US3849897A - Fluidic clinometer control apparatus - Google Patents

Fluidic clinometer control apparatus Download PDF

Info

Publication number
US3849897A
US3849897A US00418303A US41830373A US3849897A US 3849897 A US3849897 A US 3849897A US 00418303 A US00418303 A US 00418303A US 41830373 A US41830373 A US 41830373A US 3849897 A US3849897 A US 3849897A
Authority
US
United States
Prior art keywords
casing
fluidic
tube
clinometer
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00418303A
Inventor
G Vamvakoussis
C Markakis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00418303A priority Critical patent/US3849897A/en
Application granted granted Critical
Publication of US3849897A publication Critical patent/US3849897A/en
Priority to US05/551,059 priority patent/USRE28694E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/18Measuring inclination, e.g. by clinometers, by levels by using liquids
    • G01C9/20Measuring inclination, e.g. by clinometers, by levels by using liquids the indication being based on the inclination of the surface of a liquid relative to its container
    • G01C9/22Measuring inclination, e.g. by clinometers, by levels by using liquids the indication being based on the inclination of the surface of a liquid relative to its container with interconnected containers in fixed relation to each other

Definitions

  • ABSTRACT Disclosed herein is a fluidic clinometer for automatically operating servomechanisms according to the angular displacements of a structure on which the inclinometer is fixedly mounted for integral movement therewith.
  • Substantially U-shaped tube having enlarged chambers of equal Size at the free ends of its vertical legs which are open to the atmosphere, the walls of said chambers being formed of microporous material of a porosity to permit the' passage of air, or similar gaseous fluid, but inhibit the escape of mercury, or other analogous liquid, therethrough; mercury, or other such liquid, partially filling the tube, up to about the middle of said chambers when the tube is in normal upright position; a substantially U shaped casing concentrically surrounding said tube in airtight relation and providing an annular air Space there-between; an air inlet medially of the horizontal or connecting part of said casing and an air outlet in each of the vertical legs of the casing; fluidic amplifying means having fluid communication with Said outlets; fluid lines leading from the output Side of the amplifying means for operating servomechanisms; and other fluid lines leading from the amplifying means to a differential pressure gauge indicating the angle and direction of inclination of Said tube and casing, and hence of a
  • the present invention relates to a fluidic clinometer for automatically controlling servomechanisms of a system in response to the inclination of the former relative to a plane of reference.
  • An object of this invention is also to investigate and- /or determine by fluidic means the angles of inclination, such as of the rolling and pitching of floating structures, or of other structures which are subject to oscillations along one or more horizontal, axes.
  • Another object thereof is the utilization of our clinometer to automatically control the operation of servomechanisms in a stabilizing system for floating structures against rolling and pitching.
  • a further object of the invention is to carry out the foregoing by fluidic means without the use or need of gyroscopes, electric devices or inertia means, pendulums for example.
  • a still further object thereof is a novel clinometer of great simplicity, high reliability and durability, of substantially instantaneous response, minimum maintenance requirements and economy of manufacture.
  • the primary intended use of the invention is for sensing by fluidic means the rolling and/or pitching angles of floatingstructures, ships or boats in particular, and for the automatic actuation by said sensing means of level correcting mechanisms for maintaining such structures in their level or upright position.
  • it is especially adapted for use in said US. Pat. No. 3,689,953, Sept. 12, 1972 to the present joint inventor Costas E. Markakis, which patent is hereby incorporated herein by reference, for replacing therein the gyroscopic controls for operating the air admitting valves, and thus the amount of air under pressure to the level correcting chambers.
  • FIGS, 18-21 of said patent and to FIG. 21 in particular, wherein the Gyroscopic device is designated by numeral 636, the servomechanism by620, the valves by 631 and 632 and the stabilizing chambers by 623 and 624.
  • FIGURE in the drawing shows diagrammatically the various parts of our invention in operative relation.
  • the fuidic clinometer of the present invention comprises a substantially U-shaped tube having a horizontal or connecting part 1 and two vertical legs 2,2 terminating at their free ends in enlarged chambers 3,3.
  • the walls 4,4 of these chambers are formed of microporous material, of a porosity to permit the passage of air, or other similar fluid, therethrough butinhibit the escape of a heavy liquid such as mercury or other analogues liquid, from inside the chambers.
  • the porosity is of the order of 50 microns.
  • Said chambers are open to the atmosphere at their top, and said tube is partially filled with a suitable liquid, preferably mercury, up to about the middle of the vertical height of the porous chambers when the connecting portion 1 is horizontal and the legs 2,2 are vertical.
  • I Said tube is concentically sourrounded in airtight relation by a substantially U-shaped casing of greater diameter than the tube, thus providing as annular air space there-between.
  • the connecting part5 of this casing is provided, medially of its length, with a fluid inlet 6, and its vertical legs 7,7 are constricted at 8,8 and formed there-above with fluid outlets 9 and 9, respectively.
  • the casing is secured to the tube for integral movement therewith.
  • the connecting parts 1 and 5 of said tube and easing are preferably rectilinear and of greater length that the height of the respective legs 2,2 and 7,7, as shown in the drawing.
