US3850762A - Process for producing an anodic aluminum oxide membrane - Google Patents
Process for producing an anodic aluminum oxide membrane Download PDFInfo
- Publication number
- US3850762A US3850762A US00387872A US38787273A US3850762A US 3850762 A US3850762 A US 3850762A US 00387872 A US00387872 A US 00387872A US 38787273 A US38787273 A US 38787273A US 3850762 A US3850762 A US 3850762A
- Authority
- US
- United States
- Prior art keywords
- membrane
- water
- porous layer
- flow
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title abstract description 30
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 title abstract description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 claims abstract description 17
- 238000007743 anodising Methods 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 56
- 239000000243 solution Substances 0.000 claims description 31
- 150000003839 salts Chemical class 0.000 claims description 25
- 238000002048 anodisation reaction Methods 0.000 claims description 12
- 238000010612 desalination reaction Methods 0.000 claims description 12
- 239000008366 buffered solution Substances 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- 239000012670 alkaline solution Substances 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 150000007513 acids Chemical class 0.000 claims description 3
- 239000011148 porous material Substances 0.000 abstract description 47
- 230000004888 barrier function Effects 0.000 abstract description 17
- 238000005530 etching Methods 0.000 abstract description 9
- 238000000108 ultra-filtration Methods 0.000 abstract description 6
- 210000004379 membrane Anatomy 0.000 description 71
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 230000036571 hydration Effects 0.000 description 10
- 238000006703 hydration reaction Methods 0.000 description 10
- 239000011888 foil Substances 0.000 description 9
- 238000000502 dialysis Methods 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 230000003204 osmotic effect Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000001223 reverse osmosis Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000005862 Whey Substances 0.000 description 2
- 102000007544 Whey Proteins Human genes 0.000 description 2
- 108010046377 Whey Proteins Proteins 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000001117 sulphuric acid Substances 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 238000003339 best practice Methods 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- RCTYPNKXASFOBE-UHFFFAOYSA-M chloromercury Chemical compound [Hg]Cl RCTYPNKXASFOBE-UHFFFAOYSA-M 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010961 commercial manufacture process Methods 0.000 description 1
- 238000012777 commercial manufacturing Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 210000000969 egg white Anatomy 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000000887 hydrating effect Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- -1 sulfuric Chemical class 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
- B01D71/025—Aluminium oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/145—Ultrafiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0053—Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
- B01D67/006—Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
- B01D67/0065—Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods by anodic oxidation
Definitions
- the present invention relates to porous membranes and more specifically to a method for making porous membranes for hyperfiltration (reverse osmosis) and ultrafiltration. l
- the particles are designed by the size pore or hole which will trap them.
- the pores themselves are treated as being cylindrical about a longitudinal axis substantially perpendicular to the surface of the membrane.
- the pore is referred to as having a diameter and this diameter is in reality the diameter of a cylinder representing the effective cross sectional area of the pore at its most constricted point.
- the solvent is forced through the membrane and dissolved or suspended particles remain behind.
- ultrafiltration refers to membranes with pores of the order of 50A to 10 pm in diameter.
- reverse osmosis refers to filtering small solutes, less than a hundred angstroms, which have appreciable osmotic pressures. Thus, several hundred psi is needed in water desalinization just to counterbalance the osmotic pressure before filtration can take place.
- dialysis an electric field is used to draw either positive or negative ions throughthe membrane.
- an ion-exchange membrane is used which allows only ions of one electrical charge (positive or negative) to pass.
- Membranes have been used or proposed in many fields to effect separations.
- Table I covers the application of membranes of different classes to separations in various fields which are in use or have been proposed.
- the structure of a membrane is; a great importance. It should have a thin uniform pore size layer for separation, backed by a high permeability layer for mechanical support. The success of cellulose acetate membranes for reverse osmosis has come from the development of this structure.
- the actual separation layer of these membranes is formed by the packing of roughly spherical particles.
- the permeability is less than that of cylindrical channels of equivalent pore size.
- Waste treatment of both household or industrial wastes may involve several steps. One is removal of solids by conventional filtration. Removal of biological materials requires ultrafiltration. Removal and possible recovery of salts requires reverse osmosis. Solvents must be used to clean the membrane and/or sterilization must be carried out at elevated temperatures.
- hydrous oxides including aluminum oxides when deposited in the pores of filters do have the ability to separate salt from water. It is the teaching of this invention to form a porous membrane of desired characteristics of aluminum oxide alone by forming a porous layer of aluminum oxide on metallic aluminum through anodization, closing the pore diameter as necessary, and removing all undesired metal and oxide by an etching process to leave only the desired membrane remaining.
- an object of the present invention is to provide a method for the production of a membrane where pore size can be controlled such that they may be small enough so that the membrane can be used in hyperfiltration, such as in desalinization of salt water, or large enough for ultrafiltration such as the dewatering of whey, or of a size suitable for dialysis such as in the artificial kidney machine.
- Another object of the present invention is to provide a method for the production of a membrane that is rigid, thus allowing it to be made in thin sections with good flow and separation characteristics. Rigidity also allows close tolerances to be maintained in the operating cell and the use of a high pressure environment.
- Another object of the present invention is to provide a method for the production of an inorganic membrane so that it can be used or cleaned in solvents or under conditions that are not accessible to organic membranes.
- FIG. 1 is a block diagram of the steps involved in the preferred embodiment of the present invention.
- FIG. 2A is a cross section showing an anodized layer on an aluminum sheet corresponding to the first step in FIG. 1.
- FIG. 2B is a cross section showing an anodized layer on an aluminum sheet with the pores constricted after a hydration (closing) process corresponding to the second step in FIG. 1.
- FIG. 2C is a cross section showing an anodized layer of pores after the aluminum sheet and barrier layer have been removed corresponding to the third step in FIG. 1.
- the resultant membrane layer of pores is shown supported by a large pored support layer.
- FIG. 3 shows the apparatus used for making the present invention under laboratory conditions so as to allow testing.
- FIG. 4 is a detail drawing of the membrane formation area of the apparatus at A in FIG. 3.
- FIG. 5 shows the apparatus of FIG. 3 as setup for testing the present invention after manufacture.
- FIG. 6A is a cross section showing an aluminum sheet with a support structure adjacent prior to anodizing.
- FIG. 6B is a cross sectioon showing the structure of FIG. 6A after the aluminum sheet has been entirely anodized leaving only an oxide coating and the support structure.
- FIG. 6C is a cross section showing the structure of FIG. 6B after the barrier layer has been etched away adjacent to the large pores in the support structure.
- FIG. 6D is a cross section showing the structure of FIG. 6C after the pores have been closed by a hydration process. This represents a portion of the membrane which is the subject of the present invention as supported and ready for operation after commercial manufacture in a typical manner.
- FIGS. 2A, 2B, 2C, 6A. 6B, 6C and 6D are not meant to be to scale, but rather, they are a representation of the process which takes place.
- a sheet of aluminum 10 is mounted such that separate solutions can be brought into contact with the surface of the aluminum sheet 10 individually or simultaneously in the area to be the foundation for the membrane.
