US3849320A - Organic compositions containing alkali metal arylcarbamates - Google Patents

Organic compositions containing alkali metal arylcarbamates Download PDF

Info

Publication number
US3849320A
US3849320A US00310752A US31075272A US3849320A US 3849320 A US3849320 A US 3849320A US 00310752 A US00310752 A US 00310752A US 31075272 A US31075272 A US 31075272A US 3849320 A US3849320 A US 3849320A
Authority
US
United States
Prior art keywords
composition
antioxidant
oils
lubricating
arylcarbamates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00310752A
Inventor
R Bridger
E Heiba
S Stournas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Oil Corp
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Priority to US00310752A priority Critical patent/US3849320A/en
Priority to JP48129815A priority patent/JPS5052105A/ja
Priority to DE2358432A priority patent/DE2358432A1/en
Priority to FR7342236A priority patent/FR2208969B3/fr
Priority to IT31779/73A priority patent/IT1002008B/en
Priority to NL7316381A priority patent/NL7316381A/xx
Priority to US05/479,739 priority patent/US3997597A/en
Application granted granted Critical
Publication of US3849320A publication Critical patent/US3849320A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/38Heterocyclic nitrogen compounds
    • C10M133/40Six-membered ring containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/16Amides; Imides
    • C10M133/18Amides; Imides of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/14Inorganic compounds or elements as ingredients in lubricant compositions inorganic compounds surface treated with organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/102Ureas; Semicarbazides; Allophanates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/02Esters of silicic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/04Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having a silicon-to-carbon bond, e.g. organo-silanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/08Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having metal-to-carbon bonds
    • C10M2227/081Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having metal-to-carbon bonds with a metal carbon bond belonging to a ring, e.g. ferocene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • antioxidant agents for use in organic compositions, particularly lubricants in the form of lubricating oils and greases have heretofore been suggested.
  • antioxidants e.g., amines or phenolic compounds
  • such antioxidants do not exhibit a sufficiently effective degree of inhibiting oxidation. In general, therefore, these antioxidant additives have not proved to be sufficiently attractive to warrant any extensive industrial application.
  • new and improved lubricant compositions in the form of lubricating oils and greases are provided, containing, as antioxidant agents, certain alkali metal arylcarbamates. More specifically, these carbamates comprise alkali metal arylcarbamates, diarylcarbamates and alkarylcarbamates having the structure:
  • RR NCO M in which R and R are phenyl, naphthyl, alkyl, aryl or hydrogen; at least one of R and R is aryl; and M is selected from the group consisting of Li, Na, K, Rb, Cs or tetraalkyl ammonium.
  • carbamates When the above-described carbamates are incorporated in organic media such as lubricant compositions, in the form of lubricating coils and greases, it is found that they impart a relatively high degree of improve-. ment in alkalinity and are highly effective in inhibiting oxidation of the media into which they are incorporated.
  • the carbamates are employed in minor amounts. In most instances, the carbamates are effectively employed in amounts from about 0.001 to about 5%, and, preferably, from about 0.1 to about 2%, by weight, ofthe total weight of the lubricant composition.
  • the carbamate antioxidant may be effective incorporated in any oil of lubricating viscosity or in a grease composition in which the oil of lubricating viscosity is the vehicle in combination with a suitable thickening agent.
  • the lubricating oils which are improved with the antioxidants of the present invention may include mineral oils and synthetic oils of lubricating viscosities. Of particular significance is the improvement of petroleum distillate lubricating oils having boiling points as high as 650F. or above and also mixtures of such oils.
  • distillate oils is not intended to be restricted to straight-run distillate fractions. These distillate oils can be straight-run distillate oils, catalytically or thermally cracked (including hydro-cracked) distillate oils, or mixtures of straightrun distillate oils, naphthas and the like, with cracked distillate stocks and may be of varying viscosities and pour points.
  • such oils can be treated in ac-' cordance with well-known commercial methods, such as acid or caustic treatment, hydrogenation, solventrefining, clay treatment and the like.
  • the aforementioned antioxidants may also be incorporated in grease compositions.