  • Outlets 9 and 9' are connected by fluid lines 10 and 10 to a fluidic proportional amplifier 11, and the outlets or outputs of the latter are connected by fluid lines 12 and 12 to monostable amplifiers l3 and 13, respectively. Both of these types of amplifiers are conventional. Fluid lines 14,14, leading from the outputs of the monostable amplifiers are intended to be connected to servomechanisms to be controlled by the amplified air pressure therein.
  • a differential pressure gauge 15 calibrated in de grees in opposite directions from a zero reference point, is connected across the output fluid lines 12,12 of the proportional amplifier, thereby providing a ready visual indication of the instant angles of inclination of the clinometer, and hence of the structure on which the latter is mounted.
  • Proportional amplifier 11 of conventional construction, receives signals from outlets 9 and 9, by way of fluid lines 10 and 10', and produces an output differential signal which is proportional to the input signal but of increased magnitude, P or P
  • the digital monostable type amplifier such a 13 and 13' herein which are connected to opposite output sides of the proportional amplifier 11, is also conventional and is characterized by having only one output signal change produced and that only when the input signal magnitude is raised above a minimum level.
  • This feature makes the monostable amplifier ideally adaptable to the stabilization of floating structures; that is, taking the permissible angle of roll or pitch of a floating structure as one-tenth of 1 in either direction from its level position, and selecting or adjusting amplifiers 13, 13" to produce an output signal when that angle is reached, as reflected by the input signal, the value of their output pressures P or P will be substantially zero until the angle of inclination reaches 1/ l of 1 or l/ of 1, at which point the corresponding pressure suddenly jumps to a predetermined value, about 8P or 8P as the case may be, and thence remains constant for any greater angle of inclination.
  • the well known OR-NOR amplifier may also be used for the monostable amplifiers l3 and 13, but with only one control input-signal.
  • a fluidic clinometer for automatically controlling the operation of servomechanisms comprising a substantially U-shaped tube with its legs terminating in chambers of equal size, which are open to the atmosphere and are formed of microporous material, of a porosity permitting the passage of air, or other similar fluid, therethrough but inhibiting the escape of liquid from within the chambers; a suitable liquid partially filling the tube up to about the middle of the height of the chambers when the leg connecting part of the U- shaped tube ishorizontal and the legs are vertical; a substantially U-shaped, fluidtight casing of greater diameter than the tube concentrically enclosing said tube throughout, thus'forming an annular air passage between said tube and said casing, and said casing being provided with a fluid inlet medially of its connecting part and with a fluid outlet in each of its legs, the outlets being adapted to communicate with and control servomechanisms.
  • a fluidic clinometer according to claim 1 wherein the connecting part of the U-shaped tube and casing are substantially rectilinear and longer than the height of their'vertical legs.
  • a fluidic clinometer according to claim 1 including fluidic amplifying means connected to said fluid outlets of said casing for amplifying the pressure of the air issuing therefrom therefrom.
  • a fluidic clinometer according to claim 6 wherein the amplifying means comprise a fluidic proportional amplifier connected to the outlets of the legs of said casing; two fluidic monostable amplifiers having fluid connection'with the outlets of said proportional amplifier; and fluid lines extending from the outputs of said monostable amplifiers adapted to communicate with and control servomechanisms.
  • a fluidic clinometer according to claim 7 including a differential pressure gauge bridging the fluid connections between the proportional and the monostable amplifiers, providing a visual indication of the angles of inclination of the tube and casing, and hence of a structure on which they are to be fixedly mounted.
  • a fluidic clinometer according to claim 1 wherein the liquid is mercury, each leg of the casing is constricted between its juncture with the connecting part of the casing and its said outlet, and fluidic amplifying means connected to the fluid outlets of said casing for amplifying the pressure of the air issuing therefrom.
  • a fluidic clinometer according to claim 9 wherein the amplifying means comprise a fluidic proportional amplifier connected to the outlets of the legs of said casing; two fluidic monostable amplifiers having fluid communication with said proportional amplifier; and fluid lines extending from the outlets of said monostable amplifiers, adapted to communicate with and control servomechanisms.
  • a fluidic clinometer according to claim 10 including a differential pressure gauge connected across the output lines of the proportional amplifier and calibrated in degrees in opposite directions from a zero reference point, thereby providing a ready visual indication of the angle and direction'of inclination of the clinometer, and hence of a structure on which it is to be fixedly mounted.
  • a fluidic clinometer comprising a substantially U-shaped tube with its legs terminating in chambers of equal size, which are open to the atmosphere and are formed of microporous material, of a porosity permitting the passage of air, or other similar fluid, therethrough but inhibiting the escape of liquid from within the chambers; a suitable liquidpartially filling the tube up to about the middle of the height of .the chambers when the leg connecting part of the U-shaped tube is horizontal and the legs are vertical; a substantially U- shaped, fluidtight casing of greater diameter than the tube concentrically enclosing said tube throughout,
  • a fiuidic clinometer according to claim 12 fluid inlet medially of its leg connecting part and with wherein the le s of said casin are constricted between a fluid outlet in each of its legs; and means communig g eating with said outlets for indicating the pressure dif- 5 Sald Outlets and the juncture of the legs of thg Casmg ferential there-between in terms of the angles of incliwith the leg Connecting P of the latter nation of the tube and easing about an axis transversely