- the two boxes 12 and 14 contained matching holes with O-ring seals 18 such that when the boxes 12 and 14 were placed inside outer box 16 and screws 20 were tightened, the aluminum sheet would be contained between the two 0- ring seals 18 under pressure so as to form a liquid tight seal while exposing the portion of the aluminum sheet 10 to any solutions in first box 12 and second box 14 within the area bounded by O-ring seals 18.
- the present invention is founded on the discovery that, by anodizing an aluminum foil in certain acids such as sulfuric, chromic, oxallic, and phosphoric and then etching away the unanodized metal and barrier layer oxide, a membrane of controlled porosity will result.
- the key to the present invention contained in the discovery is the repeatability of the porosity resulting from the anodization process.
- the porous oxide layer formed on aluminum by anodizing in solutions such as sulfuric acid has been studied in detail. Layers from 0.1 to 100 pm thick have been produced. Pore di ameters vary from 100500 A with pore spacings of 300-2,000 A. The pore diameter and pore spacing are largely controlled by the voltage used during anodization.
- the oxide is amorphous or microcystalline, contains about 10 percent of the anodizing ion and variable amounts of moisture. Between the porous layer and the metal remaining after anodization is a layer, the socalled barrier layer, whose thickness is about 10 A per anodizing volt. This is depicted as the first step in FIG. 2A.
- the aluminum sheet 10 is anodized with sulphuric acid in the standard manner so as to produce an oxide layer 22 of desired thickness containing a barrier layer 24 and pores 26 of the proper diameter.
- the anodization process consumes the aluminum sheet 10 to some degree to form the oxide layer 22.
- a portion of the aluminum sheet 10 remains after the anodization process.
- the drawing is illustrative of the basic process only.
- the entire aluminum sheet 10 may be consumed in the anodization process. This will be reexamined later in relation to supporting the resultant membrane which is the subject of the present invention.
- the second step shown in FIG. 23, that of closing the pores 26 is an optional step to be applied as necessary ing the oxide layer 22 to an alkaline solution.
- part of the oxide layer 22 is removed and immediately precipitated within the pores 26 as a hydrated oxide.
- both types of hydration are referred to as hydration.
- the hydration process can be delayed until after the removal of the barrier layer 24 and aluminum sheet 10 in step 3. That is, step 2 and step 3 can be interchanged.
- the oxide layer 22 can be stabilized to prevent inadvertent hydration from taking place during use or otherwise by heating the oxide layer 22 in an acid phosphate solution.
- the third step is that of removing the barrier layer 24 and any remaining aluminum sheet 10 leaving only the membrane which consists of only that portion of the oxide layer 22 containing the pores 26.
- This is shown in FIG. 2C.
- the aluminum sheet 10 and the barrier layer 24 of FIG. 2B are removed by etching away the aluminum sheet 10 with hydrochloric acid containing a copper salt followed by etching away the barrier layer 24 with either the same acid solution or by an alkaline solution such as sodium hydroxide.
- the choice of etchant is determined by the thickness of the materials to be removed in each instance.
- the object is to remove material as evenly as possible so as to eliminate both areas of incomplete removal wherein the membrane is incomplete and areas of excessive removal where the membrane is weak.
- the resultant membrane is rigid. over small areas but must be supported with a support structure 28 containing large pores 30 as shown in FIG. 2C when used over large areas and under high pressures.
- a support structure 28 containing large pores 30 as shown in FIG. 2C when used over large areas and under high pressures.
- the membrane portion of the oxide layer 22 could be formed first and then placed adjacent to a supporting structure 28.
- manufacturing of commercially usable mem branes could take advantage of the ability of the anodization process to totally consume a thin foil or layer of the aluminum sheet 10.
- FIGS. 6A, 6B, 6C and 6D depict a possible commercial manufacturing sequence supported by experiments with the present invention.
- FIG. 6A depicts the placing of a thin aluminum sheet 10 adjacent to a support 28 containing large pores 30.
- the aluminum sheet 10 could be a layer of aluminum formed by evaporation of aluminum adjacent to an existing support structure 28.
- the support structure 28 could also be formed by slip casting a structure adjacent to an existing aluminum sheet 10. Having once formed the composite structure shown in FIG. 6A comprising the aluminum sheet 10 and the support structure 28, the aluminum sheet 10 could be processed as hereinbefore described according to the following optional sequence of operations to form a supported porous membrane.
- the thin aluminum sheet 10 would ba anodized completely so as to virtually replace all of aluminum sheet 10 with oxide layer 22 containing pores 26 and a thin barrier layer 24 as shown in FIG. 6B.
- the barrier layer 24 would next be removed adjacent to the large pores 30 of the support structure 28 by placing the sodium hydroxide etching solution into large pores 30 to form the porous supported membrane shown in FIG. 6C.
- the porous membrane structure of FIG. 6C could be tested for performance characteristics.
- the oxide layer 22 could be hydrated using hot water or sodium hydroxide solution to cause the closing of the membrane pores 26.
- the testing and hydrating process can be repeated until desired performance characteristics are met.
- future hydration can be inhibited by heating the oxide layer 22 in phosphoric acid or phosphoric acid and metal phosphate buffer solution. The inhibiting of hydration was not done in the laboratory tests but would be highly desirable in membranes to be used commercially.
- Aluminum foil 0.0005 inches thick was anodized by placing a solution of 15 percent H 50 (by weight) containing 1.5 percent Na Cr O in the first box 12 of FIG. 3. The anodization process was at 15 volts for a period of 37 minutes. At this time the foil was translucent. After rinsing, the sample was etched with a 15 percent solution of H 80 on the unanodized side in second box 14 and pure water on the anodized side in first box 12 until the sample became transparent (50 minutes). After rinsing, the sample was placed in distilled water to hydrate for 20 minutes at 50 60C and allowed to cool slowly.
- the osmotic flow of the resultant membrane was determined by placing a molar NaCl solution in the second box 14 and pure water in the first box 12. A value of 3 mglcm lhr was obtained for water flow and a ratio of 3:1 for water/salt flow.
- sample pores were then closed further by placing a 1 molar Na Cr O solution (buffered base) in the second box 14 and a 1 molar Na Cr O solution in the first box 12 for 20 min.
- This membrane produced a water flow of 1 mglcm /hr with a water/salt flow ratio of 8.511.
- the water flow was 70 mglcm /hr and the water/salt flow ratio was 23:1.
- a 0.0005 inch thick aluminum foil was anodized in 10 percent chromic acid in first box 12 at 50 volts until the sample became fairly transparent (58 minutes). After rinsing, an osmotic flow with 1 molar NaCl was determined. The water flow was 5 mg/cm /hr and the water/salt flow ratio was 7: l In this example the barrier layer was etched toward the end and as part of the anodizing process itself. The quantity of water flow and water/salt flow ratio were too small for the resultant membrane to be of value.
- Aluminum foil 0.0005 inches thick was anodized in concentrated Na Cr O with a small amount of concentrated H 80, added in first box 12.
- the sample was anodized at 50 volts until the sample became transparent after 36 minutes.
