in the desulfurization process, perhaps by alternating use of the same reaction sites wherein the rapidly reacting lighter molecules utilize a given site between utilization of the site by consecutive slower reacting heavy molecules. Because the lighter molecules react so rapidly, the active sites are available to the heavy molecules a greater portion of the time than when the heavy molecules are processed alone at the same space velocity.
  • Table 3 shows that for the same crude source, as the difference in temperature between the end point and the initial boiling point of a feed stream having a volume. average boiling point of 750F. increases there is a corresponding reduction in catalyst requirement as compared to that required for treatingthe light and heavy halves separately, without changing other conditions.
  • the reduction in catalyst requirement to accomplish a given amount of sulfur removal without changing other reaction conditions is different when the feed has a volume average boiling point of 750F. as compared to a feed having a volume average boiling point of 850F. In both cases, the reduction in catalyst requirement increases as the breadth of boiling range increases.
  • the basis for comparison in determining the reduction in catalyst requirement in Tables 2 and 3 is the amount of catalyst that would be required if the same amount of feed oil containing a given amount of sulfur is treated, except that the temperature differential between the E. P. and I. B. P. is changed as indicated.
  • the 0 data point in Tables 2 and 3 represent a given quantity of oil, all of which boils at 850 and 750F., respectively.
  • the second data point represents the same quantity of oil having a boiling range extending over 100F.
  • the third data point represents the same quantity of oil having a boiling range extending over 200F.
  • the data show that significant reductions in catalyst requirements become possible when the boiling range of the feed oil is at least 400 or 500F. wide when the volume average boiling point of the feed is at least 750F. Even greater savings in catalyst becomes possible if the range between the feed [HP and EP is at least 600F.
  • the amount of catalyst is limited to advantageously permit both enhanced desulfurization (cleavage of carbon-sulfur bonds) while significantly inhibiting hydrocracking (cleavage of carbon-carbon bonds). Therefore, in accordance with this invention, under the same reaction conditions proportionately'more catalyst is required to remove the same amount of sulfur from the higher-boiling half of the total feed when it is treated by itself than if the higher-boiling half of the total feed is hydrodesulfurized in blend with a lower boiling half of a total feed stream. With certain feeds, the reduced catalyst requirement when treating the blend permits the blend treatment process to be terminated before decreasing the boiling characteristics of the feed beyond that described above.
  • the lubricating oil extract was a light lubricating oil extract containing 5.06 weight percent sulfur having 10 and 90 percent distillation points of 695 and 820F., respectively.
  • the light lubricating oil had a boiling range within the boiling range of the full range gas oil and was of about the same viscosity.
  • the lubricating oil extract was a bright stock extract whose boiling range extended considerably outside the boiling range of the full gas oil on the high side, having a 10 percent distillation point of l,0l0 and an estimated 90 percent distillation point of ll32F., respectively, and was considerably more viscous than the gas oil.
  • the bright stock extract had a sulfur content of 4.97 weight percent.
  • the blend comprised percent of a portion of the same gas oil together with 30 percent of the particular lubricating oil extract, i.e. either the light lubricating oil extract or the bright stock extract.
  • the blend containing the bright stock extract would have been more difficult to desulfurize because it had a higher average boiling point and was more viscous than the blend containing the light lubricating oil extract which had a boiling point within the range of the gas oil with which it was blended and about the same viscosity. This expectation is especially true since data show that the bright stock extract, by itself, was considerably more difficult to hydrodesulfurize than the light lubricating oil extract, by itself.
  • Table 4A shows that the mixture containing the gas oil and light lube extract had about the same sulfur content as the mixture containing the gas oil and bright stock extract. Table 4A further shows that at desulfurization temperatures of 680 and 7l0F., respectively, about the same degree of sulfur removal occurred with each charge stock. These data tend to obscure and hide the discovery of the present invention since they tend to show that any feedstock having a fixed feed sulfur content is desulfurized to the same extent at the same desulfurization conditions. However, the results shown in Table 4A become surprising when it is realized that the bright stock extract mixture is much more viscous than the mixture containing the light lube oil extract and therefore would have been expected to result in a lower degree of sulfur removal due to diffusion difficulties arising from its higher viscosity.
  • FIG. 1 shows that the unblended and less viscous light lubricating oil extract is more easily desulfurized than the unblended and more viscous bright stock extract under similar conditions.
  • Tables 4 and 4A show that a synergistic effect be- Table 4A also shows that the gas oil-light lubricating oil extract blend was not capable of hydrodesulfurization without an increase in the temperature difference between the 10 and percent distillation points of more than 20F, indicating the onset of significant hydrocracking, whereas the 710F. test with the gas oil-bright stock extract blend resulted in only a 5F.
  • FIG. 1 shows that even though the bright stock extract had about the same amount of sulfur in the feed as the light lubricating oil extract, because of its higher viscosity, and lower reaction rate due to its higher boiling range, as expected, less sulfur was removed when it was treated by itself. This shows that when the bright stock extract is treated by itself and when the light lubricating oil extract is treated by itself viscosity and reaction rate due to boiling range (see Table l) is a controlling feature in the hydrodesulfurization reaction.
  • Line D in FIG. 1 represents the sulfur removal characteristics versus reaction temperatures of (l) the blend of the gas oil of curve A and the light lubricating oil extract curve B, and also (2) the separate blend of the gas oil of curve A and the bright stock extract of curve C.
  • Line D unexpectedly shows the same desulfurization results are achieved when a 70 percent 30 percent blend of gas oil is made up with either the light lubricating oil extract or the much heavier and more viscous bright stock extract.
  • Line D therefore shows there is a synergistic effect in reaction rate between the bright stock extract, which boils above the boiling range of the gas oil, which overcomes the diffusion limitation due to viscosity whereas there is no synergistic effect in the case of the blend of the gas oil and the light lubricating oil extract wherein the light lubricating oil boils within the boiling range of the gas oil.
  • the wider the boiling range to which a feedstock can be extended the greater will be the synergistic effect between the lightestand heaviest-boiling components in regard to hydrodesulfurization synergism.
  • the blend of high boiling bright stock extract and gas oil provide the same hydrodesulfurization characteristics as the blend of thelower boiling light lubricating oil extract and gas oil. Since the bright stock'extract has a boiling range higher than the gas oil, it is not only more viscous than the gas oil and therefore should provide a high diffusion resistance in the hydrodesulfurization reaction but also, as shown in Table 1, it has a lower reaction rate constant because of its high average boiling point, as compared to the lower boiling light lubricating oil extract.
  • the advantageous result of the present invention can be achieved by combining feedstocks in a single reactor which ordinarily are hydrodesulfurized in several reactors such as furnace oil, light gas oil, heavy gas oil, light and medium lubricating oil, light and medium lubricating oil extracts, coker gas oil, FCC cycle oil, and so forth, in a manner that the improved synergism in regard to the sulfur removal reaction rate is greater than the detriment due to the inhibited diffusion effect and low reaction rate contributed by the higher-boiling component.
  • Example 7 shows a special effect occurs when a virgin gas oil is blended with coker gas oil.
  • One or all of the mixed streams can be separated from the hydrodesulfurized blend effluent, if desired.
  • heavy gas oil and furnace oil can be blended prior to hydrodesulfurization and then separated following desulfurization, with the furnace oil being employed as a fuel and the heavy gas oil being employed as an FCC feedstock.
  • Tables 4B and 4C present a tabulation of the feed and product data from which curves B and C of FIG. 1 were obtained.
  • certain boiling points of the feed were estimated because of the difficulty of distillation of very high boiling material.
  • Table 7 shows the characteristics of the furnace oil feedstock of Tables 5 and 6 and the furnace oil effluent from the hydrodesulfurization reactor at a space veloc- 4O TABLE 7
  • Table 8 shows the characteristics of the light lubricating oil feedstock extract of Tables 5 and 6 and the effluent from the hydrodesulfurizing reactor when the light lubricating oil extract feedstock is hydrodesulfurized by itself at space velocities of 0.8 and 1.6.
  • Table 10 shows the characteristics of the blend of the furnace oil, gas oil and the light lubricating oil extract feedstock of Tables and 6 and also shows the characteristics of the effluent from the hydrodesulfurization reactor when this feedstock blend is hydrodesulfurized at a space velocity of about 0.8- and 1.6.
  • hydrodesulfurized in a second reactor is hydrodesulfurized in a second reactor.
  • a relatively high boiling portion of the furnace oil after separation from the furnace oil, is blended with the gas oil to produce a total hydrodesulfurization feed .oil blend having a volumetric average boiling point of at least 700 or 750F., but lower than the original volume average boiling point of the gas oil.
  • Sufficient high boiling high sulfur-containing material is separated from the furnace oil for blending with the gas oil that the remaining light furnace oil is sufficiently low in sulfur to meet commercial domestic sulfur specifications (below 0.2 weight percent) without requiring passage through a hydrodesulfurization zone.
  • the boiling range of the heavy gas oil is advantageously broadened to impart a synergistic sulfur-removal effect to it, while no desulfurizer is required for the light furnace oil, thereby avoiding construction of a furnace oil 'desulfurizer.
  • the present invention can be applied to combining an entire light oil stream (such as furnace oil) with an entire gas oil stream (boiling between 600 or 650 and l050F.) to produce a wide-boiling blended total stream having a high synergistic effect which is processed in a single reactor, instead of charging the separate streams to separate reactors because the lighter oil is destined for use as a furnace oil whereas the heavier gas oil is destined for use as an FCC feed.
  • the hydrodesulfurized blend can be charged to its entirety to the FCC riser or it can be fractionated and the furnace oil can be used as a fuel oil and the gas oil only can be charged to the FCC riser.
  • the blend of the two streams should have an average boiling point of at least 700 or 750F.
  • FIG. 2 not only shows that the sulfur content in the lighter portion of the feed, that is the naphtha, is much lower (0.04 weight percent or 400 ppm) as compared to the sulfur content in the furnace oil (1.02 weight percent) but also that the sulfur in the naphtha oil portion of the blend at any given hydrodesulfurization temperature is removed relatively more easily than the sulfur of the heavier furnace oil fraction.
  • FIG. 2 compares the sulfur content of the naphtha portion of the effluent and the furnace oil portion of the efi'luent when operating at space velocities of 4.0 and 5.0, respectively.
  • Line E of FIG. 2 shows the level of sulfur removal that would occur in the furnace oil at 5 LHSV if the naphtha was not present in the blend.
  • Line B shows that the naphtha exerts a synergistic effect upon sulfur removal of the heavier furnace oil portion of the feed.
  • Table l 1 shows the characteristics of the naphtha in the feed of the blend of FIG. 2 and also shows the characteristics of the naphtha portion in the product from the hydrodesulfurization process of FIG. 2.
  • Table 12 shows the results of a test treating a higher boiling naphtha in an unblended condition with a similar catalyst to hydrodesulfurize the naphtha at conditions of 300 psig, 600F., 5.6 LI-ISV and 300 SCF/B of hydrogen. Each one of these test conditions is much less severe than the comparable condition employed in the hydrodesulfurization reaction illustrated in Table 11. The characteristics of the unblended naphtha feed and the unblended naphtha hydrodesulfurization product of these tests are illustrated in Table 12.
  • FIG. 3 A variation of the present invention is presented in the process illustrated in FIG. 3 wherein the synergistic effect of this invention can be partially foregone with eration over a stationary bed of compacted catalyst particles.
  • a virgin oil which has a relatively high boiling range, and a relatively high sulfur content, is the heavy portion of the blend and the effluent sulfur content of this fraction only of the total product is indicated by line G in FIG. 3.
  • Line F of FIG. 3 illustrates the sulfur content in the total product when a virgin oil having a lower boiling range (volume average boiling point below 750F.) and having a'. lower sulfur content is combined with the heavy oil (volume average boiling point above 750F.).
  • the abscissa of the curve of FIG. 3 it is shown that when the total blend employing the light oil together with the heavy oil is charged to the inlet of the reactor percent of bed depth), the sulfur in the total product is at its lowest value while the sulfur in the heavy oil portion distilled out of the total product (line G) is at its highest value.
  • Line G represents the sulfur content in the heavy oil distilled out of the total product including both light oil and heavy oil, except that the terminus of line G, indicated by point K, indicates the sulfur content of the heavy gas oil effluent when the heavy oil is charged through the entire catalyst bed without any of the light oil.
  • Point K shows that the total absence of light oil permitted maximum desulfurization of the heavy oil because the heavyoil did not have to compete with the light oil for catalyst sites. Therefore, although the light oil provides the synergistic effect of this invention, it also inherently produces a negative dilution effect and the following discussion of FIG. 3 illustrates a system wherein the synergistic effect of the light oil can be partially obtained while holding to a minimum its negative effect of dilution of the heavy oil.
  • the unusual feature is observed that very close to a minimum level of sulfur content in the total product, as indicated by point H, is achieved if the heavy oil portion of the total blend only isadded to the top of the catalyst bed and permitted to pass through about 80 percent of the catalyst bed undiluted by light oil while the light oil portion of the total blend only is added to the reactor at a point about 80 percent downwardly into the bed depth.
  • the total blend has a volume average boiling point of at least 750F.
  • FIG. 3 shows that when the heavy oil portion of the blend is added with hydrogen at the top of the catalyst bed and I the light oil is added at a point about 90 percent downwardly into the bed depth, the sulfur content in the heavy oil fraction of the product and in the total product is about equal, since this is the point at which curves and G cross.
  • FIG. 3 further shows, that if the light oil portion (having a volume average boiling point below 7 50F.) of the blend is not added to the hydrodesulfurization reactor but the heavy oil alone (having a volume average boiling point above 750F.) passes through theentire catalyst bed having access to catalyst sites which is uninhibited by the presence of the light oil, the heavy oil portion itself is desulfurized to the greatest extent (point K).
  • FIG. 3 also shows that if the light oil in a nondesulfurized condition is blended with the hydrodesulfurized heavy gas oil effluent, the sulfur content of the total product is a maximum, and is at an unacceptably high value (point J), which indicates a highly inefficient mode of operation, and may not even constitute 80 percent sulfur removal from the total feed including both high and low boiling portions. Therefore, according to FIG. 3, the most advantageous mode of operation for sulfur removal from the heavy oil is to add the heavy oil at the top of the reactor bed and not to add light oil to the reactor at all. But if the light oil is ultimately to be blended with the heavy oil, or if the light oil must be desulfurized, FIG.
  • this mode of operation gives up the synergistic effect contributed by the light portion along the top 80 percent of the catalyst bed, it does have the advantage of not diluting the refractory sulfur-containing molecules in the heavy fraction along the top 80 percent of the bed depth and thereby permitting greater sulfur removal from the heavy fraction only while employing a smaller reactor and a smaller quantity of catalyst and thereby achieving a large economic advantage while giving up only a small advantage in terms of the sulfur content in the total product.
  • Points H and I of FIG. 3 indicate that operation of the hydrodesulfurization reactor by injecting the light portion at about 80 percent of the bed depth represents an ideal compromise between the synergistic and dilution effects of the light oil in that the sulfur level in the total product is almost a minimum (Point H) while the sulfur level in the heavy portion only of the product is also close to a minimum (Point I). Injection of the light oil at greater than 80 percent of the bed depth improves sulfur removal from the heavy portion .of the product only slightly while greatly increasing the sulfur level in the total product.
  • FIG. 3 illustrates results with a particular feed blend but with other feed blends the optimum point of injection of the light oil (point B) might be elsewhere in the bed, e.g. at 50, 60, 70 or even at a deeper percentage of the bed depth.
  • FIG. 4 represents the variation of the 10 percent distillation point and the 90 percent distillation point in a feed oil during a hydrodesulfurization process of the present invention.
  • Suitable feed oils for this invention include the overhead of atmospheric or vacuum distillations and include oils in the furnace oil and gas oil boiling ranges.
  • the 90 percent distillation point represented by line M in FIG. 4 is particularly important because the 90 percent distillation point material represents the heavy material in the system in which the sulfur content is richest, from which it is most difficult to remove sulfur, and which contains the sulfur which is present in the coke of a subsequent FCC riser which ends up as sulfur dioxide in an FCC regeneration operation.
  • a significant drop in the 90 percent distillation point i.e., at least F, or more, is tangible evidence of significant removal of sulfur from the heaviest material in the feed stream. Therefore, it is important to a hydrodesulfurization process of the present invention that a significant drop occur in the 90 percent distillation curve of a feed moving through a hydrodesulfurization reactor.
  • the feed and hydrogen flow downwardly over a fixed, stationary bed of nickelcobalt-molybdenum on alumina catalyst particles.
  • the line L in FIG. 4 represents the drop in temperature of the 10 percent distillation point.
  • the 10 percent distillation point drops more readily than the 90 percent distillation point because it represents the accumulation of all light components produced due to either sulfur removal or hydrocracking of higher boiling materials.
  • the removal of sulfur from the 10 percent distillation point material of the feed occurs most readily because, as shown in Table 1, above, the desulfurization reaction rate constant is low in high boiling materials but increases exponentially as the boiling point of the sulfur-containing component decreases. However, it is noted that the 10 percent point should not drop more than 40 or 50F.
  • point P which represents the hydrocracking limit of the process of FIG. 4, it is noted that the 10 percentdistillation temperature dropped almost 40F. and is in a region of a further very sharp drop upon passage over any additional catalyst.
  • gasoline range components produced by hydrocracking have a lower octane number due to the saturation of olefins caused by the presence of hydrogen.
  • Olefins are known gasoline octane-improvers.
  • gasoline produced in a zeolitic FCC riser in the absence of added hydrogen is rich in olefins and these olefins contribute to a high octane number gasoline product.
  • One means of inhibiting hydrocracking is to use recycle hydrogen as a coolant or quench to be injected at various positions in the hydrodesulfurization reactor to accomplish cooling.
  • a further reason for avoiding extensive hydrocracking in the hydrodesulfurization process is that the hydrodesulfurization operation of the present process is designed to accomplish a synergistic effect in sulfur removal between the light (represented by the 10 percent distillation point of FIG. 4). components and the heavy (represented by the 90 percent distillation point of FIG. 4) components in the feed blend moving through the hydrodesulfurization reactor.
  • this synergistic effect in the sulfur removal reaction between high reaction rate components and low reaction rate components can be translated into a savings in catalyst required per barrel of feed and also a savings in hydrogen consumed per barrel of feed due to the smaller catalyst bed.
  • the amount of catalyst present, and therefore the depth of the reactor bed should be limited to a range such that the sulfur-level does not become sufficiently low that the inhibitory power of sulfur against extensive hydrocracking is avoided. This objective is realized by a limitation in the drop of the 10 percent distillation point of the material traveling through the reactor.
  • the present invention is best performed to accomplish reduction in the 90 percent distillation point (representing the most desirable sulfur removal) without encountering an excessive reduction in the 10 percent distillation point (representing excessive hydrocracking) by employing a catalyst bed of sufficient depth so that at least percent of the sulfur is removed from the hydrocarbon feed while permitting the temperature difference between the percent and the 10 percent distillation points to increase but not to increase by an amount exceeding 10, 15 or 20F. It is important that at least 80 percent of the sulfur be removed, because line M of FIG. 4 shows that in the removal of only 50 or 60 percent of the total sulfur in the feed, very little effect upon the 90 percent distillation point is apparent, while line L shows most of the initial sulfur removal was from the lighter material.
  • line N illustrates the increase in temperature differential between the 10 percent distillation point and the 90 percent distillation point of the feed as it travels through the reactor.
  • position 0 on line N 80 percent of the total sulfur in the feed has been removed, satisfying the requirements .yet increased by 20F, also satisfying the requirements of this invention.
  • position P on line N It is not until position P on line N has been reached that the increase in temperature differential between the i percent and 90 percent distillation points just reaches 20F.
  • line N begins to move abruptly upwardly in an exponential manner once the 20F. increase is achieved. It is at this point that the sulfur level becomes so low that the amount of sulfur in the feed is inadequate to effectively inhibit hydrocracking so that hydrocracking begins to occur at an excessive and undesirable rate.
  • the reaction of the present invention is terminated at least at the catalyst depth (reactor length) represented by point P. More particularly, the catalyst depth should be in the region represented between the points 0 and P, i.e., the bed depth is great enough to accomplish at least 80 percent sulfur removal, with a drop in the 90 percent distillation point of at least F., with an increase in temperature differential between the 10 percent and 90 percent distillation points but without the temperature differential increase exceeding 20F. and without the 10 percent point dropping more than 40 or 50F.
  • the catalyst economy advantage of the present invention is a transient advantage which becomes useless when the increase temperature differential between the 10 and 90 percent distillation points exceeds 20F.
  • the increase in the temperature differential can be below F. It is noted that further widening of the boiling range of the feed of FIG. 4 by addition of a furnace oil would permit a higher degree of desulfurization of the gas oil than that indicated by point P without excessive hydrocracking.
  • FIG. 5 illustrates the hydrodesulfurization of a feed containing only 0.31 weight percent sulfur.
  • FIG. 5 shows the variation in the 10, 30, 50, and 90 percent distillation points (the average of which represents the volume average boiling point of a hydrocarbon stream) with increasing levels of desulfurization with a feed containing this low level of sulfur content.
  • FIG. 5 it is seen that at percent desulfurization of the feed the temperature differential between the 10 percent and the percent distillation points has increased 25F., as compared to the feed, which is beyond the permissible 20 temperature differential at 80 percent desulfurization in accordance with this invention.
  • FIG. 5 illustrates the hydrodesulfurization of a feed containing only 0.31 weight percent sulfur.
  • FIG. 5 shows the variation in the 10, 30, 50, and 90 percent distillation points (the average of which represents the volume average boiling point of a hydrocarbon stream) with increasing levels of desulfurization with a feed containing this low level of sulfur content.
  • the feed illustrated in FIG; 5 shows that the temperature differential had already reached 20F. when only 75 percent of the feed sulfur was removed. Therefore, the feed illustrated in FIG; 5 has too low a level of sulfur to be included within the present invention.
  • the sulfur level of such a feed is so low that it cannot adequatelyinhibit hydrocracking with its attendant expense in hydrogen consumption while it accomplishes desulfurization. As noted earlier, it is desired to reserve cracking for the subsequent FCC-unit.
  • the level of sulfur in the feed of FIG. 5 is so low that the requirement for the synergistic sulfur removal effect of the present invention is not as important as with the feed illustrated in FIG. 4.
  • the low feed sulfur level shown in FIG. 5 indicates that the feed will not be a major source of sulfur dioxide contamination in a subsequent regeneration unit of a downstream FCC riser cracker.
  • FIG. 6 presents data to illustrate the importance to the hydrodesulfurization process of the present invention of avoiding a catalyst containing silica.
  • the data shown in FIG. 6 were taken by passing a Kuwait gas oil having 2.93 weight percent sulfur, as ASTM 10 percent point of 689F. and an ASTM 90 percent point of 101 1F., downflow over a bed of l/l6 inch nickelcobalt-molybdenum on alumina catalyst particles at a pressure of 1000 psig, 2000 SCF/B of 70 to 75 percent hydrogen, a LHSV of 2.0, while scrubbing the recycle gas with NaCaOH.
  • the alumina support is essentially silica-free while in the lower curve of FIG.
  • the catalyst is promoted with 0.5 weight percent silica. It is seen from FIG. 6 that at all temperatures, the promotion of the catalyst with silica results in a lower weight percent desulfurization of the feed oil.
  • the data of FIG. 6 show the importance of employing a hydrodesulfurization catalyst having less than 0.5 weight percent silica and preferably of employing catalyst containing less than 0.25 weight percent silica or even 0.1 weight percent silica, or less.
  • the present invention is to be distinguished from prior art processes in which a cracking feed is hydrogenated or hydrodesulfurized in advance of a cracking operation in order to accomplish a hydrogen donation effect in the cracking operation.
  • Hydrogen donation is a direct transfer of hydrogen from certain partially or completely saturated ring compounds, such as aromatics or naphthenes, to other refractory compounds during cracking without the addition of free hydrogen in order to render the refractory compounds less refractory. It occurs during a cracking operation which permits sufficient residence time for such hydrogen donation to occur. Hydrogen donation has the overall effect of rendering the feed less refractory even though no free hydrogen is added to the cracking system.
  • chamber 2 could comprise a hydrodesulfurization reactor of this invention.
  • the residence time in the cracking riser is preferably three seconds or less and can be one or two seconds or less.
  • the top of the riser is capped and provided with lateral exit slots to insure immediate disengagement of reactants and catalyst at the riser exit, thereby preventing overcracking of gasoline after vapors and catalyst leave the riser.
  • Table 13 a cracking riser test is illustrated in Table 13.
  • the zeolite riser cracking conditions and system (known as FCC or fluid catalytic cracking) of this invention do not employ added hydrogen and incorporate the cracking conditions disclosed in US. Pat. No. 3,617,512.
  • the cracking temperature can be 900 to 1100F., or more.
  • the preferred temperature range is 950 to 1050F.
  • the reaction pressure can vary widely and can be, for example, 5 to 50 psig, or preferably 20 to 30 psig.
  • the maximum residence time is 5 seconds, and for most charge stocks will be 0.5 to 2.5 seconds.
  • a suitable weight ratio of catalyst to total oil charge is 4:1 to about 12:1 or even 25:1.
  • the velocity of catalyst and oil through the riser can be 25 to feet per second.
  • Catalyst regeneration can occur at l,240 or 1,250F. or more to reduce the level of carbon on the regenerated catalyst from the range of about 0.6 to 1.5 to about 0.05 to 0.3 percent by weight.
  • Riser space velocity should not be below 35 and should preferably be above and can be 400 or 500, or more, based on hydrocarbon feed and instantaneous catalyst inventory in the riser.
  • the density at the riser inlet can be below 4 or 4.5 pounds per cubic foot.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A process is described for fixed bed hydrodesulfurizing a nonasphaltic oil feed or feed blend for a zeolitic FCC riser cracking system in which cracking occurs at a space velocity sufficiently high to prevent formation of a catalyst bed. It is shown that sulfur dioxide emissions from the zeolite catalyst regenerator associated with the riser are reduced to a lower extent than total sulfur removal from the feed oil. This indicates uneven sulfur removal in the hydrodesulfurization step whereby a smaller portion of sulfur is removed from the heavy portion of the feed from which the coke is derived than from the lighter portion of the feed. The present invention demonstrates a synergistic effect upon sulfur removal from the heavy portion of the feed by widening the boiling range of the feed and the synergistic effect is converted to practical advantage by reducing the amount of hydrodesulfurization catalyst in proportion to said synergistic effect, thereby keeping hydrocracking at a specified low level. The boiling range is widened by blending a sulfur-containing furnace oil feed with a heavy gas oil FCC hydrodesulfurization feed. The further discovery is demonstrated herein that the ratio of gasoline to total conversion during the subsequent riser cracking step is enhanced by reducing the amount of said hydrodesulfurization catalyst as permitted by said synergistic effect. The furnace oil portion of the total feed can be removed from the hydrodesulfurization product for use as fuel while the higher boiling portion is charged to the FCC process.