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Disclosed herein is a fluidic clinometer for automatically operating servomechanisms according to the angular displacements of a structure on which the inclinometer is fixedly mounted for integral movement therewith. It includes a substantially U-shaped tube having enlarged chambers of equal size at the free ends of its vertical legs which are open to the atmosphere, the walls of said chambers being formed of microporous material of a porosity to permit the passage of air, or similar gaseous fluid, but inhibit the escape of mercury, or other analogous liquid, therethrough; mercury, or other such liquid, partially filling the tube, up to about the middle of said chambers when the tube is in normal upright position; a substantially U-shaped casing concentrically surrounding said tube in airtight relation and providing an annular air space there-between; an air inlet medially of the horizontal or connecting part of said casing and an air outlet in each of the vertical legs of the casing; fluidic amplifying means having fluid communication with said outlets; fluid lines leading from the output side of the amplifying means for operating servomechanisms; and other fluid lines leading from the amplifying means to a differential pressure gauge indicating the angle and direction of inclination of said tube and casing, and hence of a structure on which the latter are to be mounted, in relation to a horizontal plane of reference. While this apparatus is capable of a variety of application, it is especially adapted for use in U.S. Pat. No. 3,689,953, Sept. 12, 1972, to the present co-inventor Costas E. Markakis, to control the amount and direction of the air needed to maintain the floating structures therein in stable or upright position.