  • Such greases may comprise a combination of a wide variety of lubricating vehicles and thickening or gelling agents.
  • greases in which the aforementioned carbamates are particularly effective may com prise any of the conventional hydrocarbon oils of lubricating viscosity, as the oil vehicle, and may include mineral oils or mineral oils in combination with synthetic lubricating oils, aliphatic phosphates, esters and di-esters, silicates, siloxanes and oxalkyl ethers and esters.
  • Mineral lubricating oils, preferably employed as the lubricating vehicle may be of any suitable lubricating viscosity range from about 45 S.U.S.
  • oils may have viscosity indexes Varyingfrom below 0 to about 100 or higher. Viscosity indexes from to about are preferred. The average molecular weights of these oils may range from about 250 to about 800.
  • the lubricating oil is employed in the grease composition in an amount sufficient to constitute the balance of the total grease composition, after accounting for the desired quantity of the thickening agent, and other additive components to be included in the grease formulation.
  • oil vehicles employed in the novel grease formulations may also comprise mineral oils or combinations of mineral oils with synthetic oils of lubricating viscosity.
  • mineral oils having a viscosity of at least 40 S.U.S. at F., and particularly those falling within the range from about 60 S.U.S. to about 6,000 S.U.S. at 100F. may be employed.
  • synthetic vehicles are employed in addition to mineral oils, as the lubricating vehicle, various compounds of this type may be successfully utilized.
  • Typical synthetic vehicles include: polypropylene, polypropylene glycol, trimethylol propane esters, neopentyl and pentaerythritol esters, di-(2-ethyl hexyl) sebacate, di-(2-ethyl hexyl) adipate, di-butyl phthalate, fluorocarbons, silicate esters, silanes, esters of phosphoruscontaining acids, liquid ureas, ferrocene derivatives, hydrogenated mineral oils, chain-type polyphenyls, siloxanes and silicones (polysiloxanes), alkyl-substituted diphenyl ethers typified by a butyl-substituted bis (pphenoxy phenyl) ether, phenoxy phenyl ethers, etc.
  • the lubricating vehicles of the aforementioned improved greases containing the above-described antioxidant carbamates are combined with a grease-forming quantity ofa thickening agent.
  • thickening or gelling agents may include any of the conventional metal salts or soaps; which are dispersed in the lubricating vehicle in grease-forming quantities, in such degree as to impart to the resulting grease composition, the desired consistency.
  • Other thickening agents that may be employed in the grease formation may comprise the nonsoap thickeners, such as surface-modified clays and silicas, aryl ureas, calcium complexes and similar materials. In general, grease thickeners may be employed which do not melt and dissolve when used at the required temperature within a particular environment;
  • any materials which are normally employed for thickening or gelling hydrocarbon fluids for forming greases can be used in preparing the aforementioned improved greases in accordance with the present invention.
  • the alkali metal arylcarbamates of the present invention may be prepared, in general, by reacting an arylamine, diarylamine or alkarylamine having the structure R R NI-I with a derivative of an alkali metal having the structure MX at a temperature from about C. to about 150C., and preferably from about 25C. to about 60C., to produce a product having the structure R R NM; and reacting the product thus produced with carbon dioxide at a temperature from about 0C. to about 60C., and preferably from about C.
  • R and R are phenyl, naphthyl, alkyl, aryl or hydrogen; at least one of R and R is aryl; M is selected from the group consisting of Li, Na, K, Rb, Cs or tetraalkyl ammonium; and X is selected from the group consisting of -I-I, -NH N(CH C I-I phenyl, -OI-I,
  • Example 1 N-Phenyl-l-naphthylamine (29.2 grams, 0.133 mole) was added to an ice-cooled solution of butyl lithium (12 grams, 0.187 mole) in 100 ml of tetrahydrofuran over a period of 30 minutes while the solution was stirred under an argon atmosphere. The rate of addition was determined chiefly by the heat evolved during the reaction. Stirring was continued for 30 minutes and the solution was allowed to warm to room temperature. Dry carbon dioxide was pressed through the solution for 1 hour, and solvent was removed by evaporation in a vacuum.