Description

States Patent [1931 Christman et. a1.
[451 Dec. 3, 1974 1 HYDRODESULFURIZATION PROCESS FOR PRODUCING FUEL OIL AND FCC FEED [73] Assignee: Gulf Research & Development Company, Pittsburgh, Pa.
[22] Filed: Mar. 29, 1973 [21] Appl. No.: 346,183
[52] US. Cl 208/89, 208/61, 208/216 [51] Int. Cl. Cl0g 23/04 [58] Field of Search 208/89, 216, 58, 61
[5 6] References Cited UNITED STATES PATENTS 2,897,143 7/1959 Lester et a1 208/216 2,938,857 5/1960 Johnson et a1 208/89 2,958,654 11/1960 Honeycutt 208/89 3,011,971 12/1961 Slyngstad et al,.. 208/216 3,193,495 7/1965 Ellor et al. 208/216 3,287,254 11/1966 Paterson 208/89 3,475,327 10/1969 Eng et a1 208/216 3,617,512 11/1971 Bryson et a1 208/80 10/1972 Schulman 208/89 Primary Examiner-Delbert E. Gantz Assistant Examiner-James W. Hellwege [57] ABSTRACT A process is described for fixed bed hydrodesulfurizing a non-asphaltic oilfeed or feed blend for a zeolitic FCC riser cracking system in which cracking occurs at a space velocity sufficiently high to prevent formation of a catalyst bed. It is shown that sulfur dioxide emissions from the zeolite catalyst regenerator associated with the riser are reduced to a lower extent than total sulfur removal from the feed oil. This indicates uneven sulfur removal in the hydrodesulfurization step whereby a smaller portion of sulfur is removed from the heavy portion of the feed from which the coke is derived than from the lighter portion of the feed. The present invention demonstrates a synergistic effect upon sulfur removal from the heavy portion of the feedby widening the boiling rangeof the feed and the synergistic effect is converted to practical advantage by reducing the amount of hydrodesulfurization catalyst in proportion to said synergistic effect, thereby keeping hydrocracking at a speci fied low level. The boiling range is widened by blending a sulfur-containing furnace oil feed with a heavy gas oil FCC hydrodesulfurization feed. The further discovery is demonstrated herein that the ratio of gasoline to total conversion during the subsequent riser cracking step is enhanced by reducing the amount of said hydrodesulfurization catalyst aspermitted by said synergistic effect. The furnace oil portion of the total feed can be removed from the hydrodesulfurization product for use as fuel while the higher boiling portion is charged to the FCC process.
6 Claims, 7 Drawing Figures PAIENTEUUEE 3W 3,852,187
SHEET F 6 FIG.
HYDRODESULFURIZATION OF KUWAIT GAS OIL AND VARIOUS KUWAIT LUBE OIL EXTRACT BLENDS:
SULFUR REMOVED VERSUS TEMPERATURE Catalyst l/|6"ir 1ch NiCoMo on Alumina Opemfinq Condihons: I000 PSIG, 2.0LHSV, ZOOOSCF/Bbl. of H (Recycle Gus scrubbed), H Makeup Light Lube Extract g (5.06% s ;|o-9o% BR.=6B5-8 20F)// 5 4: l4 0 E m I ID 5 Br qhi Stock u Exmm g l/ ?/o Sag-% o I -|n|n Ill) I vvvv "up g I I I D II ,a" b I D r 70%60! O'l and 30% 3 I l Exgrnct mlend J ,3 (AP usB or us A 8 I r' I Full Qunqe Gas 0 I (2.S3%S;|0-90%BR.=
a Q-IQLPF) Average Reactor Temperature F PATENTS DEC 3 i974 Sulfur Content ADesulfurizotion SHEET 20F 6 FIG. 2
DESQJLFURIZATION OF KUWAIT C -68OF DISTILLATE CHARGEZ Blend of 43.5% Deb. Ncphtho and 56.5% Furnace Oil S Content of Nophfihu .04% 5 Content of Furnace Oil l.02%
COND'TIONS! 4.0-5.0 LHSV, 700psig press., |,2oo SCF of H -rich (90%)q0s/bbl, gas scrubbed with amine,
400 psi H pp at outlet.
30 I E a 25 u 3 2o 2 l5 O E 5.01,.HSV .0m sv Z 5 5 O 4. LH! c p a .g /-E(h 0 NAPHTHA u PRESENT) O 0 I 1 l: O
5.) WV 8 7o L a U c 5 1 60 TEMPERATUREIF PATENTEB 953 31974 SHEET 3 or 5 T 1 in Total Sulfur in Heuvy Porlion Only of the Product Sulf Liquid Pvoducl 235 0 Staw I00 Percent of Bed Depth Bed Deplh In all cases) Point of Imeclion of Light Oil: (Heavy Oil Injected o! 0 Percenl Temperature of 90 Temperature of IO PATENTLD Percent PomY. F
Percent Points: F
Percent Points: "F
GIO
SHEET l BF 6 (90 Percent DistillntToTP Pom?) n (lOPlercenr Dist llotion Poiwt) 7 PP] I Q if-D C O Q IN 9 I 2 (8000 (AT 2 74 g n u vnll 2o 2(To1el Sulfur Removed: weight Percent of Feed $37526:
(Reactor Length) Feed) ASTM DISTILLATION TEMPERATUREI PATENTEDQEE 319M 3,852,187
SHEET 5 BF 6 HYDRODESULFURIZATION OF DISTILLATE CONTAINING 0.3! WEIGHT PERCENT SULFUR WEIGHT PERCENT DESULFURIZATION l HYDRODESULFURIZATION PROCESS FOR PRODUCING FUEL OIL AND FCC FEED The present invention is directed to the hydrodesulfurization of non-asphaltic distillate or extract oils. The present invention is particularly directed to the hydrodesulfurization of distillate or extract oils prior to riser cracking of the oils with a zeolite catalyst at a low riser residence time without catalyst bed formation in the riser reaction flow path.
This application is related to five other applications filed on even date herewith underthe same inventive entity entitled Hydrodesulfurization Process Involving Regulation of Amount of Catalyst in Relation to Feed Boiling Range to Limit Hydrocracking, Hydrodesulfurization Process Involving Blending Low Boiling and- High Boiling Streams Hydrodesulfurization Process with a Portion of the Feed Added Downstream in the Reactor, Combination Hydrodesulfurization and FCC Process and Hydrodesulfurization and FCC of Blended Stream Containing Coker Gas Oil.
In accordance with this invention, in riser cracking processes charging sulfur-containing feeds, the sulfur content of the feed is reduced by hydrodesulfurization in order to reduce sulfur emissions to the atmosphere.
One means of reducing such sulfur emissions to the atmosphere is to hydrodesulfurize substantially an entire clude nickel-cobalt-molybdenum, cobaltmolybdenum,- nickel-tungsten and nickel-molybdenum. Suitable hydrodesulfurization conditions include a temperature range of 650 to 800F., generally, and 670 to 800F., preferably, a pressure range of 500 to 1800 psig, generally, 800 to 1500 psig, preferably, and 800 to 1200 psig, most preferably, a space velocity range of 0.5 to LHSV, based upon the heavy portion of the total feed only (e.g..650 to 1050F. feed), generally, and 0.7 to
2 LHSV, preferably, and a circulation rate of 1000 to 8000 SCF/B, generally, and 2000 to 3000 SCF/B, preferably, based on the heavy feed portion of the total feed (i.e. the 650 to 1050F. feed portion) of hydrogen or a gas containing generally about 75 to 80 percent hydrogen. Hydrogen consumption varies depending on process conditions, feed sulfur content, etc. and can continuous catalyst regeneration, removal of sulfur from the feed stream results in a reduction insulfur emitted in the product gases from the riser and also results in a reduction in sulfur emitted from the flue gases of the regenerator. However, we have found that the reduction of sulfur emitted from the riser is greater than the reduction of sulfur emitted from the regenerator. This is a disadvantageous feature because the sulfur emitted from the FCC riser is emitted in the form of hydrogen sulfide which is formed by the scission of a molecule at an internal sulfur atom by means of splitting off hydrogen sulfide from the molecule, thereby producing olefinic fragments of the parent molecule. The formation of hydrogen sulfide is not particularly serious because the hydrogen sulfide can be scrubbed from gases from the FCC riser with an amine solution, such as monoethanolamine, which is known to be capable of removing hydrogen sulfide. Therefore, the hydrogen sulfide formed in the riser does not reach the atmosphere.
On the other hand, sulfur off-gas formation in the regenerator is due to the presence of sulfur-containing coke which forms on the zeolite cracking catalyst when the liquid feed first contacts hot regenerated catalyst at the bottom of the riser. The coke is formed from the highest boiling portions of the feed which fail to vaporize and most of the sulfur present in the coke which reaches the regenerator is the sulfur present in the highest boiling hydrocarbon feed molecules. Upon range from 100 to 500 SCF/B, based on said heavy of the hydrodesulfurization is the removal of the sulfur from the heavy oil portion and it is the heavy oil portion in which most of the sulfur is concentrated.
When a desulfurized feed is charged to a zeolite FCC riser operated without hydrogen addition thereto and having a catalyst regenerator associated therewith for combustion in the regenerator in the presence of oxyor sulfur trioxide, while the carbon is converted to carbon monoxide or carbon dioxide. The sulfur oxides formed in the regenerator form a more serious atmospheric pollution problem than the hydrogen sulfide formed in the FCC riser because the sulfur oxides cannot be easily removed by scrubbing of the regenerator flue gas prior to reaching the atmosphere. Therefore, sulfur oxides formed by combustion in the regenerator are emitted to the atmosphere in the regenerator flue gas as noxious atmospheric pollutant. For a diagrammatic scheme of a riser-regenerator system of the type contemplated in this invention, see FIG. 3 of US. Pat.
' No. 3,617,512, which is hereby incorporated herein,
formed in the regenerator is derived from sulfur present in the higher boiling molecules of the feed which are the molecules in the feed which are the most difficult to hydrodesulfurize. These highboiling molecules do not vaporize when the feed stream contacts hot regenerated catalyst at the equilibrium flash vaporization temperature at the bottom of the riser and therefore are converted to the coke which is formed on the catalyst in the bottom of the riser. In one test it was found that the desulfurization of a West Texas gas oil blend reduced the sulfur content from a feed sulfur content of 1.75 weight percent to 0.21 weight percent (88.0
percent reduction in sulfur). When this feed containing 1.75 weight percent sulfur was cracked without hydrodesulfurization the weight fraction of feed sulfur which ended up in the regenerator flue gas was 0.051 whereas when the feed was hydrodesulfurized as described the weight fraction of sulfur in the hydrodesulfurization feed which appeared in the flue gas increased to 0.087. Multiplying 1.75 pounds of sulfur per 100 pounds of non-hydrodesulfurized feed times the 0.051 weight fraction equals 0.089 pounds of sulfur emitted]; whereas multiplying 0.21 pounds of sulfur per 100 pounds of hydrodesulfurized feed times the 0.087 weight fraction equals 0.018 pounds of sulfur. This represents a reduction of only 79.8 percent in the weight of sulfur emitted from the regenerator flue gas as compared to a total reduction of 88.0 percent reduction in sulfur in the feed. Therefore an 88 percent reduction of sulfur content in the feed stream results in only a 79.8 percent reduction in sulfur emitted from the FCC regenerator stack gases.
The following table shows how hydrodesulfurization of the aforementioned gas oil feed stream changed the distribution of sulfur in the various streams associated with an FCC riser. The non-desulfurized feed contained 1.75 weight percent sulfur. The desulfurization feed contained 0.2] weight percent sulfur.
SULFUR DISTRIBUTION IN PERCENT NON-DESULFURIZED FEED The above data show that, although the total amount of sulfur in the flue gas is reduced, the proportion of total remaining sulfur that ends up in the regenerator flue gas almost doubles as a result of desulfurization of the feed. Hydrodesulfurization of the feed oil clearly results in uneven removal of sulfur from the feed oil. The above data indicate that any hydrodesulfurization process for the removal of sulfur from the feed stream to an FCC zeolite cracking riser (fluid catalytic cracker) should be encouraged to be more favorable to removal of sulfur from the highest boiling molecules as compared to the lowest boiling molecules in the feed. This is because the data show a disproportionate increase in sulfur in the regenerator flue gas and in the cycle oil, both of which streams are derived from the sulfur in the highest boiling portions of the feed. This presents a difficult problem because the desulfurization reaction rate constant for the lower boiling molecules in the cracking feed stream is exponentially higher than the desulfurization reaction rate constant of the higher boiling molecules. For example, the desulfurization reaction rate constant of a feed having a volume average boiling point of 493F. is 185 whereas the desulfurization reaction rate constant of a feed having a volume average boiling point of 1043F. is only 2.75. The exponential relationship between desulfurization reaction rate constant and volume average boiling point of a hydrocarbon feed is shown in Table l.
TABLE 1 Volume Average Desulfurization The above'data illustrate the great difficulty associated with removing sulfur from the high boiling portions of a feed stream as compared with the low boiling portions of the same feed when the feed source has a significantly wide boiling range.