Description

' SE? (A Nov. 26, 1974 FLUIDIC CLINOMETER CONTROL APPARATUS [76] Inventors: Costas E. Markakis, 12 Aravantinou St., Ekali, Athens; George N.
Vamvakoussis, Spiridon Trikoupi 39-41, Athens, both of Greece 22 Filed: Nov. 23, 1973 21 Appl. NO.I 418,303
Primary Examiner-Louis R. Prince Assistant Examiner Charles E. Phillips Attorney, Agent, or FirmPeter T. Dracopoulos 57] ABSTRACT Disclosed herein is a fluidic clinometer for automatically operating servomechanisms according to the angular displacements of a structure on which the inclinometer is fixedly mounted for integral movement therewith. It includes a Substantially U-shaped tube having enlarged chambers of equal Size at the free ends of its vertical legs which are open to the atmosphere, the walls of said chambers being formed of microporous material of a porosity to permit the' passage of air, or similar gaseous fluid, but inhibit the escape of mercury, or other analogous liquid, therethrough; mercury, or other such liquid, partially filling the tube, up to about the middle of said chambers when the tube is in normal upright position; a substantially U shaped casing concentrically surrounding said tube in airtight relation and providing an annular air Space there-between; an air inlet medially of the horizontal or connecting part of said casing and an air outlet in each of the vertical legs of the casing; fluidic amplifying means having fluid communication with Said outlets; fluid lines leading from the output Side of the amplifying means for operating servomechanisms; and other fluid lines leading from the amplifying means to a differential pressure gauge indicating the angle and direction of inclination of Said tube and casing, and hence of a structure on which the latter are to be mounted, in relation to a horizontal plane of refer ence. While this apparatus is capable of a variety of 1 application, it is especially adapted for use in US. Pat.
13 Claims, 1 Drawing Figure FLUIDIC CLINOMETER CONTROL APPARATUS The present invention relates to a fluidic clinometer for automatically controlling servomechanisms of a system in response to the inclination of the former relative to a plane of reference.
An object of this invention is also to investigate and- /or determine by fluidic means the angles of inclination, such as of the rolling and pitching of floating structures, or of other structures which are subject to oscillations along one or more horizontal, axes.
Another object thereof is the utilization of our clinometer to automatically control the operation of servomechanisms in a stabilizing system for floating structures against rolling and pitching.
A further object of the invention is to carry out the foregoing by fluidic means without the use or need of gyroscopes, electric devices or inertia means, pendulums for example.
A still further object thereof is a novel clinometer of great simplicity, high reliability and durability, of substantially instantaneous response, minimum maintenance requirements and economy of manufacture.
The primary intended use of the invention is for sensing by fluidic means the rolling and/or pitching angles of floatingstructures, ships or boats in particular, and for the automatic actuation by said sensing means of level correcting mechanisms for maintaining such structures in their level or upright position. As previously noted herein, it is especially adapted for use in said US. Pat. No. 3,689,953, Sept. 12, 1972 to the present joint inventor Costas E. Markakis, which patent is hereby incorporated herein by reference, for replacing therein the gyroscopic controls for operating the air admitting valves, and thus the amount of air under pressure to the level correcting chambers. In this connection, reference is made to FIGS, 18-21 of said patent and to FIG. 21 in particular, wherein the Gyroscopic device is designated by numeral 636, the servomechanism by620, the valves by 631 and 632 and the stabilizing chambers by 623 and 624.
DRAWING The single FIGURE in the drawing shows diagrammatically the various parts of our invention in operative relation.
DESCRIPTION Referring to the drawing, wherein like numerals designate like parts, the fuidic clinometer of the present invention comprises a substantially U-shaped tube having a horizontal or connecting part 1 and two vertical legs 2,2 terminating at their free ends in enlarged chambers 3,3. The walls 4,4 of these chambers are formed of microporous material, of a porosity to permit the passage of air, or other similar fluid, therethrough butinhibit the escape of a heavy liquid such as mercury or other analogues liquid, from inside the chambers. The porosity is of the order of 50 microns. Said chambers are open to the atmosphere at their top, and said tube is partially filled with a suitable liquid, preferably mercury, up to about the middle of the vertical height of the porous chambers when the connecting portion 1 is horizontal and the legs 2,2 are vertical.
I Said tube is concentically sourrounded in airtight relation by a substantially U-shaped casing of greater diameter than the tube, thus providing as annular air space there-between. The connecting part5 of this casing is provided, medially of its length, with a fluid inlet 6, and its vertical legs 7,7 are constricted at 8,8 and formed there-above with fluid outlets 9 and 9, respectively. The casing is secured to the tube for integral movement therewith. The connecting parts 1 and 5 of said tube and easing are preferably rectilinear and of greater length that the height of the respective legs 2,2 and 7,7, as shown in the drawing.