  • the product so obtained (39.6 grams), melting point 290292C., was shown not to contain N-phenyll -naphthyl-amine by thin layer chromatography, and had minor impurities of lithium pentanoate and solvent.
  • the N-H absorption was absent from the infrared spectrum which exhibited a carbonyl absorption at 6.2 microns.
  • the compound, thus produced had the following structure:
  • Example 2 The procedure described in Example 1 was repeated, except that 34.1 grams of N-[p-(2,4,4-trimethyl-2- pentyl)phenyl]-l-naphthylamine and 7.5 grams of butyl lithium was employed. The resulting compound had the following structure:
  • Example 4 The procedure described in Example 1 was repeated, except that 7.5 grams of butyl lithium and 16.9 grams of diphenylamine was employed. The resulting compound had the structure:
  • Example 2 The procedure described in Example 1 was repeated, except that 7.5 grams of butyl lithium and 39.3 grams of di ⁇ p-(2,4,4-trimethyl-2-pentyl)phenyl]amine was employed.
  • the resulting compound had the following structure:
  • Example 8 The procedure described in Example 1 was repeated, except that 6.8 grams of butyl lithium and 26.1 grams of dodecylaniline was employed. The resulting compound had the following structure:
  • Example 9 The procedure described in Example 1 was repeated, except that 17.3 grams of 2,2,4-trimethyldihydroquinoline and 7.5 grams of butyl lithium was employed. The resulting compound had the following structure:
  • Example 10 A solution of di [p-(2,4,4-trimethyl-2-pentyl)- phenyl]amine (l9.65g., 0.05 mol) and potassium-tertbutoxide (5.6lg., 0.05 mol) in 100 ml tetrahydrofuran was refluxed under on argon atmosphere for 22 hours. The resulting potassium salt precipitated from tetrahydrofuran. The tetrahydrofuran was replaced by adding 1,4-dioxane (200 ml) as the tetrahydrofuran was removed by distillation; A vigorous stream of carbon dioxide was passed through the solution for 1 hour. Upon evaporation of the solvent a yield of 26.9g. of product was obtained. The resulting product had the following structure:
  • Example 1 To a solution of 4g. of the potassium carbamate of Example 10 in 75 ml acetonitrile was added'2.0g. of tetraethylammonium tetrafluoroborate. The solution was stirred 0.5 hours and filtered. To the filtrate was added 35 ml diethyl ether and the solution was filtered again. Evaporation of the solvent yielded 3.15g. of product. The resulting product had the following structure:
  • the alkali metal arylcarbamates of the present invention are outstandingly effective as anti-oxida'nts in organic media such as lubricating oils, and greases in which these lubricating oils are employed as vehicles. It will also be noted that other additives may also be included in the above-described organic compositions which can provide a variety of additional desirable characteristics such as extreme pressure agents, detergents, pour point depressants, stability improvers and viscosity controlagents.
  • composition of claim 1 wherein said composi- I tion comprises an oil of lubricating viscosity. 002111 3.
  • composition of claim 1 wherein said composi- I tion comprises a grease.
  • composition of claim 1 containing from about 0.001 to about 5%, by weight, of said antioxidant.
  • composition of claim 1 containing from about 0.1 to about 2%, by weight, of said antioxidant.
  • composition of claim 1 wherein said antioxidant has the structure: 7 dant has the structure:
  • composition of claim 1 wherein said antioxidant has the structure:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

Organic compositions, particularly lubricating compositions in the form of lubricating oils and greases, are provided, containing, as antioxidants, alkali metal arylcarbamates.

Description

United States Patent [191 Bridger et al.