- the sample was etched with percent H 80 plus 1.5 percent Na Cr O solution in second box 14 and a buffered NaCrO plus Na Cr O solution in first box 12 for 205 minutes.
- the osmotic flow was measured with a 1 percent NaCl solution.
- the water flow was 16 mg/cm lhr and the wa- 6 ter/salt flow ratio was 32:1.
- the buffered solution in box 12 probably caused some hydrate to precipitate in the pores giving a moderate desalination membrane.
- Aluminum foil 0.002 inches thick was anodized in a 10 percent chromic acid and 1 percent sulfuric acid solution at 1 volt for 20 minutes (to inhibit pitting) and then slowly raised to 100 volts with the solution cooled to 5C. It was anodized at 100 volts for 142 minutes.
- the sample was then placed in a solution of HgCl in 0.1 molar HCl until it became translucent to remove the unanodized metal and barrier layer in one step.
- the sample was rinsed and tested with a 1 molar NaCl solution. A water flow of mglcm /hr and a water/salt flow ratio of 7:1 was obtained.
- a 0.002 inch thick aluminum foil was anodized in 10 percent chromic acid plus 1 percent sulphuric acid at 80 volts for 165 minutes. Then a solution of 40 percent HCl (by volume) plus a small amount of copper chloride was placed in the second box 14 and pure water was placed in the first box 12. The sample quickly became transparent and was then rinsed. Then a 5 X 10 mole NaOH solution was placed in the second box 14 and a 1 molar solution of NA Cr O (acid buffer) was placed in the first box 12. The effect of this was to remove the barrier layer and cause a hydration through precipitation of hydrated oxide in the same step. After 140 minutes the sample was rinsed. The osmotic water flow into 1 molar NaCl was 95 mg/cm /hr and the water/salt flow ratio was 84: 1.
- Example No. 5 A sample was prepared as in Example No. 5 with the exception that the anodization was to 50 volts and the NaOH solution was left in 50 minutes. A water flow of 77 mg/cm/hr was obtained with a corresponding water/salt flow ratio of :1. Note: Examples 5 and 6 give both high water flow and water/salt ratio. They represent the best practice for producing a desalination membrane.
- said generally porous layer is protected by the application of a buffered solution to said generally porous layer while said non-porous layer is removed by the application of a solution selected from the group consisting of acids and alkalines.
- said step of treating said generally porous layer so that it allows the flow of water but restricts the flow of salts is accomplished by the simultaneous application of an alkaline solution to one side of said membrane and a buffered solution to the other side of said membrane.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
The present invention discloses a novel method for manufacturing porous membranes for hyperfiltration and ultrafiltration by the process of anodizing aluminum to form a layer of porous aluminum oxide, closing the pores thus formed as necessary to achieve the desired pore diameter, and removing the aluminum and barrier layer of aluminum oxide by etching to leave only the desired membrane remaining.
Description
United States Patent 1191 Smith Nov. 26, 1974 PROCESS FOR PRODUCING AN ANODIC ALUMINUM OXIDE MEMBRANE [75] Inventor: Alan W. Smith, Seattle, Wash.
[73] Assignee: The Boeing Company, Seattle,
Wash.
[22] Filed: Aug. 13, 1973 [21] Appl. No.: 387,872
1,182,379 6/1959 France 204/24 OTHER PUBLICATIONS Unusual Anodizing Processes and Their Practical Significance J. M. Kape Electroplating & Metal Finishing, Nov. 1961, pgs. 407-415.
' Primary Examiner-T. M. Tufariello Attorney, Agent, or Firm-Donald A. Streck [57] ABSTRACT The present invention discloses a novel method for [56] References Ciied manufacturing porous membranes for hyperfiltration UNITED STATES PATENTS and ultrafiltration by the process of anodizing alumi- 2,230,868 2/1941 Kuhlman 204 11 num t0 form a layer Of Porous aluminum OXide C105- 2 380505 7/1945 D Ve U 204/12 ing the pores thus formed as necessary to achieve the 3,023,149 2/1962 Zeman 1 204/12 desired pore diameter, and removing the aluminum 3,322, 53 /l 67 Morris 1 v .1 20 and barrier layer of aluminum oxide by etching to 3,607,680 9/I971 U110 204/24 leave only the desired membrane emaining FOREIGN PATENTS OR APPLICATIONS 5 Cl 11 D F 1,131,481 6/1962 Germany 204/24 rawmg 'gures A/YOD/ZE ALUM/Nl/M SURF/46E C2 055 PO/FES A6 NECE$5C4EV REMOVE All/M/NU/V AND BAKE/EB 1 A75? PROCESS FOR PRODUCING AN ANODIC A ALUMINUM OXIDE MEMBRANE BACKGROUND OF THE INVENTION a. Field of the Invention The present invention relates to porous membranes and more specifically to a method for making porous membranes for hyperfiltration (reverse osmosis) and ultrafiltration. l
smaller than the pore size will pass through. Particles larger than the pore size cannot pass through and are trapped as with a sieve. For purposes of reference to size, the particles are designed by the size pore or hole which will trap them. The pores themselves are treated as being cylindrical about a longitudinal axis substantially perpendicular to the surface of the membrane. Thus, the pore is referred to as having a diameter and this diameter is in reality the diameter of a cylinder representing the effective cross sectional area of the pore at its most constricted point. When a pore is closed, the material containing the pore is made to swell or a precipitate is deposited within the pore (or both) to make the size of the effective cross sectional area less so that smaller particles will be blocked or trapped.
In one mode of use, the solvent is forced through the membrane and dissolved or suspended particles remain behind. The term ultrafiltration refers to membranes with pores of the order of 50A to 10 pm in diameter.
The term reverse osmosis refers to filtering small solutes, less than a hundred angstroms, which have appreciable osmotic pressures. Thus, several hundred psi is needed in water desalinization just to counterbalance the osmotic pressure before filtration can take place. In
another mode, the particles diffuse through the mem- 4O brane. This is called dialysis. In one form of dialysis,an electric field is used to draw either positive or negative ions throughthe membrane. To prevent reverse flow of the ions of opposite charge an ion-exchange membrane is used which allows only ions of one electrical charge (positive or negative) to pass.
Membranes have been used or proposed in many fields to effect separations. Table I covers the application of membranes of different classes to separations in various fields which are in use or have been proposed.
The structure of a membrane is; a great importance. It should have a thin uniform pore size layer for separation, backed by a high permeability layer for mechanical support. The success of cellulose acetate membranes for reverse osmosis has come from the development of this structure.
The actual separation layer of these membranes is formed by the packing of roughly spherical particles. The permeability is less than that of cylindrical channels of equivalent pore size.
Almost all currently used membranes are based on organic polymers. Porous glass membranes have been studied but do not seem to be competitive at the present time.
Specific problems associated with areas of membrane use are:
1. Water Desalinization There are two disadvantages of present organic membranes of the cellulose acetate type used in reverse osmosis water desalinization: These disadvantages are the limitations on pressure which may be applied and the decrease in throughput with time. Since the water flow and salt rejection both increase with pressure, this limitation is most important. The decrease in throughput with time goes beyond problems due to clogging by materials in solution. Both problems seem to be due to the compaction of themembrane which closes the pores.