In accordance with the present invention we have discovered a means of improving desulturization of the higher boiling components in a hydrocarbon feed stream. Our discovery is based upon data showing the existence of a synergistic effect in desulfurization reaction rate between the lowest and the highest boiling sulfur-containing molecules in the hydrodesulfurization process wherein desulfurization of the highest boiling sulfur-containing molecules is enhanced at the expense of desulfurization of the lower boiling sulfur-containing molecules but because the higher boiling portions of the feed are richer in sulfur there is a net positive effect in terms of total sulfur removal due to the synergism. We have found that when the hydrodesulfurization reaction is controlled in such a manner that there is a high degree of selectivity toward desult'urization as contrasted to hydrocracking the synergistic effect may be used to maximum advantage. The low boiling mole cules assist the high boiling molecules in the desulfurization process, perhaps by alternating use of the same reaction sites wherein the rapidly reacting lighter molecules utilize a given site between utilization of the site by consecutive slower reacting heavy molecules. Because the lighter molecules react so rapidly, the active sites are available to the heavy molecules a greater portion of the time than when the heavy molecules are processed alone at the same space velocity. We have observed that as the boiling range of a hydrocarbon feed stream is increased the amount of catalyst required to accomplish a given degree of hydrodesulfurization per barrel of feed diminishes as compared to the hydrodesulfurization of the high and low boiling portions of the same stream in separate reactors at the same conditions, indicating the occurrence of a synergistic sulfur removal effect between molecules of different boiling points. For example, Table 2 shows that for a particular crude source as the difference in temperature between the end point and the initial boiling point of a feed stream having a volume average boiling point of 850F. increases there is a proportional reduction in catalyst requirement, compared to that required for treating the light and heavy halves of the feed separately, to accomplish a given amount of sulfur removal. Table 3 shows that for the same crude source, as the difference in temperature between the end point and the initial boiling point of a feed stream having a volume. average boiling point of 750F. increases there is a corresponding reduction in catalyst requirement as compared to that required for treatingthe light and heavy halves separately, without changing other conditions. The reduction in catalyst requirement to accomplish a given amount of sulfur removal without changing other reaction conditions is different when the feed has a volume average boiling point of 750F. as compared to a feed having a volume average boiling point of 850F. In both cases, the reduction in catalyst requirement increases as the breadth of boiling range increases. The basis for comparison in determining the reduction in catalyst requirement in Tables 2 and 3 is the amount of catalyst that would be required if the same amount of feed oil containing a given amount of sulfur is treated, except that the temperature differential between the E. P. and I. B. P. is changed as indicated. For example, the 0 data point in Tables 2 and 3 represent a given quantity of oil, all of which boils at 850 and 750F., respectively. The second data point represents the same quantity of oil having a boiling range extending over 100F. The third data point represents the same quantity of oil having a boiling range extending over 200F. The data show that significant reductions in catalyst requirements become possible when the boiling range of the feed oil is at least 400 or 500F. wide when the volume average boiling point of the feed is at least 750F. Even greater savings in catalyst becomes possible if the range between the feed [HP and EP is at least 600F.
TABLE 2 Reduction in Catalyst Requirement for Feed His important to the present invention that the catalyst economy permitted by broadening the feed boiling range be correlated with the synergistic effect to remove a substantial amount of the most refractory sulfur in the feed with diminished hydrocracking. Therefore, in accordance with the present invention the synergistic effect should not be permitted to reduce the catalyst quantity to the extent that the 90 percent point of the feed is not reduced at least F. or F., indicating a substantial removal of the most refractory sulfur in the feed in spite of the reduced quantity of catalyst. At the same time, the catalyst reduction should be sufficient so that the 10 percent distillation point of the feed is not lowered more than F. more than the 90 percent distillation point, and in any event the 10 percent distillation point is not lowered more than 50F. In this manner, the amount of catalyst is limited to advantageously permit both enhanced desulfurization (cleavage of carbon-sulfur bonds) while significantly inhibiting hydrocracking (cleavage of carbon-carbon bonds). Therefore, in accordance with this invention, under the same reaction conditions proportionately'more catalyst is required to remove the same amount of sulfur from the higher-boiling half of the total feed when it is treated by itself than if the higher-boiling half of the total feed is hydrodesulfurized in blend with a lower boiling half of a total feed stream. With certain feeds, the reduced catalyst requirement when treating the blend permits the blend treatment process to be terminated before decreasing the boiling characteristics of the feed beyond that described above.
Data were taken (Table 4 and FIG. 1) to illustrate that the synergistic effect of the present invention is highly surprising and is a synergistic effect based upon the sulfur removal reaction. For example, data were taken employing as a hydrodesulfurization feed a full range gas oil containing 2.93 percent sulfur. The 10 and 90 percent distillation points of the full range gas oil were 680 and l0llF. respectively. Thereupon, blends of the gas oil and lubricating oil extracts were prepared, each lubricating oil extract stock having about the same sulfur content but a different boiling range and a different viscosity. In one case the lubricating oil extract was a light lubricating oil extract containing 5.06 weight percent sulfur having 10 and 90 percent distillation points of 695 and 820F., respectively. The light lubricating oil had a boiling range within the boiling range of the full range gas oil and was of about the same viscosity. In the second case the lubricating oil extract was a bright stock extract whose boiling range extended considerably outside the boiling range of the full gas oil on the high side, having a 10 percent distillation point of l,0l0 and an estimated 90 percent distillation point of ll32F., respectively, and was considerably more viscous than the gas oil. The bright stock extract had a sulfur content of 4.97 weight percent. In each case where a gas oil-lubricating oil extract blend was desulfurized, the blend comprised percent of a portion of the same gas oil together with 30 percent of the particular lubricating oil extract, i.e. either the light lubricating oil extract or the bright stock extract.
It would be expected that the blend containing the bright stock extract would have been more difficult to desulfurize because it had a higher average boiling point and was more viscous than the blend containing the light lubricating oil extract which had a boiling point within the range of the gas oil with which it was blended and about the same viscosity. This expectation is especially true since data show that the bright stock extract, by itself, was considerably more difficult to hydrodesulfurize than the light lubricating oil extract, by itself. However, it was unexpectedly found that there was a considerable synergistic effect in regard to sulfur removal in the case of the blend of the bright stock extract and the gas oil, even though the bright stock boiled considerably above the upper boiling point of the gas oil and had a considerably higher viscosity, which would be expected to slow the reaction rate. It was further found that there was no synergistic effect in regard to sulfur removal in the case of the blend of comes controlling due to a widening of feed boiling range by blending a material having an overlapping, continuous or broader boiling range. As explained below, the synergistic effect upon reaction rate upon TABLE 4 HYDRODESULFURIZATXON OF KUWAlT GAS OIL AND BLENDS OF KUWAIT GAS OIL AND KUWAIT LUBE OlL EXTRACTS ctions Charge and Product Ins Full Range 70% 6.0. 30% 70% 6.0. 30% Gas Oil Light Lube Extract Bright Stock Extract Charge Charge Charge Hydrodesulfurization (Not hydro (Not hydro- (Not hydro- Temperature: F. desulfurized) desulfurized) 680 710 desulfurized) 680 710 ions Gravity: AP! 22.4 18.1 23.6 24.4 [92 23,9 24.5
Sulfur: by weight 2.93 3,63 0.9l 0.60 3.66 094 0.6]
Viscosity: SUS
100"!v 301.4 550 1320 130F. 119.3 220 82 3 74.9 310 17l.2 I46 2l0Fl 48.7 42.2 41.0 55.1 52.!
Distillation, I
Vacuum: D1160 at F. 689 700 67] 643 7l0 710 687 754 738 728 719 792 803 777 50% 818 780 773 765 894 903 864 70% 897 845 837 827 999 1004 964 90% I011 948 944 936 1079 l 110 1061 End Point: F. 1051 lOlS 1015 The surprising results in regard to Table 4 are shown in the following summation entitled Table 4A which contains data directly extracted from Table 4.
TABLE 4A blending is also illustrated in FIG, 1, by comparing curves B and C and observing that in blend they both produce curve D.
70% G.O. 30% Light Lube Extract 70% 6.0. 30% Bright Stock Extract Hydrodesulfurization Temperature: F.
Sulfur in Feed Weight Percent v Sulfur in Product Weight Percent Increase in difference between the 10 and 90 percent distillation points due to hydrodesulfurization Temperature of 90 percent point: "F.
Table 4A shows that the mixture containing the gas oil and light lube extract had about the same sulfur content as the mixture containing the gas oil and bright stock extract. Table 4A further shows that at desulfurization temperatures of 680 and 7l0F., respectively, about the same degree of sulfur removal occurred with each charge stock. These data tend to obscure and hide the discovery of the present invention since they tend to show that any feedstock having a fixed feed sulfur content is desulfurized to the same extent at the same desulfurization conditions. However, the results shown in Table 4A become surprising when it is realized that the bright stock extract mixture is much more viscous than the mixture containing the light lube oil extract and therefore would have been expected to result in a lower degree of sulfur removal due to diffusion difficulties arising from its higher viscosity. This expectation is especially true in view of FIG. 1 which shows that the unblended and less viscous light lubricating oil extract is more easily desulfurized than the unblended and more viscous bright stock extract under similar conditions. Tables 4 and 4A show that a synergistic effect be- Table 4A also shows that the gas oil-light lubricating oil extract blend was not capable of hydrodesulfurization without an increase in the temperature difference between the 10 and percent distillation points of more than 20F, indicating the onset of significant hydrocracking, whereas the 710F. test with the gas oil-bright stock extract blend resulted in only a 5F. increase in this temperature differential, indicating very little hydrocracking accompanying the desulfurization reaction, while the 90 percent point dropped from 1079" to 1061F. (18F indicating a significant removal of sulfur from the highest boiling, most viscous portion of the feed. In the test in which there was only a 5F. temperature differential increase, this low temperature differential increase was accomplished because there was no increase in quantity of catalyst upon widening the boiling range of the feed. If the quantity of catalyst were increased, as by lengthening the catalyst bed, extensive hydrocracking would have been encountered when low sulfur levels were reached because the presence of sulfur serves to inhibit onset of extensive hydrocracking. Therefore, the sulfur-removal synergistic effect of the present invention requires that the quantity of catalyst be controlled or limited as the boilferring to FIG. 1, line A shows the desulfurization characteristics versus reaction temperatures of the full range gas oil by itself. Line B shows the desulfurization characteristics of the light lubricating oil extract by itself versus reaction temperatures. Line C shows the desulfurization characteristics of the much heavier bright stock extract by itself versus reaction temperatures. FIG. 1 shows that even though the bright stock extract had about the same amount of sulfur in the feed as the light lubricating oil extract, because of its higher viscosity, and lower reaction rate due to its higher boiling range, as expected, less sulfur was removed when it was treated by itself. This shows that when the bright stock extract is treated by itself and when the light lubricating oil extract is treated by itself viscosity and reaction rate due to boiling range (see Table l) is a controlling feature in the hydrodesulfurization reaction.
Line D in FIG. 1 represents the sulfur removal characteristics versus reaction temperatures of (l) the blend of the gas oil of curve A and the light lubricating oil extract curve B, and also (2) the separate blend of the gas oil of curve A and the bright stock extract of curve C. Line D unexpectedly shows the same desulfurization results are achieved when a 70 percent 30 percent blend of gas oil is made up with either the light lubricating oil extract or the much heavier and more viscous bright stock extract. Line D therefore shows there is a synergistic effect in reaction rate between the bright stock extract, which boils above the boiling range of the gas oil, which overcomes the diffusion limitation due to viscosity whereas there is no synergistic effect in the case of the blend of the gas oil and the light lubricating oil extract wherein the light lubricating oil boils within the boiling range of the gas oil. In general, the wider the boiling range to which a feedstock can be extended, the greater will be the synergistic effect between the lightestand heaviest-boiling components in regard to hydrodesulfurization synergism.
There are two surprising aspects in the discovery that the blend of high boiling bright stock extract and gas oil provide the same hydrodesulfurization characteristics as the blend of thelower boiling light lubricating oil extract and gas oil. Since the bright stock'extract has a boiling range higher than the gas oil, it is not only more viscous than the gas oil and therefore should provide a high diffusion resistance in the hydrodesulfurization reaction but also, as shown in Table 1, it has a lower reaction rate constant because of its high average boiling point, as compared to the lower boiling light lubricating oil extract. However, both (1) the high viscosity diffusion effect which provides resistance against the hydro desulfurization reaction in the absence of blending and 2) the lower reaction rate constant of the bright stock extract due to its higher average boiling point where overcome to the extent that the bright stock extract blend with the gas oil exhibited the same hydrodesulfurization characteristics as the blend of the light lubricating oil extract with the gas oil, the latter blend not having the overlapping boiling ranges. Therefore, therev is a considerable synergistic effect in reaction rate by combining stocks having overlapping boiling ranges causing the boiling range of the blend to be wider than the boiling range of either component alone. The same effect could be obtained by preparing directly via distillation a hydrodesulfurization feedstock having a very wide boiling range. The advantageous result of the present invention can be achieved by combining feedstocks in a single reactor which ordinarily are hydrodesulfurized in several reactors such as furnace oil, light gas oil, heavy gas oil, light and medium lubricating oil, light and medium lubricating oil extracts, coker gas oil, FCC cycle oil, and so forth, in a manner that the improved synergism in regard to the sulfur removal reaction rate is greater than the detriment due to the inhibited diffusion effect and low reaction rate contributed by the higher-boiling component. Example 7 shows a special effect occurs when a virgin gas oil is blended with coker gas oil. One or all of the mixed streams can be separated from the hydrodesulfurized blend effluent, if desired. For example, heavy gas oil and furnace oil can be blended prior to hydrodesulfurization and then separated following desulfurization, with the furnace oil being employed as a fuel and the heavy gas oil being employed as an FCC feedstock.