[ ORGANIC COMPOSITIONS CONTAINING ALKALI METAL ARYLCARBAMATES [75] Inventors: Robert F. Bridger, Hopewell;
El-Ahmadi I. Heiba; Stamoulis Stournas, both of Princeton, all of N .J
[52] US. Cl. 252/33.6, 252/427 [51] Int. Cl Cl0m 1/54 [58] Field of Search 252/427, 33.6, 397
[56] References Cited UNITED STATES PATENTS 2,629,694 2/1953 Woods et al 252/33.6
2,652,362 9/1953 Woods et al 252/336 3,056,820 10/1962 Martinek 252/336 X 3,151,076 9/l964 Epton et al. 252/336 Primary Examinerl-l. Sneed Attorney, Agent, or Firm--Andrew L. Gaboriault; Raymond W. Barclay; Benjaminv I. Kaufman [5 7] ABSTRACT Organic compositions, particularly lubricating compositions in the form of lubricating oils andgreases, are provided, containing, as antioxidants, alkali metal arylcarbamates.
10 Claims, N0 Drawings ORGANIC COMPOSITIONS CONTAINING ALKALI METAL ARYLCARBAMATES BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to organic compositions having improved antioxidant properties. In one of its aspects, the invention relates, more particularly, to lubricant compositions in the form of lubricating oils and greases containing novel and improved antioxidant additives.
2. Description of the Prior Art Various antioxidant agents for use in organic compositions, particularly lubricants in the form of lubricating oils and greases have heretofore been suggested. In many instances, it has been found, however, that such antioxidants, e.g., amines or phenolic compounds, do not impart desirable alkaline properties to the lubricants. In other instances, such antioxidants do not exhibit a sufficiently effective degree of inhibiting oxidation. In general, therefore, these antioxidant additives have not proved to be sufficiently attractive to warrant any extensive industrial application.
SUMMARY OF THE INVENTION In accordance with the present invention, new and improved lubricant compositions in the form of lubricating oils and greases are provided, containing, as antioxidant agents, certain alkali metal arylcarbamates. More specifically, these carbamates comprise alkali metal arylcarbamates, diarylcarbamates and alkarylcarbamates having the structure:
RR NCO M in which R and R are phenyl, naphthyl, alkyl, aryl or hydrogen; at least one of R and R is aryl; and M is selected from the group consisting of Li, Na, K, Rb, Cs or tetraalkyl ammonium.
When the above-described carbamates are incorporated in organic media such as lubricant compositions, in the form of lubricating coils and greases, it is found that they impart a relatively high degree of improve-. ment in alkalinity and are highly effective in inhibiting oxidation of the media into which they are incorporated. In general, the carbamates are employed in minor amounts. In most instances, the carbamates are effectively employed in amounts from about 0.001 to about 5%, and, preferably, from about 0.1 to about 2%, by weight, ofthe total weight of the lubricant composition.
The carbamate antioxidant may be effective incorporated in any oil of lubricating viscosity or in a grease composition in which the oil of lubricating viscosity is the vehicle in combination with a suitable thickening agent.
The lubricating oils which are improved with the antioxidants of the present invention may include mineral oils and synthetic oils of lubricating viscosities. Of particular significance is the improvement of petroleum distillate lubricating oils having boiling points as high as 650F. or above and also mixtures of such oils. It should be noted, in this respect, that the term distillate oils is not intended to be restricted to straight-run distillate fractions. These distillate oils can be straight-run distillate oils, catalytically or thermally cracked (including hydro-cracked) distillate oils, or mixtures of straightrun distillate oils, naphthas and the like, with cracked distillate stocks and may be of varying viscosities and pour points. Moreover, such oils can be treated in ac-' cordance with well-known commercial methods, such as acid or caustic treatment, hydrogenation, solventrefining, clay treatment and the like.
As previously indicated, the aforementioned antioxidants may also be incorporated in grease compositions. Such greases, may comprise a combination of a wide variety of lubricating vehicles and thickening or gelling agents. Thus, greases in which the aforementioned carbamates are particularly effective may com prise any of the conventional hydrocarbon oils of lubricating viscosity, as the oil vehicle, and may include mineral oils or mineral oils in combination with synthetic lubricating oils, aliphatic phosphates, esters and di-esters, silicates, siloxanes and oxalkyl ethers and esters. Mineral lubricating oils, preferably employed as the lubricating vehicle, may be of any suitable lubricating viscosity range from about 45 S.U.S. at 100F. to about 6,000 S.U.S. at 100F., and, preferably, from about 50 to about 250 S.U.Spat 210F. These oils may have viscosity indexes Varyingfrom below 0 to about 100 or higher. Viscosity indexes from to about are preferred. The average molecular weights of these oils may range from about 250 to about 800. The lubricating oil is employed in the grease composition in an amount sufficient to constitute the balance of the total grease composition, after accounting for the desired quantity of the thickening agent, and other additive components to be included in the grease formulation.