2. Waste Treatment Waste water treatment of both household or industrial wastes may involve several steps. One is removal of solids by conventional filtration. Removal of biological materials requires ultrafiltration. Removal and possible recovery of salts requires reverse osmosis. Solvents must be used to clean the membrane and/or sterilization must be carried out at elevated temperatures.
TABLE I Membrane Pore Size Separation Processes Applications Examples A SALTS REVERSE WATER SEA WATER PURIFICATION FROM OSMOSIS CHEMICAL SPENT COBALT CALAYST RECOVERY WATER WASTE RESIDENTIAL TREATMENT ELECTRO- INDUSTRIAL (RADIO DIALYSIS ACTIVE WASTE) 50-IO0A WATER SALTS DIALYSIS WASTE PULP MILL TREATMENT FROM RESIDENTIAL MACROMOLE- FOOD EGG WHITE, WHEY CULES CONCENTRATION PHARMACEUTICAL ENZYMES ELECTRO- PURIFICATIONS DIALYSIS MEDICAL KIDNEY MACHINE TREATMENTS 50-500A MACROMOLE- ULTRA- CULE ROTEIN VIRUS ERUMS ILK PROTElN-SUGARS Salt removal is subject to the same considerations as mentioned in water desalinization. 3. Ultraiiltration of Biological and Food Products In all these cases one is dealing with relatively large molecules which may need to be separated from each other, from salts, or from water. The most important factor besides having precise pore sizes is the ability to clean and sterilize the membranes. There are often wide limits to temperatures and solvents used.
4. Medical Usage One of the problems in medical processing such as in the artificial kidney machine is the desire to keep the volume of the system as small as possible. Since this is a dialysis rather than filtration, the flow of salts through the membrane is slow and a high area of membrane is needed. I-Iere, rigidity of the membrane would allow more closely spaced structures to be built to keep the volume of solution smaller than with present organic membranes.
The development of polymeric membranes for the above uses has been extensive in recent years and sophisticated techniques to optimizing their properties have been applied. Clearly, the development of a new membrane must give promise of superior properties. Present membranes are produced by casting a polymeric film which becomes granular with the space around the granules becoming the pores. These membranes lack rigidity, are subject to compaction under pressure and are limited in temperature and solvents which may be used.
It has, however, been demonstrated that hydrous oxides including aluminum oxides, when deposited in the pores of filters do have the ability to separate salt from water. It is the teaching of this invention to form a porous membrane of desired characteristics of aluminum oxide alone by forming a porous layer of aluminum oxide on metallic aluminum through anodization, closing the pore diameter as necessary, and removing all undesired metal and oxide by an etching process to leave only the desired membrane remaining.
Therefore, an object of the present invention is to provide a method for the production of a membrane where pore size can be controlled such that they may be small enough so that the membrane can be used in hyperfiltration, such as in desalinization of salt water, or large enough for ultrafiltration such as the dewatering of whey, or of a size suitable for dialysis such as in the artificial kidney machine.
Another object of the present invention is to provide a method for the production of a membrane that is rigid, thus allowing it to be made in thin sections with good flow and separation characteristics. Rigidity also allows close tolerances to be maintained in the operating cell and the use of a high pressure environment.
Another object of the present invention is to provide a method for the production of an inorganic membrane so that it can be used or cleaned in solvents or under conditions that are not accessible to organic membranes.
Other objects and many of the attendant advantages of this invention will be appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings.
DESCRIPTION OF THE DRAWINGS The present invention will be described in relation to the accompanying drawings, wherein:
FIG. 1 is a block diagram of the steps involved in the preferred embodiment of the present invention.
FIG. 2A is a cross section showing an anodized layer on an aluminum sheet corresponding to the first step in FIG. 1.
FIG. 2B is a cross section showing an anodized layer on an aluminum sheet with the pores constricted after a hydration (closing) process corresponding to the second step in FIG. 1.
FIG. 2C is a cross section showing an anodized layer of pores after the aluminum sheet and barrier layer have been removed corresponding to the third step in FIG. 1. The resultant membrane layer of pores is shown supported by a large pored support layer.
FIG. 3 shows the apparatus used for making the present invention under laboratory conditions so as to allow testing.
FIG. 4 is a detail drawing of the membrane formation area of the apparatus at A in FIG. 3.
FIG. 5 shows the apparatus of FIG. 3 as setup for testing the present invention after manufacture.
FIG. 6A is a cross section showing an aluminum sheet with a support structure adjacent prior to anodizing.
FIG. 6B is a cross sectioon showing the structure of FIG. 6A after the aluminum sheet has been entirely anodized leaving only an oxide coating and the support structure.
FIG. 6C is a cross section showing the structure of FIG. 6B after the barrier layer has been etched away adjacent to the large pores in the support structure.
FIG. 6D is a cross section showing the structure of FIG. 6C after the pores have been closed by a hydration process. This represents a portion of the membrane which is the subject of the present invention as supported and ready for operation after commercial manufacture in a typical manner.
NOTE: The drawings of FIGS. 2A, 2B, 2C, 6A. 6B, 6C and 6D are not meant to be to scale, but rather, they are a representation of the process which takes place.
DESCRIPTION AND OPERATION OF THE INVENTION The present invention will be described with respect to making a membrane wherein the pore diameter must be closed to attain the desired membrane characteristics. It is important to note that the steps of pore closing and etching can be accomplished in various orders and combinations because of the nature of the materials involved and their reaction to the various processes described. A clearer understanding of the ways in which the disclosed process can be accomplished will be found by an inspection of the examples which follow hereinafter.
Referring to FIG. 3 and FIG. 4, a sheet of aluminum 10 is mounted such that separate solutions can be brought into contact with the surface of the aluminum sheet 10 individually or simultaneously in the area to be the foundation for the membrane. In the apparatus depicted in FIG. 3 this was accomplished by placing the aluminum sheet 10 between a first box 12 and a second box 14 contained in an outer box 16. The two boxes 12 and 14 contained matching holes with O-ring seals 18 such that when the boxes 12 and 14 were placed inside outer box 16 and screws 20 were tightened, the aluminum sheet would be contained between the two 0- ring seals 18 under pressure so as to form a liquid tight seal while exposing the portion of the aluminum sheet 10 to any solutions in first box 12 and second box 14 within the area bounded by O-ring seals 18.
Having thus described the apparatus used to make samples of the present invention, the process can be de scribed with reference to FIG. 1 and FIGS. 2A, 2B and 2C.