Tables 4B and 4C present a tabulation of the feed and product data from which curves B and C of FIG. 1 were obtained. In Table 4C, certain boiling points of the feed were estimated because of the difficulty of distillation of very high boiling material.
TABLE 4B HYDRODESULFURIZATION OF KUWAIT LIGHT LUBE EXTRACT at 1000 psig, 2 vol/hr/vol and 2000 SCF/B TABLE 4C HYDRODESULFURIZATION OF KUWAIT BRIGHT STOCK EXTRACTS at 1000F.. 2 vol/hr/vol and 2000 SCF/B I Further tests were performed to illustrate the synergistic effect in hydrodesulfurization reaction rate utilizing a nickel-cobalt-molybdenum on alumina catalyst (all hydrodesulfurization tests reported herein utilized this type of catalyst composition unless otherwise noted) when the added stream has a boiling range which overlaps, is contiguous with or extends beyond that of the primary stream, but where the extension is on the low-temperature side of the range. Tests were made in which a blend containing 35 weight percent of furnace oil having a boiling range of 475 to 638F. was
20 added to full range gas oil having a boiling range of 615 to 1005F. containing light lubricating oil extract having a boiling range of 706 to 840F. The results of these tests are shown in Table 5 and in Table 6.
TABLE 5 HYDRODESULFURIZATION OF BLENDED CHARGE STOCKS Conditions: 680F., 940 psig, 0.8 LHSV, 2000 SCF/B (80% H Charge Sulfur Content Kuwait Product Sulfur Content l 1 ppm 1.43 weight Furnace Oil Product Yield 97.9l wt of fresh feed (475638F. Unit Hydrogen Consumption 387 SCF/B BR.) Aromatics decreased from 36 to 21 vol Charge Sulfur Content Kuwait Full Product Sulfur Content 0.18 wt 2.74 weight Range Gas Product Yield 96.65 wt of fresh feed I Oil Unit Hydrogen Consumption 499 SCF/B (6l5llg05 F Aromatics decreased from S1 to 41 vol 9? Charge Sulfur Content Kuwait Lube Product Sulfur Content0.88 wt 6.03 weight Oil Extract* Product Yield-94.52 wt of fresh feed 6- 0 F. Unit Hydrogen Consumption I024 SCF/B i BR.) Aromatics decreased from 88 to 81 vol i Hydrodesulfurizing a Blend of 35 wt Kuwait Furnace Oil 53 wt Kuwait Full Range Gas Oil 12 wt Kuwait Lube Oil Extract Charge Sulfur Content Cale. Results Product Sulfur Content0.20 wt 2.68 weight for the Product Yi'eld96.84 wt of Fresh Feed Blended Hydrogen Consumption-514 SCF/B Material** Aromatics38.2 vol Charge Sulfur Content Observed Results Product Sulfur Content-0.14 wt 2.68 wt for the Blended Product Yield96.26 wt of fresh feed Material Unit Hydrogen Consumption463 SCF/B Aromatics-40.0 vol "1,
*This run was made at 3000 SCF/B reactor gas rate to compensate for high hydrogen consumption. Results calculated by algebraic combination of component results shown above.
TABLE 6 HYDRODESULFURIZATION OF BLENDED CHARGE STOCKS Conditions: 680F., 940 psig, 1.6 LHSV, 2000 SCF/B (80% H Charge Sulfur Content Kuwait Product Sulfur Content 55 ppm 1.43 weight Furnace Oil Product Yield 98.03 wt of fresh feed (475-638F. Unit Hydrogen Consumption 276 SCF/B BR.) Charge Sulfur Content Kuwait Full Product Sulfur Content 0.37 wt 274 Weight Range Gas Product Yield 97.00 wt of fresh feed Oil Unit Hydrogen Consumption 356 SCF/B (6151005F. B.R.) Charge Sulfur Content Kuwait Lube Product Sulfur Content 1.71 wt 6.03 weight "/11 Oil Extract Product Yield 96.40 wt of fresh feed (700 N40? Unit Hydrogen l "umnnpllun N4 .i 'i Hi BR.) Hydrodesulfurizing a Blend of 35 wt Kuwait Furnace Oil 53 wt Kuwait Full Range Gas Oil 12 wt Kuwait Lube Oil Extract Charge Sulfur Content CalcResults Product Sulfur Content 0.40 wt 2.68 weight for the Blended Product Yield 97.29 wt of fresh feed Material" Hydrogen Consumption 383 SCF/B Aromatics 405 vol TABLE6 I-IYDRODESULFURIZATION OF BLENDED CHARGE STOCKS Conditions: 680F., 940 psig, 1.6 LHSV, 2000 SCF/B (80% H that unit hydrogen consumption (chemical hydrogen Charge Sulfur Content 2.68 weight for the Blended Material Observed Results Product Sulfur Content 0.28 wt Product Yield 97.39 wt of fresh feed Unit Hydrogen Consumption 370 SCF/B Aromatics 40.9 vol This run made at 3000 SCF/B reactor gas rate to compensate for high hydrogen consumption.
" Results calculated by algebraic combination of component results shown above.
Table 5 shows that when the full range gas oil, the
sulfurized together the product had a sulfur content of 0.14 weight percent sulfur, indicating the existence of a synergistic effect upon the reaction'rates by blending a stream (the furnace oil) which extends beyond the boiling range of the primary stream on the lower boiling side. Table 6 shows a proportionally similar synergistic effect occurs (sulfur removal is increased from an expected value of 85 percent to a value of 90 percent) with the same system when the space velocity is doubled from 0.8 to 1.6 LI-ISV. Tables 5 and 6 also show consumption by free hydrogen balance around the unit) is lower when the blend is treated than would have been expected, even though more sulfur is removed than expected. This demonstrates the synergistic effect, whereby sulfur removal is high while the extent of undesirable hydrogen-consuming reactions (hydrogenation and hydrocracking) are limited. Of course, limiting hydrogen consumption is economically advantageous, and controlling both hydrogenation and hy- 35 drocracking leads to the production of a superior gasoline in the subsequent riser cracking step.
Table 7 shows the characteristics of the furnace oil feedstock of Tables 5 and 6 and the furnace oil effluent from the hydrodesulfurization reactor at a space veloc- 4O TABLE 7 Table 8 shows the characteristics of the light lubricating oil feedstock extract of Tables 5 and 6 and the effluent from the hydrodesulfurizing reactor when the light lubricating oil extract feedstock is hydrodesulfurized by itself at space velocities of 0.8 and 1.6.
TABLE 8 Average Reactor Temperature: "F. 681 680 Reactor Pressure:
P 8 LHSV: vol/hr/vol 0.80 1.59 Gas Rate: SCF/B 2969 2988 H Content of Reactor Gas:
vol 80.3 79.4 Hydrogen Consumption:
SCF/B (Unit) 1042 884 Total Liquid Product Yield: wt of fresh feed 94.52 96.40 Liquid Product Inspections Feed Gravity: API 9.3 18.6 18 l Sulfur: wt 6.03 0.88 l 71 Distillation, ASTM Vacuum: 10 MM EP 840 831 829 5% 706 584 622 10% 709 616 646 20% 716 648 669 728 667 684 735 684 700 743 698 712 60% 754 712 726 70% 765 726 740 80% 779 742 754 90% 799 765 781 95% 813 778 795 HYDRODESULFURIZING OF KUWAIT FURNACE OIL 5 Average Reactor Temperature: F. 680 680 Reactor Pressure:
psig 939 939 LHSV: vol/hr/vol 1.60 0.80 Gas Rate: SCF/B 1942 1963 50 11, Content of Reactor Gas: vol 81.0 80.7 Hydrogen Consumption:
SCF/B (Unit) 276 387 Total Liquid Product Yield:
wt of fresh feed 98.03 97.91 Liquid Product r s c o s Feed Gravity: API 35.2 38.3 39.8 Sulfur: wt 1.43 ppm 11 ppm Distillation, ASTM D86: F. EP 638 635 642 5% 475 453 452 10% 488 474 470 20% 506 497 490 30% 526 514 508 40% 542 529 524 50% 556 543 540 60% 570 557 552 584 572 568 598 590 588 616 .61 l 608 627 622 622 Table 9 shows the characteristics of the gas oil feedstock of Tables 5 and 6 and the gas oil hydrodesulfurized effluent when thegas oil feedstock is hydrotreated by itself at space velocities of 0.8 and 1.6.
TABLE 9 I-IYDRODESULFURIZING OF KUWAIT GAS OIL Average Reactor Temperature: F. 680 681 Reactor Pressure:
Distillation, ASTM vacuum: 10 MM l-IYDRODESULFURIZING OF KUWAIT GAS OIL Table 10 shows the characteristics of the blend of the furnace oil, gas oil and the light lubricating oil extract feedstock of Tables and 6 and also shows the characteristics of the effluent from the hydrodesulfurization reactor when this feedstock blend is hydrodesulfurized at a space velocity of about 0.8- and 1.6.
TABLE 10 HYDRODESULFURIZING OF A BLENDED CHARGE STOCK Charge: Blend of 35 wt Kuwait furnace oil,
53 wt Kuwait gas oil, 12 wt Kuwait lube oil extract Average Reactor Temperature: F. 680 680 Reactor Pressure:
psig 937 939 LHSV: vol/hr/vol 1.64 078 Gas Rate: SCF/Bbl 1907 2000 H Content of Reactor Gas: vol 79.4 80.3 Hydrogen Consumption: SCF/Bbl (Unit) 370 463 Total Liquid Product Yield: wt of fresh feed 97.39 96.26
Total Product Inspections Feed Gravity: AP1 26.3 30.3 31.9 Sulfur: wt 2.68 0.28 0.14 Distillation, ASTM Vacuum: 10 MM EP 987 961 958 5% 509 497 489 10% 543 528 521 589 574 574 629 610 603 662 643 634 698 673 667 737 710 702 781 757 750 832 81 l 811 900 876 876 942 921 921 The present hydrodesulfurization process can be advantageously applied to a situation where a relatively low-boiling, low sulfur-containing hydrocarbon stream from a first crude source, such as furnace oil boiling between 400 and 600 or 650F., which does not meet commercial sulfur requirements (which is 0.2 weight percent sulfur, or lower) and therefore would require desulfurization in a first reactor while in the same refinery a relatively high-boiling, high sulfur-containing gas oil from a second crude source having a volume average boiling point above 750F. is hydrodesulfurized in a second reactor. In accordance with the present invention, a relatively high boiling portion of the furnace oil, after separation from the furnace oil, is blended with the gas oil to produce a total hydrodesulfurization feed .oil blend having a volumetric average boiling point of at least 700 or 750F., but lower than the original volume average boiling point of the gas oil. Sufficient high boiling high sulfur-containing material is separated from the furnace oil for blending with the gas oil that the remaining light furnace oil is sufficiently low in sulfur to meet commercial domestic sulfur specifications (below 0.2 weight percent) without requiring passage through a hydrodesulfurization zone. In this manner, the boiling range of the heavy gas oil is advantageously broadened to impart a synergistic sulfur-removal effect to it, while no desulfurizer is required for the light furnace oil, thereby avoiding construction of a furnace oil 'desulfurizer.
Similarly, the present invention can be applied to combining an entire light oil stream (such as furnace oil) with an entire gas oil stream (boiling between 600 or 650 and l050F.) to produce a wide-boiling blended total stream having a high synergistic effect which is processed in a single reactor, instead of charging the separate streams to separate reactors because the lighter oil is destined for use as a furnace oil whereas the heavier gas oil is destined for use as an FCC feed. If desired, the hydrodesulfurized blend can be charged to its entirety to the FCC riser or it can be fractionated and the furnace oil can be used as a fuel oil and the gas oil only can be charged to the FCC riser. The blend of the two streams should have an average boiling point of at least 700 or 750F.
Additional tests were conducted to illustrate the by drodesulfurization of blends of oils to show the effect upon sulfur removal in the lower boiling portion of the blend. In these tests a blend of a naphtha range feed with a furnace oil feed was hydrodesulfurized with a catalyst comprising nickel-cobalt-molybdenum or alumina. The results of the tests are shown in FIG. 2.
FIG. 2 not only shows that the sulfur content in the lighter portion of the feed, that is the naphtha, is much lower (0.04 weight percent or 400 ppm) as compared to the sulfur content in the furnace oil (1.02 weight percent) but also that the sulfur in the naphtha oil portion of the blend at any given hydrodesulfurization temperature is removed relatively more easily than the sulfur of the heavier furnace oil fraction. FIG. 2 compares the sulfur content of the naphtha portion of the effluent and the furnace oil portion of the efi'luent when operating at space velocities of 4.0 and 5.0, respectively. Line E of FIG. 2 shows the level of sulfur removal that would occur in the furnace oil at 5 LHSV if the naphtha was not present in the blend. Line B shows that the naphtha exerts a synergistic effect upon sulfur removal of the heavier furnace oil portion of the feed.
Data were also taken by hydrodesulfurizing a heavier naphtha alone, without the presence of furnace oil, and these data tend to show that the presence of the heavier furnace oil inhibits removal of sulfur from the lighter naphtha portion of the blend. Therefore, the mechanism of the synergistic effect upon reaction rate is apparently that the lighter portion of the blend advantageously tends to increase sulfur removal from the heavier portion of the blend while the heavier portion of the blend tends to inhibit sulfur removal from the lighter portion of the blend and the net effect is an overall enhancement of sulfur removal due to blending. The important feature of the present invention is that the presence of lighter material assists removal of sulfur from the heavier material. This fact is important because, as noted above, it is the sulfur in the heavier material which is not easily vaporized and which is therefore present in the coke in any subsequent FCC reaction and it is the coke sulfur which ultimately ends up as sulfur dioxide, which is an atmospheric pollutant because it cannot be removed from FCC regenerator flue gases by amine scrubbing. On the other hand the sulfur present in the lighter portion of the feed which is easily vaporized and cracked in the FCC riser is largely removed in the FCC riser as hydrogen sulfide which can be scrubbed from riser off-gases with an amine, such as diethanolamine, and is thereby prevented from polluting the atmosphere. Furthermore, it was shown above that in any hydrodesulfurization process sulfur removal from the light feed material occurs more easily and to a greater extent than sulfur removal from a heavier material present in the hydrodesulfurizing feed whereby a smaller percentage reduction in sulfur dioxide is observed than the percent reduction in total sulfur in the feed to an FCC unit.
Table l 1 shows the characteristics of the naphtha in the feed of the blend of FIG. 2 and also shows the characteristics of the naphtha portion in the product from the hydrodesulfurization process of FIG. 2.
TABLE 1 l INSPECTION DATA FOR C,,-380F. NAPHTHA PRODUCTS FROM DESULFURIZATION AT A FEED RATE OF 5.0 LHSV C -680F. Charge Distillate Operating Conditions LHSV: vol/hr/vol 5.0 Reactor Pressure:
psig 700 Average Reactor Temperature: F. 640 Gas Rate: SCF/B 1200 H, Content: 9O
Naphtha C 380F. Fraction Distillate from in Feed Desulfurizer Inspections Gravity: D287: API 64.7 62.9 Distillation, D86: F.