As hereinbefore indicated, the oil vehicles employed in the novel grease formulations, in which the aforementioned antioxidant carbamates are incorporated, may also comprise mineral oils or combinations of mineral oils with synthetic oils of lubricating viscosity.
When high temperature stability is not a requirement of the finished grease, mineral oils having a viscosity of at least 40 S.U.S. at F., and particularly those falling within the range from about 60 S.U.S. to about 6,000 S.U.S. at 100F. may be employed. In instances, where synthetic vehicles are employed in addition to mineral oils, as the lubricating vehicle, various compounds of this type may be successfully utilized. Typical synthetic vehicles include: polypropylene, polypropylene glycol, trimethylol propane esters, neopentyl and pentaerythritol esters, di-(2-ethyl hexyl) sebacate, di-(2-ethyl hexyl) adipate, di-butyl phthalate, fluorocarbons, silicate esters, silanes, esters of phosphoruscontaining acids, liquid ureas, ferrocene derivatives, hydrogenated mineral oils, chain-type polyphenyls, siloxanes and silicones (polysiloxanes), alkyl-substituted diphenyl ethers typified by a butyl-substituted bis (pphenoxy phenyl) ether, phenoxy phenyl ethers, etc.
The lubricating vehicles of the aforementioned improved greases containing the above-described antioxidant carbamates, are combined with a grease-forming quantity ofa thickening agent. These thickening or gelling agents may include any of the conventional metal salts or soaps; which are dispersed in the lubricating vehicle in grease-forming quantities, in such degree as to impart to the resulting grease composition, the desired consistency. Other thickening agents that may be employed in the grease formationmay comprise the nonsoap thickeners, such as surface-modified clays and silicas, aryl ureas, calcium complexes and similar materials. In general, grease thickeners may be employed which do not melt and dissolve when used at the required temperature within a particular environment;
however, in all other respects, any materials which are normally employed for thickening or gelling hydrocarbon fluids for forming greases, can be used in preparing the aforementioned improved greases in accordance with the present invention.
The alkali metal arylcarbamates of the present invention, as more fully hereinafter described, may be prepared, in general, by reacting an arylamine, diarylamine or alkarylamine having the structure R R NI-I with a derivative of an alkali metal having the structure MX at a temperature from about C. to about 150C., and preferably from about 25C. to about 60C., to produce a product having the structure R R NM; and reacting the product thus produced with carbon dioxide at a temperature from about 0C. to about 60C., and preferably from about C. to about 30C., to produce a product having the structure RR NCO M in which R and R are phenyl, naphthyl, alkyl, aryl or hydrogen; at least one of R and R is aryl; M is selected from the group consisting of Li, Na, K, Rb, Cs or tetraalkyl ammonium; and X is selected from the group consisting of -I-I, -NH N(CH C I-I phenyl, -OI-I,
and
DESCRIPTION OF SPECIFIC EMBODIMENTS The following examples will serve to illustrate the novel alkali metal arylcarbamates of the present invention, the method for their preparation and their utility in organic lubricating media.