The present invention is founded on the discovery that, by anodizing an aluminum foil in certain acids such as sulfuric, chromic, oxallic, and phosphoric and then etching away the unanodized metal and barrier layer oxide, a membrane of controlled porosity will result. The key to the present invention contained in the discovery is the repeatability of the porosity resulting from the anodization process. The porous oxide layer formed on aluminum by anodizing in solutions such as sulfuric acid has been studied in detail. Layers from 0.1 to 100 pm thick have been produced. Pore di ameters vary from 100500 A with pore spacings of 300-2,000 A. The pore diameter and pore spacing are largely controlled by the voltage used during anodization. The oxide is amorphous or microcystalline, contains about 10 percent of the anodizing ion and variable amounts of moisture. Between the porous layer and the metal remaining after anodization is a layer, the socalled barrier layer, whose thickness is about 10 A per anodizing volt. This is depicted as the first step in FIG. 2A. Based on the desired membrane structure for the application, the aluminum sheet 10 is anodized with sulphuric acid in the standard manner so as to produce an oxide layer 22 of desired thickness containing a barrier layer 24 and pores 26 of the proper diameter.
It is important to remember that the anodization process consumes the aluminum sheet 10 to some degree to form the oxide layer 22. As depicted in the drawing and described herein, a portion of the aluminum sheet 10 remains after the anodization process. The drawing is illustrative of the basic process only. As will be further seen from the examples that follow hereinafter, if the aluminum sheet 10 is in the form of a very thin foil or formed layer, the entire aluminum sheet 10 may be consumed in the anodization process. This will be reexamined later in relation to supporting the resultant membrane which is the subject of the present invention.
- The second step shown in FIG. 23, that of closing the pores 26 is an optional step to be applied as necessary ing the oxide layer 22 to an alkaline solution. In this case part of the oxide layer 22 is removed and immediately precipitated within the pores 26 as a hydrated oxide. As used herein, both types of hydration are referred to as hydration. If desired, the hydration process can be delayed until after the removal of the barrier layer 24 and aluminum sheet 10 in step 3. That is, step 2 and step 3 can be interchanged. Once the size of the pores 26 is established, with or without hydration, the oxide layer 22 can be stabilized to prevent inadvertent hydration from taking place during use or otherwise by heating the oxide layer 22 in an acid phosphate solution.
The third step is that of removing the barrier layer 24 and any remaining aluminum sheet 10 leaving only the membrane which consists of only that portion of the oxide layer 22 containing the pores 26. This is shown in FIG. 2C. The aluminum sheet 10 and the barrier layer 24 of FIG. 2B are removed by etching away the aluminum sheet 10 with hydrochloric acid containing a copper salt followed by etching away the barrier layer 24 with either the same acid solution or by an alkaline solution such as sodium hydroxide. The choice of etchant is determined by the thickness of the materials to be removed in each instance. The object is to remove material as evenly as possible so as to eliminate both areas of incomplete removal wherein the membrane is incomplete and areas of excessive removal where the membrane is weak.
The resultant membrane is rigid. over small areas but must be supported with a support structure 28 containing large pores 30 as shown in FIG. 2C when used over large areas and under high pressures. There are a number of ways the membrane could be supported as shown in FIG. 2C. The membrane portion of the oxide layer 22 could be formed first and then placed adjacent to a supporting structure 28. For particular applications, manufacturing of commercially usable mem branes could take advantage of the ability of the anodization process to totally consume a thin foil or layer of the aluminum sheet 10. For example, FIGS. 6A, 6B, 6C and 6D depict a possible commercial manufacturing sequence supported by experiments with the present invention.
FIG. 6A depicts the placing of a thin aluminum sheet 10 adjacent to a support 28 containing large pores 30. The aluminum sheet 10 could be a layer of aluminum formed by evaporation of aluminum adjacent to an existing support structure 28. The support structure 28 could also be formed by slip casting a structure adjacent to an existing aluminum sheet 10. Having once formed the composite structure shown in FIG. 6A comprising the aluminum sheet 10 and the support structure 28, the aluminum sheet 10 could be processed as hereinbefore described according to the following optional sequence of operations to form a supported porous membrane. The thin aluminum sheet 10 would ba anodized completely so as to virtually replace all of aluminum sheet 10 with oxide layer 22 containing pores 26 and a thin barrier layer 24 as shown in FIG. 6B.
The barrier layer 24 would next be removed adjacent to the large pores 30 of the support structure 28 by placing the sodium hydroxide etching solution into large pores 30 to form the porous supported membrane shown in FIG. 6C. At this point the porous membrane structure of FIG. 6C could be tested for performance characteristics. If necessary, the oxide layer 22 could be hydrated using hot water or sodium hydroxide solution to cause the closing of the membrane pores 26. The testing and hydrating process can be repeated until desired performance characteristics are met. At that point future hydration can be inhibited by heating the oxide layer 22 in phosphoric acid or phosphoric acid and metal phosphate buffer solution. The inhibiting of hydration was not done in the laboratory tests but would be highly desirable in membranes to be used commercially.
EXAMPLES OF THE PRESENT INVENTION All examples were manufactured and tested using the apparatus previously described and depicted in FIGS. 3, 4 and 5.
EXAMPLE NO. 1
Aluminum foil 0.0005 inches thick was anodized by placing a solution of 15 percent H 50 (by weight) containing 1.5 percent Na Cr O in the first box 12 of FIG. 3. The anodization process was at 15 volts for a period of 37 minutes. At this time the foil was translucent. After rinsing, the sample was etched with a 15 percent solution of H 80 on the unanodized side in second box 14 and pure water on the anodized side in first box 12 until the sample became transparent (50 minutes). After rinsing, the sample was placed in distilled water to hydrate for 20 minutes at 50 60C and allowed to cool slowly.
The osmotic flow of the resultant membrane was determined by placing a molar NaCl solution in the second box 14 and pure water in the first box 12. A value of 3 mglcm lhr was obtained for water flow and a ratio of 3:1 for water/salt flow.
A 15 percent H 80 1.5 percent Na Cr O solution was then placed in the second box 14 and a moderately concentrated K CrO solution was placed in the first box 12. The K CrO gives a buffered basic solution. After 30 minutes the sample was rinsed and the membrane as modified was again tested. A water flow of 33 mglcm /hr was obtained and a water/salt flow ratio of 3: 1. In this case the barrier layer had not been removed completely by the first etching.
The sample pores were then closed further by placing a 1 molar Na Cr O solution (buffered base) in the second box 14 and a 1 molar Na Cr O solution in the first box 12 for 20 min. This membrane produced a water flow of 1 mglcm /hr with a water/salt flow ratio of 8.511. When measured with a 1 molar salt solution the water flow was 70 mglcm /hr and the water/salt flow ratio was 23:1.
EXAMPLE NO. 2
A 0.0005 inch thick aluminum foil was anodized in 10 percent chromic acid in first box 12 at 50 volts until the sample became fairly transparent (58 minutes). After rinsing, an osmotic flow with 1 molar NaCl was determined. The water flow was 5 mg/cm /hr and the water/salt flow ratio was 7: l In this example the barrier layer was etched toward the end and as part of the anodizing process itself. The quantity of water flow and water/salt flow ratio were too small for the resultant membrane to be of value.