Over Point I03 117 End Point 366 376 5% 137 151 10% I53 I66 I77 I89 30% I99 209 40% 22] 229 50% 240 249 60% 258 267 70% 273 287 80% 295 306 90% 3 I5 326 95% 328 34I Sulfur, ppm by weight 400 l As shown in Table l l and as shown in FIG. 2 at about a hydrodesulfurization temperature of 640F. the sulfur content in the naphtha portion of the hydrodesulfurization product is about 1 ppm. It is noted that the data points in FIG. 2 for the naphtha product show that less severe conditions did not product a I ppm sulfur naphtha product when the naphtha was present in a blend with furnace oil.
Table 12 shows the results of a test treating a higher boiling naphtha in an unblended condition with a similar catalyst to hydrodesulfurize the naphtha at conditions of 300 psig, 600F., 5.6 LI-ISV and 300 SCF/B of hydrogen. Each one of these test conditions is much less severe than the comparable condition employed in the hydrodesulfurization reaction illustrated in Table 11. The characteristics of the unblended naphtha feed and the unblended naphtha hydrodesulfurization product of these tests are illustrated in Table 12.
TABLE 12 HYDRODESULFURIZATION OF A LOW SULFUR CONTENT VIRGIN NAPHTI-IA AT LOW HYDROGEN PARTIAL PRESSURE Operating Conditions Temperature: F. 600 Pressure: psig 300 Space Velocity:
voI/hr/vol 5.6 Gas Circulation:
SCF/B 300 H; 84.6 Inspections Charge Gravity: API 48.0 47.8 Sulfur: ppm 400 l Distillation: ASTM D86 IBP: F. 27l 270 EP: F. 41 l 41 I 10% at F. 297 302 30% 315 318 50% 331 333 346 349 90% 373 373 Table 12 shows the under much less severe hydrodesulfurizing conditions, when employing an unblended naphtha feed the sulfur content of the product was reduced to about the same level, i.e., about 1 ppm, as when the naphtha was treated in the presence of furnace oil but under much more severe conditions, indicating that the presence of a heavier material with the naphtha feed tended to inhibit sulfur removal in the naphtha portion of the blend. As noted above and as shown in FIG. 2, in a blended condition the naphtha required the full reaction severity indicated to achieve the 1 ppm sulfur level. These data indicate that although according to the synergistic sulfur removal reaction efi'ect of the present invention the presence of a ligher material enhances the rate of sulfur removal of the heavier portion of the blend, at the same time the sulfur removal from the lighter portion of the blend tends to be inhibited.
A variation of the present invention is presented in the process illustrated in FIG. 3 wherein the synergistic effect of this invention can be partially foregone with eration over a stationary bed of compacted catalyst particles. In the system of FIG. 3, a virgin oil which has a relatively high boiling range, and a relatively high sulfur content, is the heavy portion of the blend and the effluent sulfur content of this fraction only of the total product is indicated by line G in FIG. 3.
Line F of FIG. 3 illustrates the sulfur content in the total product when a virgin oil having a lower boiling range (volume average boiling point below 750F.) and having a'. lower sulfur content is combined with the heavy oil (volume average boiling point above 750F.). In the abscissa of the curve of FIG. 3 it is shown that when the total blend employing the light oil together with the heavy oil is charged to the inlet of the reactor percent of bed depth), the sulfur in the total product is at its lowest value while the sulfur in the heavy oil portion distilled out of the total product (line G) is at its highest value.
Line G represents the sulfur content in the heavy oil distilled out of the total product including both light oil and heavy oil, except that the terminus of line G, indicated by point K, indicates the sulfur content of the heavy gas oil effluent when the heavy oil is charged through the entire catalyst bed without any of the light oil. Point K shows that the total absence of light oil permitted maximum desulfurization of the heavy oil because the heavyoil did not have to compete with the light oil for catalyst sites. Therefore, although the light oil provides the synergistic effect of this invention, it also inherently produces a negative dilution effect and the following discussion of FIG. 3 illustrates a system wherein the synergistic effect of the light oil can be partially obtained while holding to a minimum its negative effect of dilution of the heavy oil.
Referring to FIG. 3, the unusual feature is observed that very close to a minimum level of sulfur content in the total product, as indicated by point H, is achieved if the heavy oil portion of the total blend only isadded to the top of the catalyst bed and permitted to pass through about 80 percent of the catalyst bed undiluted by light oil while the light oil portion of the total blend only is added to the reactor at a point about 80 percent downwardly into the bed depth. The total blend has a volume average boiling point of at least 750F. FIG. 3 shows that when the heavy oil portion of the blend is added with hydrogen at the top of the catalyst bed and I the light oil is added at a point about 90 percent downwardly into the bed depth, the sulfur content in the heavy oil fraction of the product and in the total product is about equal, since this is the point at which curves and G cross. FIG. 3 further shows, that if the light oil portion (having a volume average boiling point below 7 50F.) of the blend is not added to the hydrodesulfurization reactor but the heavy oil alone (having a volume average boiling point above 750F.) passes through theentire catalyst bed having access to catalyst sites which is uninhibited by the presence of the light oil, the heavy oil portion itself is desulfurized to the greatest extent (point K). FIG. 3 also shows that if the light oil in a nondesulfurized condition is blended with the hydrodesulfurized heavy gas oil effluent, the sulfur content of the total product is a maximum, and is at an unacceptably high value (point J), which indicates a highly inefficient mode of operation, and may not even constitute 80 percent sulfur removal from the total feed including both high and low boiling portions. Therefore, according to FIG. 3, the most advantageous mode of operation for sulfur removal from the heavy oil is to add the heavy oil at the top of the reactor bed and not to add light oil to the reactor at all. But if the light oil is ultimately to be blended with the heavy oil, or if the light oil must be desulfurized, FIG. 3 indicates the most economical mode of operation is to add the light oil fraction to a point at about percent downwardly in the bed depth so that the sulfur content in the total effluent is nearly a minimum, as indicated by point H, while the sulfur content in the heavy oil portion only of the total product nearly approaches its minimum value at point K (see point I). Although this mode of operation gives up the synergistic effect contributed by the light portion along the top 80 percent of the catalyst bed, it does have the advantage of not diluting the refractory sulfur-containing molecules in the heavy fraction along the top 80 percent of the bed depth and thereby permitting greater sulfur removal from the heavy fraction only while employing a smaller reactor and a smaller quantity of catalyst and thereby achieving a large economic advantage while giving up only a small advantage in terms of the sulfur content in the total product.
If the synergistic effect of this invention is the only consideration, it would be advantageous to charge the light oil portion to the top of the catalyst bed together with the heavy oil portion so that the light oil portion can exert a maximum sulfur removal synergistic effect upon the heavy portion of the total product, However, by adding the light portion late to the reactor an additional advantage is achieved in that it is easier for the process to achieve 80 percent total desulfurization with a limited amount of catalyst and without increasing the temperature differential between the 10 and percent distillation points of the total feed more than 20F although the temperature drop of the 90 percent point is more easily lowered at least 10 or 15F indicating enhanced sulfur removal from the high-boiling portion and rendering the high-boiling high-sulfur compounds more easily vaporizable in a subsequent FCC riser, to reduce sulfur dioxide formation. Whatever mode of operation is employed the entire effluent can be charged to the FCC step or the effluent can be distilled to re cover light oil for use as furnace oil, and heavy oil, for charging the FCC riser. Points H and I of FIG. 3 indicate that operation of the hydrodesulfurization reactor by injecting the light portion at about 80 percent of the bed depth represents an ideal compromise between the synergistic and dilution effects of the light oil in that the sulfur level in the total product is almost a minimum (Point H) while the sulfur level in the heavy portion only of the product is also close to a minimum (Point I). Injection of the light oil at greater than 80 percent of the bed depth improves sulfur removal from the heavy portion .of the product only slightly while greatly increasing the sulfur level in the total product. FIG. 3 illustrates results with a particular feed blend but with other feed blends the optimum point of injection of the light oil (point B) might be elsewhere in the bed, e.g. at 50, 60, 70 or even at a deeper percentage of the bed depth.
An especially important feature of the present invention is illustrated in FIG. 4. FIG. 4 represents the variation of the 10 percent distillation point and the 90 percent distillation point in a feed oil during a hydrodesulfurization process of the present invention. Suitable feed oils for this invention include the overhead of atmospheric or vacuum distillations and include oils in the furnace oil and gas oil boiling ranges. The 90 percent distillation point represented by line M in FIG. 4 is particularly important because the 90 percent distillation point material represents the heavy material in the system in which the sulfur content is richest, from which it is most difficult to remove sulfur, and which contains the sulfur which is present in the coke of a subsequent FCC riser which ends up as sulfur dioxide in an FCC regeneration operation. A significant drop in the 90 percent distillation point, i.e., at least F, or more, is tangible evidence of significant removal of sulfur from the heaviest material in the feed stream. Therefore, it is important to a hydrodesulfurization process of the present invention that a significant drop occur in the 90 percent distillation curve of a feed moving through a hydrodesulfurization reactor. In the process of FIG. 4, the feed and hydrogen flow downwardly over a fixed, stationary bed of nickelcobalt-molybdenum on alumina catalyst particles.
The line L in FIG. 4 represents the drop in temperature of the 10 percent distillation point. The 10 percent distillation point drops more readily than the 90 percent distillation point because it represents the accumulation of all light components produced due to either sulfur removal or hydrocracking of higher boiling materials. The removal of sulfur from the 10 percent distillation point material of the feed occurs most readily because, as shown in Table 1, above, the desulfurization reaction rate constant is low in high boiling materials but increases exponentially as the boiling point of the sulfur-containing component decreases. However, it is noted that the 10 percent point should not drop more than 40 or 50F. At point P, which represents the hydrocracking limit of the process of FIG. 4, it is noted that the 10 percentdistillation temperature dropped almost 40F. and is in a region of a further very sharp drop upon passage over any additional catalyst.
The presence of a significant quantity of sulfur in the hydrocarbon in a hydrodesulfurization system acts as an inhibitor against appreciable hydrocracking in the hydrodesulfurization system. Hydrocracking is indicated by a very rapid drop in the 10 percent distillation point. Hydrocracking, which is the severance of carhon-carbon bonds, as contrasted to sulfur removal by severance of carbonsulfur bonds, is highly undesirable in the present invention because it represents a needless consumption of hydrogen in the preparation in the feed for an FCC process wherein hydrogen is not added and cracking occurs without consuming hydrogen. Therefore, the consumption of hydrogen to accomplish cracking is an economic waste in the preparation of a feed for an FCC process. Furthermore, gasoline range components produced by hydrocracking have a lower octane number due to the saturation of olefins caused by the presence of hydrogen. Olefins are known gasoline octane-improvers. On the other hand, gasoline produced in a zeolitic FCC riser in the absence of added hydrogen is rich in olefins and these olefins contribute to a high octane number gasoline product. One means of inhibiting hydrocracking is to use recycle hydrogen as a coolant or quench to be injected at various positions in the hydrodesulfurization reactor to accomplish cooling. It is advantageous to employ a single hydrodesulfurization reactor chamber, with one or a plurality of separated beds, with the total feed hydrocarbon blend introduced at the reactor inlet and with the total hydrogen either added at the reactor inlet or divided and added both to the reactor inlet and also at several positions along the length thereof, preferably between catalyst beds, to provide a quenching effect.
A further reason for avoiding extensive hydrocracking in the hydrodesulfurization process is that the hydrodesulfurization operation of the present process is designed to accomplish a synergistic effect in sulfur removal between the light (represented by the 10 percent distillation point of FIG. 4). components and the heavy (represented by the 90 percent distillation point of FIG. 4) components in the feed blend moving through the hydrodesulfurization reactor. As explained above, this synergistic effect in the sulfur removal reaction between high reaction rate components and low reaction rate components can be translated into a savings in catalyst required per barrel of feed and also a savings in hydrogen consumed per barrel of feed due to the smaller catalyst bed. If the feed traveling through the reactor is permitted to remain in the reactor sufficiently long to permit extensive hydrocracking at the reactor outlet region, this is evidence that the catalyst bed is excessively great in length in relation to its sulfur-removing function and therefore the catalyst savings that could be achieved due to the synergistic effect of this invention if the reaction were limited essentially to sulfur removal is rendered innocuous, to say nothing of resulting wasteful hydrogen consumption.