Outlets 9 and 9' are connected by fluid lines 10 and 10 to a fluidic proportional amplifier 11, and the outlets or outputs of the latter are connected by fluid lines 12 and 12 to monostable amplifiers l3 and 13, respectively. Both of these types of amplifiers are conventional. Fluid lines 14,14, leading from the outputs of the monostable amplifiers are intended to be connected to servomechanisms to be controlled by the amplified air pressure therein.
A differential pressure gauge 15, calibrated in de grees in opposite directions from a zero reference point, is connected across the output fluid lines 12,12 of the proportional amplifier, thereby providing a ready visual indication of the instant angles of inclination of the clinometer, and hence of the structure on which the latter is mounted.
In practice all of the above described elements constituting our invention are mounted as a unitary structure on a common base and in a single casing, as designated in the drawing by the broken outline D.
OPERATION For a clearer understanding of the invention, we will consider the clinometer as being fixedly mounted on a floating structure, or on a structure subject to rocking about one or both of its main axes, with said structue being in level or upright position and said clinometer disposed at a right angle to the rocking axis of the structure. Where correction is needed along both main horizontal axes of the structure, two clinometers at right angles to each other will, obviously, be employed.
In the stabilized position of the floating structure, i.e., in the level position of clinometer, the surface of the mercury in porous chambers 3,3 will be at the same level, about the middle of their vertical height. Humidity and temperature conditioned air entering casing 5, via inlet 6, at a pressure P passes through constrictions 8,8 and onto the exterior of the porous chamber walls 4,4, whereat its pressure is altered to P and P respectively. Due to the same porosity and the same peripheral surface of these chambers, and also their symmetry in relation to the inlet 6, when the floating structure and the clinometer thereon are in level position pressures P and P will be equal, i.e., P P Similarly, the pressure drop of the air escaping through the porous walls of the chambers to the atmosphere, Py-P and PrP will be equal, where P is the atmospheric pressure at the exit side of chambers 3 and 3.
Assuming now that the floating structure with the clinometer thereon rocks at an angle toward the right as viewed in the drawing, then the surface of the mercury in the right chamber 3 will rise, while that in the left chamber 3 will descend correspondingly. Accordingly, the porous surface 4 of the wall of chamber 3 through which air can escape to the atmosphere will decrease, causing a corresponding increase in P and hence an increase in the pressure drop P -P These changes will continue until the mercury in chamber 3 reaches the top thereof, whereat, manifestly, there will be no further escape of air. In the left chamber 3 the reverse will obviously take place, i.e., the porous exposed surface of wall 4 and the air escaping therethrough will correspondingly increase and pressure P .and pressure drop P P will decrease inversely as the conditions in chamber 3. Accordingly, there will result a differential pressure P -P which will increase in proportion to the angle of inclination of the floating structure. When the latter rocks toward the left as viewed in the drawing, it is apparent that the reverse of the foregoing will take place, i.e., P and P P will increase and P and P -P will correspondingly decrease. This increase in pressure, whether in P or P will be ultimately utilized to control a servomechanism or mechanisms.
Proportional amplifier 11, of conventional construction, receives signals from outlets 9 and 9, by way of fluid lines 10 and 10', and produces an output differential signal which is proportional to the input signal but of increased magnitude, P or P The digital monostable type amplifier, such a 13 and 13' herein which are connected to opposite output sides of the proportional amplifier 11, is also conventional and is characterized by having only one output signal change produced and that only when the input signal magnitude is raised above a minimum level. This feature makes the monostable amplifier ideally adaptable to the stabilization of floating structures; that is, taking the permissible angle of roll or pitch of a floating structure as one-tenth of 1 in either direction from its level position, and selecting or adjusting amplifiers 13, 13" to produce an output signal when that angle is reached, as reflected by the input signal, the value of their output pressures P or P will be substantially zero until the angle of inclination reaches 1/ l of 1 or l/ of 1, at which point the corresponding pressure suddenly jumps to a predetermined value, about 8P or 8P as the case may be, and thence remains constant for any greater angle of inclination. The well known OR-NOR amplifier may also be used for the monostable amplifiers l3 and 13, but with only one control input-signal.