EXAMPLE NO. 3
Aluminum foil 0.0005 inches thick was anodized in concentrated Na Cr O with a small amount of concentrated H 80, added in first box 12. The sample was anodized at 50 volts until the sample became transparent after 36 minutes. Then the sample was etched with percent H 80 plus 1.5 percent Na Cr O solution in second box 14 and a buffered NaCrO plus Na Cr O solution in first box 12 for 205 minutes. After rinsing, the osmotic flow was measured with a 1 percent NaCl solution. The water flow was 16 mg/cm lhr and the wa- 6 ter/salt flow ratio was 32:1. In this example the buffered solution in box 12 probably caused some hydrate to precipitate in the pores giving a moderate desalination membrane.
EXAMPLE NO. 4
Aluminum foil 0.002 inches thick was anodized in a 10 percent chromic acid and 1 percent sulfuric acid solution at 1 volt for 20 minutes (to inhibit pitting) and then slowly raised to 100 volts with the solution cooled to 5C. It was anodized at 100 volts for 142 minutes. The sample was then placed in a solution of HgCl in 0.1 molar HCl until it became translucent to remove the unanodized metal and barrier layer in one step. The sample was rinsed and tested with a 1 molar NaCl solution. A water flow of mglcm /hr and a water/salt flow ratio of 7:1 was obtained.
EXAMPLE NO. 5
A 0.002 inch thick aluminum foil was anodized in 10 percent chromic acid plus 1 percent sulphuric acid at 80 volts for 165 minutes. Then a solution of 40 percent HCl (by volume) plus a small amount of copper chloride was placed in the second box 14 and pure water was placed in the first box 12. The sample quickly became transparent and was then rinsed. Then a 5 X 10 mole NaOH solution was placed in the second box 14 and a 1 molar solution of NA Cr O (acid buffer) was placed in the first box 12. The effect of this was to remove the barrier layer and cause a hydration through precipitation of hydrated oxide in the same step. After 140 minutes the sample was rinsed. The osmotic water flow into 1 molar NaCl was 95 mg/cm /hr and the water/salt flow ratio was 84: 1.
EXAMPLE NO. 6
A sample was prepared as in Example No. 5 with the exception that the anodization was to 50 volts and the NaOH solution was left in 50 minutes. A water flow of 77 mg/cm/hr was obtained with a corresponding water/salt flow ratio of :1. Note: Examples 5 and 6 give both high water flow and water/salt ratio. They represent the best practice for producing a desalination membrane.
Having thus described the present invention, what is claimed is:
l. The method of making a porous membrane for water desalination comprising the steps of:
a. forming an oxide coating on a sheet of aluminum in an anodizing solution which produces an oxide, said oxide comprising a generally porous layer and a non-porous layer;
b. removing any of said sheet of aluminum remaining after said anodization of said sheet of aluminum;
c. removing said non-porous layer of oxide; and,
d. treating said generally porous layer so that it allows the flow of water but restricts the flow of salts.
2. The method of making a porous membrane for water desalination as claimed in claim 1 wherein:
said generally porous layer is protected by the application of a buffered solution to said generally porous layer while said non-porous layer is removed by the application of a solution selected from the group consisting of acids and alkalines.
3. The method of making a porous membrane for water desalination as claimed in claim 1 wherein:
said step of treating said generally porous layer so that it allows the flow of water but restricts the flow of salts is accomplished by the application of hot water to said generally porous layer. 4. The method of making a porous membrane for water desalination as claimed in claim 1 wherein:
said step of treating said generally porous layer so that it allows the flow of water but restricts the flow of salts is accomplished by the simultaneous application of an alkaline solution to one side of said membrane and a buffered solution to the other side of said membrane.
5. The method of making a porous membrane for water desalination as claimed in claim 1 wherein:
Claims (5)
1. THE METHOD OF MAKING A POROUS MEMBRANE FOR WATER DESALINATION COMPRISING THE STEPS OF: A. FORMING AN OXIDE COATING ON A SHEET OF ALUMINUM IN AN ANODIZING SOLUTION WHICH PRODUCES AN OXIDE, SAID OXIDE COMPRISING A GENERALLY POROUS LAYER AND A NON-POROUS LAYER; B. REMOVING ANY OF SAID SHEET OF ALUMINUM REMAINING AFTER SAID ANODIZATION OF SAID SHEET OF ALUMINUM; C. REMOVING SAID NON-POROUS LAYER OF OXIDE; AND, D. TREATING SAID GENERALLY POROUS LAYER SO THAT IS ALLOWS THE FLOW OF WATER BUT RESTRICTS THE FLOW OF SALTS.
2. The method of making a porous membrane for water desalination as claimed in claim 1 wherein: said generally porous layer is protected by the application of a buffered solution to said generally porous layer while said non-porous layer is removed by the application of a solution selected from the group consisting of acids and alkalines.
3. The method of making a porous membrane for water desalination as claimed in claim 1 wherein: said step of treating said generally porous layer so that it allows the flow of water but restricts the flow of salts is accomplished by the application of hot water to said generally porous layer.
4. The method of making a porous membrane for water desalination as claimed in claim 1 wherein: said step of treating said generally porous layer so that it allows the flow of water but restricts the flow of salts is accomplished by the simultaneous application of an alkaline solution to one side of said membrane and a buffered solution to the other side of said membrane.