Since it is an objective of the present invention to remove as much sulfur as possible from the 90 percent distillation point components of the feed, as evidenced by a drop in the 90 percent distillation point of the material traveling through the reactor, sufficient catalyst should be present to permit as great a drop as possible in the 90 percent distillation point. However, in order not to exceed the range of the synergistic effect advantage of the present invention, the amount of catalyst present, and therefore the depth of the reactor bed, should be limited to a range such that the sulfur-level does not become sufficiently low that the inhibitory power of sulfur against extensive hydrocracking is avoided. This objective is realized by a limitation in the drop of the 10 percent distillation point of the material traveling through the reactor. We have found that the present invention is best performed to accomplish reduction in the 90 percent distillation point (representing the most desirable sulfur removal) without encountering an excessive reduction in the 10 percent distillation point (representing excessive hydrocracking) by employing a catalyst bed of sufficient depth so that at least percent of the sulfur is removed from the hydrocarbon feed while permitting the temperature difference between the percent and the 10 percent distillation points to increase but not to increase by an amount exceeding 10, 15 or 20F. It is important that at least 80 percent of the sulfur be removed, because line M of FIG. 4 shows that in the removal of only 50 or 60 percent of the total sulfur in the feed, very little effect upon the 90 percent distillation point is apparent, while line L shows most of the initial sulfur removal was from the lighter material.
Referring again to FIG. 4, line N illustrates the increase in temperature differential between the 10 percent distillation point and the 90 percent distillation point of the feed as it travels through the reactor. At position 0 on line N, 80 percent of the total sulfur in the feed has been removed, satisfying the requirements .yet increased by 20F, also satisfying the requirements of this invention. It is not until position P on line N has been reached that the increase in temperature differential between the i percent and 90 percent distillation points just reaches 20F. It is noted that line N begins to move abruptly upwardly in an exponential manner once the 20F. increase is achieved. It is at this point that the sulfur level becomes so low that the amount of sulfur in the feed is inadequate to effectively inhibit hydrocracking so that hydrocracking begins to occur at an excessive and undesirable rate. As already stated, hydrocracking at an excessive and undesirable rate is to be avoided because it results in an economic waste of hydrogen and because it produces gasoline having a lower octane number than the gasoline that can be produced in a subsequent FCC riser operation in the substantial absence of added hydrogen. The reaction of the present invention is terminated at least at the catalyst depth (reactor length) represented by point P. More particularly, the catalyst depth should be in the region represented between the points 0 and P, i.e., the bed depth is great enough to accomplish at least 80 percent sulfur removal, with a drop in the 90 percent distillation point of at least F., with an increase in temperature differential between the 10 percent and 90 percent distillation points but without the temperature differential increase exceeding 20F. and without the 10 percent point dropping more than 40 or 50F. When the bed depth is between the points indicated by O and P of FIG. 4, the catalyst savings due to the synergistic sulfur removal effect of the present invention is realized. A savings in reaction time and in prevention of excessive hydrocracking is also realized. If the catalyst bed depth exceeds that represented by point P, the total sulfur removal is greater but the catalyst economy feature of this invention becomes valueless because insufficient sulfur remains in the stream for effective synergism in sulfur removal, as evidenced by the fact'that the additional catalyst contributes relatively more heavily to hydrocracking reactions rather than to hydrodesulfurization reactions. The onset of excessive hydrocracking therefore indicates the synergistic reaction effect of this invention is essentially terminated. Therefore, the catalyst economy advantage of the present invention is a transient advantage which becomes useless when the increase temperature differential between the 10 and 90 percent distillation points exceeds 20F. Preferably, the increase in the temperature differential can be below F. It is noted that further widening of the boiling range of the feed of FIG. 4 by addition of a furnace oil would permit a higher degree of desulfurization of the gas oil than that indicated by point P without excessive hydrocracking.
It has already been noted that the presence of sulfur in the feed material must be sufficiently great to inhibit hydrocracking. While FIG. 4 indicates that the feed sulfur content is 2.74 weight percent, FIG. 5 illustrates the hydrodesulfurization of a feed containing only 0.31 weight percent sulfur. FIG. 5 shows the variation in the 10, 30, 50, and 90 percent distillation points (the average of which represents the volume average boiling point of a hydrocarbon stream) with increasing levels of desulfurization with a feed containing this low level of sulfur content. Referring to FIG. 5, it is seen that at percent desulfurization of the feed the temperature differential between the 10 percent and the percent distillation points has increased 25F., as compared to the feed, which is beyond the permissible 20 temperature differential at 80 percent desulfurization in accordance with this invention. FIG. 5 shows that the temperature differential had already reached 20F. when only 75 percent of the feed sulfur was removed. Therefore, the feed illustrated in FIG; 5 has too low a level of sulfur to be included within the present invention. The sulfur level of such a feed is so low that it cannot adequatelyinhibit hydrocracking with its attendant expense in hydrogen consumption while it accomplishes desulfurization. As noted earlier, it is desired to reserve cracking for the subsequent FCC-unit. Furthermore, the level of sulfur in the feed of FIG. 5 is so low that the requirement for the synergistic sulfur removal effect of the present invention is not as important as with the feed illustrated in FIG. 4. Moreover, the low feed sulfur level shown in FIG. 5 indicates that the feed will not be a major source of sulfur dioxide contamination in a subsequent regeneration unit of a downstream FCC riser cracker.
FIG. 6 presents data to illustrate the importance to the hydrodesulfurization process of the present invention of avoiding a catalyst containing silica. The data shown in FIG. 6 were taken by passing a Kuwait gas oil having 2.93 weight percent sulfur, as ASTM 10 percent point of 689F. and an ASTM 90 percent point of 101 1F., downflow over a bed of l/l6 inch nickelcobalt-molybdenum on alumina catalyst particles at a pressure of 1000 psig, 2000 SCF/B of 70 to 75 percent hydrogen, a LHSV of 2.0, while scrubbing the recycle gas with NaCaOH. In the upper curve of FIG. 6, the alumina support is essentially silica-free while in the lower curve of FIG. 6 the catalyst is promoted with 0.5 weight percent silica. It is seen from FIG. 6 that at all temperatures, the promotion of the catalyst with silica results in a lower weight percent desulfurization of the feed oil. The data of FIG. 6 show the importance of employing a hydrodesulfurization catalyst having less than 0.5 weight percent silica and preferably of employing catalyst containing less than 0.25 weight percent silica or even 0.1 weight percent silica, or less.
The present invention is to be distinguished from prior art processes in which a cracking feed is hydrogenated or hydrodesulfurized in advance of a cracking operation in order to accomplish a hydrogen donation effect in the cracking operation. Hydrogen donation, is a direct transfer of hydrogen from certain partially or completely saturated ring compounds, such as aromatics or naphthenes, to other refractory compounds during cracking without the addition of free hydrogen in order to render the refractory compounds less refractory. It occurs during a cracking operation which permits sufficient residence time for such hydrogen donation to occur. Hydrogen donation has the overall effect of rendering the feed less refractory even though no free hydrogen is added to the cracking system. In such hydrogen transfer processes, hydrogen is added to easily hydrogenated aromatic or naphthenic compounds in a prehydrogenation stage and then during cracking the hydrogen is transferred directly to a more refractory, hydrogen deficient compound to render the more refractory compound more susceptible to cracking. However, as stated, such hydrogen donation requires sufficient residence time for its occurrence. The cracking operation of the present invention occurs with a highly active zeolite cracking catalyst at a residence time of less than fiveseconds, preferably less than 2 or 3 seconds, and occurs with hydrocarbon feed and regenerated or fresh catalyst flowing concurrently upwardly through the reactor at about the same velocity, without permitting catalyst bed formation (whereby backmixing of hydrocarbon occurs) anywhere in the reaction flow path. Such a riser cracking process is described in US. Pat. No. 3,617,512, which is hereby incorporated by reference. In FIG. 3 of US. Pat. No. 3,617,512, chamber 2 could comprise a hydrodesulfurization reactor of this invention. The residence time in the cracking riser is preferably three seconds or less and can be one or two seconds or less. The top of the riser is capped and provided with lateral exit slots to insure immediate disengagement of reactants and catalyst at the riser exit, thereby preventing overcracking of gasoline after vapors and catalyst leave the riser. To illustrate the absence of hydrogen donation in acracking riser of the present invention, a cracking riser test is illustrated in Table 13. As shown in Table 13, two tests were conducted, one of which employed 100 percent cyclohexane (the saturated aromatic) as feed and the other employing a 2:1 mole ratio of cyclohexane to pentene-2, pentene-2 constituting the hydrogen-deficient compound. The cyclohexane-pentene-2 blend had an impurity of 0.16 weight percent isopentane.
Less iC, yield than was present as a feed impurity Comparing the two tests shown in Table 13, at the very low residence time of the riser cracking reaction it is seen that hydrogen transfer from the cyclohexane to the pentene-2 was so low that there was a net loss of hydrogen from the pentene-2 rather than a net gain in that the yield of the second test contained only 0.14 weight percent total pentanes, which is lower than the 0.16 weight percent isopentane impurity present in the feed. Therefore, no hydrogen donation occurred-from the cyclohexane to the pentene-2. It is noted that the cyclohexane and the pentene-2 are both materials boil- 26 ing within the gasoline boiling range. Materials boiling within the gasoline boiling range are much more refractory than materials boiling above the gasoline range.
Due to this refractoriness, both tests illustrated in Table 13 showed that essentially no cracking occurred during the tests. This absence of cracking allows the data to illustrate quite pointedly that under the standard cracking conditions of this inventionwhich are adapted for cracking material boiling above the gasoline range down to the gasoline range with minimal overcracking of gasoline range material itself, no hydrogen transfer occurs.
The zeolite riser cracking conditions and system (known as FCC or fluid catalytic cracking) of this invention do not employ added hydrogen and incorporate the cracking conditions disclosed in US. Pat. No. 3,617,512. The cracking temperature can be 900 to 1100F., or more. The preferred temperature range is 950 to 1050F. The reaction pressure can vary widely and can be, for example, 5 to 50 psig, or preferably 20 to 30 psig. The maximum residence time is 5 seconds, and for most charge stocks will be 0.5 to 2.5 seconds. A suitable weight ratio of catalyst to total oil charge is 4:1 to about 12:1 or even 25:1. The velocity of catalyst and oil through the riser can be 25 to feet per second. There is substantially instantaneous vaporization of oil upon contact with the hot regenerated catalyst. Catalyst regeneration can occur at l,240 or 1,250F. or more to reduce the level of carbon on the regenerated catalyst from the range of about 0.6 to 1.5 to about 0.05 to 0.3 percent by weight. Riser space velocity should not be below 35 and should preferably be above and can be 400 or 500, or more, based on hydrocarbon feed and instantaneous catalyst inventory in the riser. The density at the riser inlet can be below 4 or 4.5 pounds per cubic foot. There is no catalyst bed formation anywhere in the zeolite catalyst reaction flow path once regenerated catalyst contacts hydrocarbon feed untildisengagement between the two occurs and the cracking reaction is terminated.
A series of tests were performed to determine in various cracking systems the effect upon the ratio of FCC gasoline to total FCC conversion wherein the FCC feed boils above the gasoline range. Tests are presented to illustrate the effect upon this ratio of the use of a zeolite as compared to a nonzeolite-containing catalyst. The results of these tests showed that a zeolite-containing catalyst produced a considerably higher ratio of gasoline to conversion than a nonzeolite catalyst.
Additional tests are presented to illustrate the effect when employing a zeolite catalyst in riser cracking at a high velocity without permitting formation of a catalyst bed as compared to cracking systems wherein a catalyst bed is permitted to form with a zeolite catalyst. These tests show that the ratio of gasoline to conversion increases when a riser cracking system (non-dense bed) is employed with a zeolite catalyst as compared to a zeolite fluidized dense bed system.
Further .tests were performed to illustrate a riser cracking system employing a zeolite catalyst wherein the total feed gas oil is in a nonhydrogenated condition as compared to a hydrogenated condition. These tests showed that the ratio of gasoline to conversion can be increased in a riser cracking system employing a zeolite catalyst without permitting formation of a catalyst bed anywhere in the reaction flow path by pretreating the total feed via hydrogenation when charging the