The amplified pressure of the air issuing from said monostable amplifiers into fluid lines 14, 14' will effectively actuate servomechanisms; and in the example referred to above in connection with co-applicant Markakis said patent, it will open valves to maintain floating structures in level or upright position.
We claim:
1. A fluidic clinometer for automatically controlling the operation of servomechanisms, comprising a substantially U-shaped tube with its legs terminating in chambers of equal size, which are open to the atmosphere and are formed of microporous material, of a porosity permitting the passage of air, or other similar fluid, therethrough but inhibiting the escape of liquid from within the chambers; a suitable liquid partially filling the tube up to about the middle of the height of the chambers when the leg connecting part of the U- shaped tube ishorizontal and the legs are vertical; a substantially U-shaped, fluidtight casing of greater diameter than the tube concentrically enclosing said tube throughout, thus'forming an annular air passage between said tube and said casing, and said casing being provided with a fluid inlet medially of its connecting part and with a fluid outlet in each of its legs, the outlets being adapted to communicate with and control servomechanisms.
2. A fluidic clinometer according to claim 1 wherein the liquid in the tube is mercury.
3. A fluidic clinometer according to claim 1 wherein the porosity of said chambers is of the order of 50 mi- 4. A fluidic clinometer according to claim 1 wherein each leg of the casing is constricted between its juncture with the connecting part of the casing and its said outlet.
5. A fluidic clinometer according to claim 1 wherein the connecting part of the U-shaped tube and casing are substantially rectilinear and longer than the height of their'vertical legs.
6. A fluidic clinometer according to claim 1 including fluidic amplifying means connected to said fluid outlets of said casing for amplifying the pressure of the air issuing therefrom therefrom.
7. A fluidic clinometer according to claim 6 wherein the amplifying means comprise a fluidic proportional amplifier connected to the outlets of the legs of said casing; two fluidic monostable amplifiers having fluid connection'with the outlets of said proportional amplifier; and fluid lines extending from the outputs of said monostable amplifiers adapted to communicate with and control servomechanisms.
8. A fluidic clinometer according to claim 7 including a differential pressure gauge bridging the fluid connections between the proportional and the monostable amplifiers, providing a visual indication of the angles of inclination of the tube and casing, and hence of a structure on which they are to be fixedly mounted.
9. A fluidic clinometer according to claim 1 wherein the liquid is mercury, each leg of the casing is constricted between its juncture with the connecting part of the casing and its said outlet, and fluidic amplifying means connected to the fluid outlets of said casing for amplifying the pressure of the air issuing therefrom.
10. A fluidic clinometer according to claim 9 wherein the amplifying means comprise a fluidic proportional amplifier connected to the outlets of the legs of said casing; two fluidic monostable amplifiers having fluid communication with said proportional amplifier; and fluid lines extending from the outlets of said monostable amplifiers, adapted to communicate with and control servomechanisms.
11. A fluidic clinometer according to claim 10 including a differential pressure gauge connected across the output lines of the proportional amplifier and calibrated in degrees in opposite directions from a zero reference point, thereby providing a ready visual indication of the angle and direction'of inclination of the clinometer, and hence of a structure on which it is to be fixedly mounted.
12. A fluidic clinometer comprising a substantially U-shaped tube with its legs terminating in chambers of equal size, which are open to the atmosphere and are formed of microporous material, of a porosity permitting the passage of air, or other similar fluid, therethrough but inhibiting the escape of liquid from within the chambers; a suitable liquidpartially filling the tube up to about the middle of the height of .the chambers when the leg connecting part of the U-shaped tube is horizontal and the legs are vertical; a substantially U- shaped, fluidtight casing of greater diameter than the tube concentrically enclosing said tube throughout,
6 thus forming an'annular air passage between said tube thereof. and mi Casing and sald Casing bemg provlded with a 13. A fiuidic clinometer according to claim 12 fluid inlet medially of its leg connecting part and with wherein the le s of said casin are constricted between a fluid outlet in each of its legs; and means communig g eating with said outlets for indicating the pressure dif- 5 Sald Outlets and the juncture of the legs of thg Casmg ferential there-between in terms of the angles of incliwith the leg Connecting P of the latter nation of the tube and easing about an axis transversely