5. The method of making a porous membrane for water desalination as claimed in claim 1 wherein: said steps of removing said non-porous layer of oxide and of treating said generally porous layer so that it allows the flow of water but restricts the flow of salts are accomplished at one time by the simultaneous application of an alkaline solution to the non-porous layer side of said oxide coating and a buffered solution to the generally porous layer side of said oxide coating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00387872A US3850762A (en) | 1973-08-13 | 1973-08-13 | Process for producing an anodic aluminum oxide membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00387872A US3850762A (en) | 1973-08-13 | 1973-08-13 | Process for producing an anodic aluminum oxide membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
US3850762A true US3850762A (en) | 1974-11-26 |
Family
ID=23531671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00387872A Expired - Lifetime US3850762A (en) | 1973-08-13 | 1973-08-13 | Process for producing an anodic aluminum oxide membrane |
Country Status (1)
Country | Link |
---|---|
US (1) | US3850762A (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0224444A1 (en) * | 1985-11-25 | 1987-06-03 | Alusuisse-Lonza Services Ag | Process for manufacturing a partially permeable membrane |
EP0224443A1 (en) * | 1985-11-25 | 1987-06-03 | Schweizerische Aluminium AG | Process for manufacturing a micro filter |
US4687551A (en) * | 1984-10-17 | 1987-08-18 | Alcan International Limited | Porous films and method of forming them |
EP0234727A1 (en) * | 1986-02-03 | 1987-09-02 | Alcan International Limited | Porous anodic aluminium oxide films |
EP0242208A1 (en) * | 1986-04-16 | 1987-10-21 | Alcan International Limited | Composite membrane |
US4871623A (en) * | 1988-02-19 | 1989-10-03 | Minnesota Mining And Manufacturing Company | Sheet-member containing a plurality of elongated enclosed electrodeposited channels and method |
US4889631A (en) * | 1986-04-16 | 1989-12-26 | Alcan International Limited | Anodic aluminium oxide membranes |
US5061544A (en) * | 1989-03-31 | 1991-10-29 | Kyoto University | Porous aluminum oxide film and method of forming of the same |
US5070606A (en) * | 1988-07-25 | 1991-12-10 | Minnesota Mining And Manufacturing Company | Method for producing a sheet member containing at least one enclosed channel |
US5077114A (en) * | 1989-03-31 | 1991-12-31 | Kyoto University | Porous aluminum oxide film and method of forming of the same |
US5089092A (en) * | 1989-09-26 | 1992-02-18 | Kyoto University | Porous aluminum oxide film and method of forming of the same |
US5510015A (en) * | 1992-12-31 | 1996-04-23 | Novamax Technologies Holdings, Inc. | Process for obtaining a range of colors of the visible spectrum using electrolysis on anodized aluminium |
US5693210A (en) * | 1995-08-31 | 1997-12-02 | President Of Tohoku University | Method of manufacturing porous alumina tube |
US6278231B1 (en) * | 1998-03-27 | 2001-08-21 | Canon Kabushiki Kaisha | Nanostructure, electron emitting device, carbon nanotube device, and method of producing the same |
US20060192309A1 (en) * | 2002-03-15 | 2006-08-31 | Canon Kabushiki Kaisha | Method of manufacturing porous body |
US20070080107A1 (en) * | 2005-10-12 | 2007-04-12 | Postech Foundation | Nanoporous membrane and method of fabricating the same |
US20070086715A1 (en) * | 2005-10-13 | 2007-04-19 | Pavel Kornilovich | Waveguide having low index substrate |
US20080143015A1 (en) * | 2006-12-14 | 2008-06-19 | National Central University | Method of fabricating porous AIO2 mold having sub-micro structure |
WO2009091311A1 (en) * | 2008-01-14 | 2009-07-23 | Nanexa Ab | A biocompatible filter member for body fluid dialysis and fabrication and use thereof |
DE10349471B4 (en) * | 2003-10-23 | 2009-07-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Nanoporous filter or support membrane and method of manufacture |
US20090202845A1 (en) * | 2008-02-11 | 2009-08-13 | Lorin Industries, Inc. | Antimicrobial Anodized Aluminum and Related Method |
US20100123993A1 (en) * | 2008-02-13 | 2010-05-20 | Herzel Laor | Atomic layer deposition process for manufacture of battery electrodes, capacitors, resistors, and catalyzers |
US20100314093A1 (en) * | 2009-06-12 | 2010-12-16 | Gamal Refai-Ahmed | Variable heat exchanger |
RU2474466C1 (en) * | 2011-08-09 | 2013-02-10 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Дальневосточный федеральный университет" | Method of making aluminium oxide-based membranes |
CN104959045A (en) * | 2015-06-16 | 2015-10-07 | 陕西科技大学 | Method for manufacturing polyvinylidene fluoride nano array pore membranes |
US20170287633A1 (en) * | 2014-09-02 | 2017-10-05 | The Board Of Trustees Of The Leland Stanford Junior University | Passive components for electronic circuits using conformal deposition on a scaffold |
CN108697998A (en) * | 2016-03-11 | 2018-10-23 | 奥加诺株式会社 | Particle capture filter membrane and its manufacturing method and perforated membrane and its manufacturing method |
US11389903B2 (en) * | 2018-03-30 | 2022-07-19 | Apple Inc. | Electronic device marked using laser-formed pixels of metal oxides |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2230868A (en) * | 1936-06-26 | 1941-02-04 | Theodore C Kuhlman | Method of manufacturing reticulated metal sheets |
US2380505A (en) * | 1941-06-26 | 1945-07-31 | Radie Corp Of America | Method of manufacturing mosaic electrodes |
FR1182379A (en) * | 1962-10-19 | 1959-06-24 | Csf | Process for manufacturing memory tube targets, comprising a one-piece metal grid with a support rendered insulating by oxidation |
US3023149A (en) * | 1957-10-30 | 1962-02-27 | Gen Electric | Electrolytic method of producing thin sheets of aluminum oxide |
DE1131481B (en) * | 1958-03-03 | 1962-06-14 | Dr Ulrich Hauser | Aluminum oxide or beryllium oxide film as a window for the passage of radiation and process for their production |
US3322653A (en) * | 1958-03-17 | 1967-05-30 | Rca Corp | Method of making a two sided storage electrode |
US3607680A (en) * | 1967-10-03 | 1971-09-21 | Matsushita Electric Ind Co Ltd | Methof for producing a device for transmitting an electron beam |
-
1973
- 1973-08-13 US US00387872A patent/US3850762A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2230868A (en) * | 1936-06-26 | 1941-02-04 | Theodore C Kuhlman | Method of manufacturing reticulated metal sheets |
US2380505A (en) * | 1941-06-26 | 1945-07-31 | Radie Corp Of America | Method of manufacturing mosaic electrodes |
US3023149A (en) * | 1957-10-30 | 1962-02-27 | Gen Electric | Electrolytic method of producing thin sheets of aluminum oxide |
DE1131481B (en) * | 1958-03-03 | 1962-06-14 | Dr Ulrich Hauser | Aluminum oxide or beryllium oxide film as a window for the passage of radiation and process for their production |
US3322653A (en) * | 1958-03-17 | 1967-05-30 | Rca Corp | Method of making a two sided storage electrode |
FR1182379A (en) * | 1962-10-19 | 1959-06-24 | Csf | Process for manufacturing memory tube targets, comprising a one-piece metal grid with a support rendered insulating by oxidation |
US3607680A (en) * | 1967-10-03 | 1971-09-21 | Matsushita Electric Ind Co Ltd | Methof for producing a device for transmitting an electron beam |
Non-Patent Citations (1)
Title |
---|
Unusual Anodizing Processes and Their Practical Significance J. M. Kape Electroplating & Metal Finishing, Nov. 1961, pgs. 407 415. * |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4687551A (en) * | 1984-10-17 | 1987-08-18 | Alcan International Limited | Porous films and method of forming them |