Claims (6)

1. A PROCESS COMPRISING BLENDING A SULFUR-CONTAINING ZEOLITE RISER CRACKING PETROLEUM HEAVY GAS OIL FEED AND A SULFURCONTAINING PETROLEUM FURNACE OIL FEED TO FORM A NON-ASPHALTIC SULFUR-CONTAINING TOTAL HYDRODESULFURIZATION FEED OIL HAVING A VOLUME AVERAGE BOILING POINT OF AT LEAST 700*F., PASSING SAID TOTAL FEED OIL TOGETHER WITH HYDROGEN DOWNFLOW OVER A FIXED BED OF HYDRODESULFURIZATION CATALYST COMPRISING GROUP VI AND GROUP VIII METALS ON A NON-CRACKING ALUMINA SUPPORT TO REMOVE AT LEAST 80 WEIGHT PERCENT OF THE SULFUR FROM THE TOTAL FEED OIL, REGULATING THE AMOUNT OF CATALYST IN THE BED TO AVOID EXCESSIVELY DECREASING THE BOILING CHARACTERISTICS OF THE TOTAL FEED WHEREBY AN INCREASE IN TE TEMPERATURE DIFFERENTIAL BETWEEN THE 10 AND 90 PERCENT BOILING POINTS OF THE TOTAL FEED STREAM OCCURS BUT DOES NOT EXCEED 20*F. WHILE THE 90 PERCENT BOILING POINT OF THE TOTAL FEED IS DECREASED AT LEAST 10*F., REMOVING AN EFFLUENT STREAM FROM SAID HYDRODESULFURIZATION PROCESS AND PASSING AT LEAST THE DESULFURIZED HEAVY GAS OIL OF THE EFFLUENT STREAM TO A ZEOLITE RISER CRACKING UNIT.
2. The process of claim 1 wherein the effluent from the hydrodesulfurization process is separated into a desulfurized furnace oil and a desulfurized heavy gas oil which heavy gas oil is passed to a zeolite riser cracking unit.
3. The process of claim 1 wherein the drop in the 90 percent distillation point is at least 15*F.
4. The process of claim 1 wherein said total feed oil has a volume average boiling point of at least 750*F.
5. The process of claim 1 wherein the hydrodesulfurization pressure is 800 to 1200 psi.
6. The process of claim 1 wherein the hydrodesulfurization hydrogen consumption is 100 to 500 standard cubic feed per barrel of feed oil boiling above 650*F.
US00346183A 1973-03-29 1973-03-29 Hydrodesulfurization process for producing fuel oil and fcc feed Expired - Lifetime US3852187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00346183A US3852187A (en) 1973-03-29 1973-03-29 Hydrodesulfurization process for producing fuel oil and fcc feed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00346183A US3852187A (en) 1973-03-29 1973-03-29 Hydrodesulfurization process for producing fuel oil and fcc feed