Claims (13)

1. A fluidic clinometer for automatically controlling the operation of servomechanisms, comprising a substantially U-shaped tube with its legs terminating in chambers of equal size, which are open to the atmosphere and are formed of microporous material, of a porosity permitting the passage of air, or other similar fluid, therethrough but inhibiting the escape of liquid from within the chambers; a suitable liquid partially filling the tube up to about the middle of the height of the chambers when the leg connecting part of the U-shaped tube is horizontal and the legs are vertical; a substantially U-shaped, fluidtight casing of greater diameter than the tube concentrically enclosing said tube throughout, thus forming an annular air passage between said tube and said casing, and said casing being provided with a fluid inlet medially of its connecting part and with a fluid outlet in each of its legs, the outlets being adapted to communicate with and control servomechanisms.
2. A fluidic clinometer according to claim 1 wherein the liquid in the tube is mercury.
3. A fluidic clinometer according to claim 1 wherein the porosity of said chambers is of the order of 50 microns.
4. A fluidic clinometer according to claim 1 wherein each leg of the casing is constricted between its juncture with the connecting part of the casing and its said outlet.
5. A fluidic clinometer according to claim 1 wherein the connecting part of the U-shaped tube and casing are substantially rectilinear and longer than the height of their vertical legs.
6. A fluidic clinometer according to claim 1 including fluidic amplifying means connected to said fluid outlets of said casing for amplifying the pressure of the air issuing therefrom.
7. A fluidic clinometer according to claim 6 wherein the amplifying means comprise a fluidic proportional amplifier connected to the outlets of the legs of said casing; two fluidic monostable amplifiers having fluid connection with the outlets of said proportional amplifier; and fluid lines extending from the outputs of said monostable amplifiers adapted to communicate with and control servomechanisms.
8. A fluidic clinometer according to claim 7 including a differential pressure gauge bridging the fluid connections between the proportional and the monostable amplifiers, providing a visual indication of the angles of inclination of the tube and casing, and hence of a structure on which they are to be fixedly mounted.
9. A fluidic clinometer according to claim 1 wherein the liquid is mercury, each leg of the casing is constricted between its juncture with the connecting part of the casing and its said outlet, and fluidic amplifying means connected to the fluid outlets of said casing for amplifying the pressure of the air issuing therefrom.
10. A fluidic clinometer according to claim 9 wherein the amplifying means comprise a fluidic proportional amplifier connected to the outlets of the legs of said casing; two fluidic monostable amplifiers having fluid communication with said proportional amplifier; and fluid lines extending from the outlets of said monostable amplifiers, adapted to communicate with and control servomechanisms.
11. A fluidic clinometer according to claim 10 including a differential pressure gauge connected across the output lines of the proportional amplifier and calibrated in degrees in opposite directions from a zero reference point, thereby providing a ready visual indication of the angle and direction of inclination of the clinometer, and hence of a structure on which it is to be fixedly mounted.
12. A fluidic clinometer comprising a substantially U-shaped tube with its legs terminating in chambers of equal size, which are open to the atmosphere and are formed of microporous material, of a porosity permitting the passage of air, or other similar fluid, therethrough but inhibiting the escape of liquid from within the chambers; a suitAble liquid partially filling the tube up to about the middle of the height of the chambers when the leg connecting part of the U-shaped tube is horizontal and the legs are vertical; a substantially U-shaped, fluidtight casing of greater diameter than the tube concentrically enclosing said tube throughout, thus forming an annular air passage between said tube and said casing and said casing being provided with a fluid inlet medially of its leg connecting part and with a fluid outlet in each of its legs; and means communicating with said outlets for indicating the pressure differential there-between in terms of the angles of inclination of the tube and casing about an axis transversely thereof.
13. A fluidic clinometer according to claim 12 wherein the legs of said casing are constricted between said outlets and the juncture of the legs of the casing with the leg connecting part of the latter.
US00418303A 1973-11-23 1973-11-23 Fluidic clinometer control apparatus Expired - Lifetime US3849897A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00418303A US3849897A (en) 1973-11-23 1973-11-23 Fluidic clinometer control apparatus
US05/551,059 USRE28694E (en) 1973-11-23 1975-02-19 Fluidic clinometer control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00418303A US3849897A (en) 1973-11-23 1973-11-23 Fluidic clinometer control apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/551,059 Reissue USRE28694E (en) 1973-11-23 1975-02-19 Fluidic clinometer control apparatus