Example 1 N-Phenyl-l-naphthylamine (29.2 grams, 0.133 mole) was added to an ice-cooled solution of butyl lithium (12 grams, 0.187 mole) in 100 ml of tetrahydrofuran over a period of 30 minutes while the solution was stirred under an argon atmosphere. The rate of addition was determined chiefly by the heat evolved during the reaction. Stirring was continued for 30 minutes and the solution was allowed to warm to room temperature. Dry carbon dioxide was pressed through the solution for 1 hour, and solvent was removed by evaporation in a vacuum. The product so obtained (39.6 grams), melting point 290292C., was shown not to contain N-phenyll -naphthyl-amine by thin layer chromatography, and had minor impurities of lithium pentanoate and solvent. The N-H absorption was absent from the infrared spectrum which exhibited a carbonyl absorption at 6.2 microns. The compound, thus produced, had the following structure:
Example 2 The procedure described in Example 1 was repeated, except that 34.1 grams of N-[p-(2,4,4-trimethyl-2- pentyl)phenyl]-l-naphthylamine and 7.5 grams of butyl lithium was employed. The resulting compound had the following structure:
except that 29.2 grams of N-phenyl-Z-naphthylamine and 12 grams of butyl lithium was employed. The resulting compound had the following structure:
CO Li Example 4 The procedure described in Example 1 was repeated, except that 7.5 grams of butyl lithium and 16.9 grams of diphenylamine was employed. The resulting compound had the structure:
The procedure described in Example 1 was repeated, except that 7.5 grams of butyl lithium and 39.3 grams of di{p-(2,4,4-trimethyl-2-pentyl)phenyl]amine was employed. The resulting compound had the following structure:
c (CH3 )2CH2C (CH3 Example 6 A solution of 16.9 grams diphenylamine (0.1 mole) in 100 ml tetrahydrofuran was added, dropwise and with stirring, to a suspension of 4.2 grams sodium hydride (57% in mineral oil, washed with pentane) in 400 ml tetrahydrofuran. After the evolution of hydrogen had ceased, dry CO was passed through the solution for 30 minutes. Evaporation of the tetrahydrofuran afforded 21.2 grams of the sodium N, N- diphenylcarbamate, as a greyish solid, mp. 250C. This compound had the following structure:
TO Na Example 7 The procedure described in Example 6 was repeated, employing the same quantity of sodium hydride and 39.3 grams of di[p-(2,4,4-trimethyl-2-pentyl)phenyl]amine. The resulting compound had the following structure:
CO Na Example 8 The procedure described in Example 1 was repeated, except that 6.8 grams of butyl lithium and 26.1 grams of dodecylaniline was employed. The resulting compound had the following structure:
Example 9 The procedure described in Example 1 was repeated, except that 17.3 grams of 2,2,4-trimethyldihydroquinoline and 7.5 grams of butyl lithium was employed. The resulting compound had the following structure:
CH3 we. 7
Example 10 A solution of di [p-(2,4,4-trimethyl-2-pentyl)- phenyl]amine (l9.65g., 0.05 mol) and potassium-tertbutoxide (5.6lg., 0.05 mol) in 100 ml tetrahydrofuran was refluxed under on argon atmosphere for 22 hours. The resulting potassium salt precipitated from tetrahydrofuran. The tetrahydrofuran was replaced by adding 1,4-dioxane (200 ml) as the tetrahydrofuran was removed by distillation; A vigorous stream of carbon dioxide was passed through the solution for 1 hour. Upon evaporation of the solvent a yield of 26.9g. of product was obtained. The resulting product had the following structure:
Example 1 1 To a solution of 4g. of the potassium carbamate of Example 10 in 75 ml acetonitrile was added'2.0g. of tetraethylammonium tetrafluoroborate. The solution was stirred 0.5 hours and filtered. To the filtrate was added 35 ml diethyl ether and the solution was filtered again. Evaporation of the solvent yielded 3.15g. of product. The resulting product had the following structure:
Individual blends of the carbamates of Examples 1 through 11 were prepared in Kuwait oil. This oil was prepared from a Kuwait distillate by furfural refining and methylethyl ketone dewaxing. It had a viscosity at F. of 107 S.U.S. and at 210F. of 40.1 S.U.S. Oxygen was circulated through each test sample at C.
.at the rate of 5 liters per hour. The size of each sample was 30 grams. In the following table are summarized the results as the time (r required for 1 kg of oil to absorb 1 mole of oxygen. In this table, the longer the duration of oxygen uptake, the more desirable the antioxidant carbamate additive. Where the carbamate additive was incorporated in the oil, it was present in an amount of 1%, by weight.