Publications (1)

Publication Number Publication Date
US3852187A true US3852187A (en) 1974-12-03

Family

ID=23358309

Family Applications (1)

Application Number Title Priority Date Filing Date
US00346183A Expired - Lifetime US3852187A (en) 1973-03-29 1973-03-29 Hydrodesulfurization process for producing fuel oil and fcc feed

Country Status (1)

Country Link
US (1) US3852187A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780193A (en) * 1986-12-22 1988-10-25 Mobil Oil Corporation Process for hydrotreating catalytic cracking feedstocks
US20190185768A1 (en) * 2017-12-19 2019-06-20 IFP Energies Nouvelles Method for hydrotreatment of vacuum distillates implementing a specific concatenation of catalysts

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2897143A (en) * 1955-01-18 1959-07-28 British Petroleum Co Hydrocatalytic desulphurisation of petroleum hydrocarbons
US2938857A (en) * 1956-11-08 1960-05-31 Sun Oil Co Split hydrorefining of feed to catalytic cracking operation
US2958654A (en) * 1958-06-30 1960-11-01 Sun Oil Co Catalytic desulfurization of blend of a reformer feed and a furnace oil
US3011971A (en) * 1958-09-05 1961-12-05 Kellogg M W Co Hydrodesulfurizing dissimilar hydrocarbons
US3193495A (en) * 1961-05-05 1965-07-06 Esso Standard Eastern Inc Desulfurization of wide boiling range crudes
US3287254A (en) * 1964-06-03 1966-11-22 Chevron Res Residual oil conversion process
US3475327A (en) * 1966-10-28 1969-10-28 Exxon Research Engineering Co Hydrodesulfurization of blended feedstock
US3617512A (en) * 1969-06-25 1971-11-02 James R Murphy Fluid catalytic cracking process
US3700586A (en) * 1970-08-10 1972-10-24 Exxon Research Engineering Co Production of high octane gasoline from coal liquids

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2897143A (en) * 1955-01-18 1959-07-28 British Petroleum Co Hydrocatalytic desulphurisation of petroleum hydrocarbons
US2938857A (en) * 1956-11-08 1960-05-31 Sun Oil Co Split hydrorefining of feed to catalytic cracking operation
US2958654A (en) * 1958-06-30 1960-11-01 Sun Oil Co Catalytic desulfurization of blend of a reformer feed and a furnace oil
US3011971A (en) * 1958-09-05 1961-12-05 Kellogg M W Co Hydrodesulfurizing dissimilar hydrocarbons
US3193495A (en) * 1961-05-05 1965-07-06 Esso Standard Eastern Inc Desulfurization of wide boiling range crudes
US3287254A (en) * 1964-06-03 1966-11-22 Chevron Res Residual oil conversion process
US3475327A (en) * 1966-10-28 1969-10-28 Exxon Research Engineering Co Hydrodesulfurization of blended feedstock
US3617512A (en) * 1969-06-25 1971-11-02 James R Murphy Fluid catalytic cracking process
US3700586A (en) * 1970-08-10 1972-10-24 Exxon Research Engineering Co Production of high octane gasoline from coal liquids

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780193A (en) * 1986-12-22 1988-10-25 Mobil Oil Corporation Process for hydrotreating catalytic cracking feedstocks
US20190185768A1 (en) * 2017-12-19 2019-06-20 IFP Energies Nouvelles Method for hydrotreatment of vacuum distillates implementing a specific concatenation of catalysts

Similar Documents

Publication Publication Date Title
KR102447300B1 (en) A conversion process comprising fixed bed hydrotreating for the manufacture of marine fuels, separation of the hydrotreated resid fraction and catalytic cracking steps
EP0537500B1 (en) A method of treatment of heavy hydrocarbon oil
AU2001249836B2 (en) Staged hydrotreating method for naphtha desulfurization
US8911694B2 (en) Two-stage hydroprocessing apparatus with common fractionation
AU2003241412B2 (en) Multi-stage hydrodesulfurization of cracked naphtha streams with a stacked bed reactor
WO2006071505A1 (en) Selective hydrodesulfurization and mercaptan decomposition process with interstage separation
JPH0756035B2 (en) Hydrocracking method
US20050113250A1 (en) Hydrotreating catalyst system suitable for use in hydrotreating hydrocarbonaceous feedstreams
US8691082B2 (en) Two-stage hydroprocessing with common fractionation
AU2003220318B2 (en) Selective hydrodesulfurization of naphtha streams
US3905893A (en) Plural stage residue hydrodesulfurization process
US20100029474A1 (en) Hydrotreating catalyst system suitable for use in hydrotreating hydrocarbonaceous feedstreams
KR100417598B1 (en) Manufacturing method of fuel oil base material
CN102344826A (en) Combined hydrogenation method for producing catalytic raw material and high-quality diesel oil
US8608947B2 (en) Two-stage hydrotreating process
US3852187A (en) Hydrodesulfurization process for producing fuel oil and fcc feed
US3852186A (en) Combination hydrodesulfurization and fcc process
US3936370A (en) Process for producing a zeolite riser cracker feed from a residual oil
US3852185A (en) Hydrodesulfurization and fcc of blended stream containing coker gas oil
US3997430A (en) Hydrodesulfurization process involving blending high boiling streams
US3923637A (en) Hydrodesulfurization process with a portion of the feed added downstream
US3907667A (en) Process for producing a lubricating oil from a residue feed
Lengyel et al. Upgrading of delayed coker light naphtha in a crude oil refinery
EP1682637B1 (en) A hydrotreating catalyst system suitable for use in hydrotreating hydrocarbonaceous feedstreams
Nguyen et al. Unionfining: technical case studies

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A COR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.;REEL/FRAME:004610/0801

Effective date: 19860423

Owner name: CHEVRON RESEARCH COMPANY, SAN FRANCISCO, CA. A COR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GULF RESEARCH AND DEVELOPMENT COMPANY, A CORP. OF DE.;REEL/FRAME:004610/0801

Effective date: 19860423