Publications (1)

Publication Number Publication Date
US3849897A true US3849897A (en) 1974-11-26

Family

ID=23657557

Family Applications (1)

Application Number Title Priority Date Filing Date
US00418303A Expired - Lifetime US3849897A (en) 1973-11-23 1973-11-23 Fluidic clinometer control apparatus

Country Status (1)

Country Link
US (1) US3849897A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6546639B2 (en) 2000-12-10 2003-04-15 Federico Singer Inclination measurement apparatus
US6722049B2 (en) 2001-07-30 2004-04-20 Yuval Singer Inclination measurement apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU235343A1 (en) * Всесоюзный научно исследовательский институт землеройного DEVICE FOR AUTOMATIC STABILIZATION
US1012993A (en) * 1910-06-25 1911-12-26 John H Dissett Clinometer.
US2557021A (en) * 1946-09-12 1951-06-12 Standard Oil Dev Co Hydraulic system for measuring differences in elevation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU235343A1 (en) * Всесоюзный научно исследовательский институт землеройного DEVICE FOR AUTOMATIC STABILIZATION
US1012993A (en) * 1910-06-25 1911-12-26 John H Dissett Clinometer.
US2557021A (en) * 1946-09-12 1951-06-12 Standard Oil Dev Co Hydraulic system for measuring differences in elevation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6546639B2 (en) 2000-12-10 2003-04-15 Federico Singer Inclination measurement apparatus
US6722049B2 (en) 2001-07-30 2004-04-20 Yuval Singer Inclination measurement apparatus

Similar Documents

Publication Publication Date Title
US2192148A (en) Direction indicator
GB1224512A (en) Gyroscopic instrument
US3849897A (en) Fluidic clinometer control apparatus
US3604275A (en) Toroidal electrolytic sensor
USRE28694E (en) Fluidic clinometer control apparatus
US2436451A (en) Measuring instrument
US4563892A (en) Total dissolved gas pressure measuring device
US3729997A (en) Liquid level sensor
US3237107A (en) Electronic gain-scheduling apparatus
US2391852A (en) Liquid level indicator
US2781665A (en) Motion transmitting means for pressure devices
US1296947A (en) Indicating or recording apparatus particularly applicable to marine logs.
US2974674A (en) Booster relay for pneumatic control systems
US3517545A (en) Fluid sensor
US3897717A (en) Control valves
US2603003A (en) Gyroscopic instrument
Leonard et al. A self‐adjusting, null‐point tensiometer
US3209587A (en) Volumetric apparatus
US2091306A (en) Level flight control for automatic pilots
US2431706A (en) Device responsive to the rate op
US3742969A (en) Pneumatic force-balance transmitter
US3940991A (en) Barometer gas pressure measuring apparatus
US2438330A (en) Liquid level indicator
US2922228A (en) Gyro compass
US691146A (en) Level and plumb.