EP0224443A1 (en) * | 1985-11-25 | 1987-06-03 | Schweizerische Aluminium AG | Process for manufacturing a micro filter |
EP0224444A1 (en) * | 1985-11-25 | 1987-06-03 | Alusuisse-Lonza Services Ag | Process for manufacturing a partially permeable membrane |
EP0234727A1 (en) * | 1986-02-03 | 1987-09-02 | Alcan International Limited | Porous anodic aluminium oxide films |
US4889631A (en) * | 1986-04-16 | 1989-12-26 | Alcan International Limited | Anodic aluminium oxide membranes |
EP0242208A1 (en) * | 1986-04-16 | 1987-10-21 | Alcan International Limited | Composite membrane |
USRE34651E (en) * | 1988-02-19 | 1994-06-28 | Minnesota Mining And Manufacturing Company | Sheet-member containing a plurality of elongated enclosed electrodeposited channels and method |
US4871623A (en) * | 1988-02-19 | 1989-10-03 | Minnesota Mining And Manufacturing Company | Sheet-member containing a plurality of elongated enclosed electrodeposited channels and method |
US5070606A (en) * | 1988-07-25 | 1991-12-10 | Minnesota Mining And Manufacturing Company | Method for producing a sheet member containing at least one enclosed channel |
US5061544A (en) * | 1989-03-31 | 1991-10-29 | Kyoto University | Porous aluminum oxide film and method of forming of the same |
US5077114A (en) * | 1989-03-31 | 1991-12-31 | Kyoto University | Porous aluminum oxide film and method of forming of the same |
US5087330A (en) * | 1989-03-31 | 1992-02-11 | Kyoto University | Porous aluminum oxide film and method of forming of the same |
US5089092A (en) * | 1989-09-26 | 1992-02-18 | Kyoto University | Porous aluminum oxide film and method of forming of the same |
US5510015A (en) * | 1992-12-31 | 1996-04-23 | Novamax Technologies Holdings, Inc. | Process for obtaining a range of colors of the visible spectrum using electrolysis on anodized aluminium |
US5693210A (en) * | 1995-08-31 | 1997-12-02 | President Of Tohoku University | Method of manufacturing porous alumina tube |
US6278231B1 (en) * | 1998-03-27 | 2001-08-21 | Canon Kabushiki Kaisha | Nanostructure, electron emitting device, carbon nanotube device, and method of producing the same |
US6838297B2 (en) | 1998-03-27 | 2005-01-04 | Canon Kabushiki Kaisha | Nanostructure, electron emitting device, carbon nanotube device, and method of producing the same |
US7879734B2 (en) * | 2002-03-15 | 2011-02-01 | Canon Kabushiki Kaisha | Method of manufacturing porous body |
US20060192309A1 (en) * | 2002-03-15 | 2006-08-31 | Canon Kabushiki Kaisha | Method of manufacturing porous body |
DE10349471B4 (en) * | 2003-10-23 | 2009-07-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Nanoporous filter or support membrane and method of manufacture |
US7438193B2 (en) * | 2005-10-12 | 2008-10-21 | Postech Foundation | Nanoporous membrane and method of fabricating the same |
US20070080107A1 (en) * | 2005-10-12 | 2007-04-12 | Postech Foundation | Nanoporous membrane and method of fabricating the same |
US20070086715A1 (en) * | 2005-10-13 | 2007-04-19 | Pavel Kornilovich | Waveguide having low index substrate |
WO2007044108A1 (en) * | 2005-10-13 | 2007-04-19 | Hewlett-Packard Development Company, L.P. | Waveguide having low index substrate |
US7394961B2 (en) | 2005-10-13 | 2008-07-01 | Pavel Kornilovich | Waveguide having low index substrate |
US20080143015A1 (en) * | 2006-12-14 | 2008-06-19 | National Central University | Method of fabricating porous AIO2 mold having sub-micro structure |
US7588953B2 (en) * | 2006-12-14 | 2009-09-15 | National Central University | Method of fabricating porous aluminum oxide mold having sub-micron structure and methods of imprinting to make LEDS using the mold |
WO2009091311A1 (en) * | 2008-01-14 | 2009-07-23 | Nanexa Ab | A biocompatible filter member for body fluid dialysis and fabrication and use thereof |
US20110120943A1 (en) * | 2008-01-14 | 2011-05-26 | Nanexa Ab | Biocompatible filter member for body fluid dialysis and fabrication and use thereof |
US8900716B2 (en) * | 2008-02-11 | 2014-12-02 | Lorin Industries, Inc. | Antimicrobial anodized aluminum and related method |
US20090202845A1 (en) * | 2008-02-11 | 2009-08-13 | Lorin Industries, Inc. | Antimicrobial Anodized Aluminum and Related Method |
US20100123993A1 (en) * | 2008-02-13 | 2010-05-20 | Herzel Laor | Atomic layer deposition process for manufacture of battery electrodes, capacitors, resistors, and catalyzers |
US20100314093A1 (en) * | 2009-06-12 | 2010-12-16 | Gamal Refai-Ahmed | Variable heat exchanger |
RU2474466C1 (en) * | 2011-08-09 | 2013-02-10 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Дальневосточный федеральный университет" | Method of making aluminium oxide-based membranes |
US20170287633A1 (en) * | 2014-09-02 | 2017-10-05 | The Board Of Trustees Of The Leland Stanford Junior University | Passive components for electronic circuits using conformal deposition on a scaffold |
US11031179B2 (en) * | 2014-09-02 | 2021-06-08 | The Board Of Trustees Of The Leland Stanford Junior University | Passive components for electronic circuits using conformal deposition on a scaffold |
CN104959045A (en) * | 2015-06-16 | 2015-10-07 | 陕西科技大学 | Method for manufacturing polyvinylidene fluoride nano array pore membranes |
CN104959045B (en) * | 2015-06-16 | 2017-03-29 | 陕西科技大学 | A kind of method for preparing polyvinylidene fluoride nanometer array pore membrane |
CN108697998A (en) * | 2016-03-11 | 2018-10-23 | 奥加诺株式会社 | Particle capture filter membrane and its manufacturing method and perforated membrane and its manufacturing method |
US11389903B2 (en) * | 2018-03-30 | 2022-07-19 | Apple Inc. | Electronic device marked using laser-formed pixels of metal oxides |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3850762A (en) | Process for producing an anodic aluminum oxide membrane | |
US3457171A (en) | Graphitic oxide memberane for desalinating water | |
US5342521A (en) | Reverse osmosis or nanofiltration membrane and its production process | |
US4012324A (en) | Crosslinked, interpolymer fixed-charge membranes | |
US3462362A (en) | Method of reverse osmosis | |
Rigby et al. | An anodizing process for the production of inorganic microfiltration membranes | |
Pang et al. | Preparation of monovalent cation perm-selective membranes by controlling surface hydration energy barrier | |
Baticle et al. | Salt filtration on gamma alumina nanofiltration membranes fired at two different temperatures | |
TW201526979A (en) | Membrane with plurality of charges | |
JP2961629B2 (en) | Manufacturing method of microfiltration membrane | |
CA1087042A (en) | Coating modification process for ultrafiltration systems | |
Zou et al. | Design and efficient construction of bilayer Al2O3/ZrO2 mesoporous membranes for effective treatment of suspension systems | |
CN103846015B (en) | A kind of preparation method of organic and inorganic lamination milipore filter | |
US4547411A (en) | Process for preparing ion-exchange membranes | |
US3309301A (en) | Method for producing a deionized liquid product by electrodialysis | |
JPS60177198A (en) | Production of thin film-like porous body of al2o3 | |
JPS61249508A (en) | Nonionic selective membrane in eavf system | |
JPS58163406A (en) | Filtration of liquid | |
JPS62210097A (en) | Method for removing electrolyte | |
Kravets et al. | The properties and porous structure of polypropylene track membranes | |
JPH04317708A (en) | New filtration using filtration assistant | |
JPH0637290B2 (en) | Central microporous alumina porous membrane and method for producing the same | |
JPH02129010A (en) | Method for recovering sulfuric acid from titanium sulfate waste liquor | |
JP2717458B2 (en) | Filtration method | |
JPH0557149A (en) | Filter system |