From the above examples andcomparative data, it will be apparent that the alkali metal arylcarbamates of the present invention are outstandingly effective as anti-oxida'nts in organic media such as lubricating oils, and greases in which these lubricating oils are employed as vehicles. It will also be noted that other additives may also be included in the above-described organic compositions which can provide a variety of additional desirable characteristics such as extreme pressure agents, detergents, pour point depressants, stability improvers and viscosity controlagents.
While preferred embodiments of the novel process of the present invention have been described for the purposes of illustration, it will be understood that various modifications and adaptations thereof, which will be CH C(CH in which R and R are alkyl, aryl or hydrogen; at least one of R and R is aryl; and M is selected from the 7 8 group consisting of Li, Na, K, Rb, Cs or tetraalkyl am- 8. The composition of claim 1 wherein said antioximonium. dant has the structure:
2. The composition of claim 1 wherein said composi- I tion comprises an oil of lubricating viscosity. 002111 3. The composition of claim 1 wherein said composi- I tion comprises a grease. N
4. The composition of claim 1 containing from about 0.001 to about 5%, by weight, of said antioxidant.
'5. The composition of claim 1 containing from about 0.1 to about 2%, by weight, of said antioxidant. l0
6. The composition of claim 1 wherein said antioxi- 9. The composition of claim 1 wherein said antioxidant has the structure: 7 dant has the structure:
iZO Li N C(CH CH C(CH (CH CCH (CH C Q Q 3 2 2 3 3 CO Li i N 10. The composition of claim 1 wherein said antioxidant has the structure:
7. The composition of claim 1 wherein said antioxidant has the structure:

Claims (10)

1. A LUBRICANT COMPOSITION CONTAINING, AS AN ANTIOXIDANT, A MINOR AMOUNT OF A CARBAMATE OF THE GROUP CONSISTING OF ALKALI METAL ARYLCARBAMATES, DIARYLCARBAMATES AND ALKARYLCARBAMATES HAVING THE STRUCTURE:
2. The composition of claim 1 wherein said composition comprises an oil of lubricating viscosity.
3. The composition of claim 1 wherein said composition comprises a grease.
4. The composition of claim 1 containing from about 0.001 to about 5%, by weight, of said antioxidant.
5. The composition of claim 1 containing from about 0.1 to about 2%, by weight, of said antioxidant.
6. The composition of claim 1 wherein said antioxidant has the structure:
7. The composition of claim 1 wherein said antioxidant has the structure:
8. The composition of claim 1 wherein said antioxidant has the structure:
9. The composition of claim 1 wherein said antioxidant has the structure:
10. The composition of claim 1 wherein said antioxidant has the structure:
US00310752A 1972-11-30 1972-11-30 Organic compositions containing alkali metal arylcarbamates Expired - Lifetime US3849320A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US00310752A US3849320A (en) 1972-11-30 1972-11-30 Organic compositions containing alkali metal arylcarbamates
JP48129815A JPS5052105A (en) 1972-11-30 1973-11-20
DE2358432A DE2358432A1 (en) 1972-11-30 1973-11-23 ALKALIARYLCARBAMATES, DIARYLCARBAMATES AND ALKARYLCARBAMATES, THE MANUFACTURING THEREOF, AND LUBRICANT COMPOSITIONS THEREOF
FR7342236A FR2208969B3 (en) 1972-11-30 1973-11-27
IT31779/73A IT1002008B (en) 1972-11-30 1973-11-28 ORGANIC COMPOSITION CONTAINING ARYLCARBAMATES OF ALCA LINEN METALS
NL7316381A NL7316381A (en) 1972-11-30 1973-11-29
US05/479,739 US3997597A (en) 1972-11-30 1974-06-17 Alkali metal or tetraalkylammonium arylcarbamates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00310752A US3849320A (en) 1972-11-30 1972-11-30 Organic compositions containing alkali metal arylcarbamates

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/479,739 Division US3997597A (en) 1972-11-30 1974-06-17 Alkali metal or tetraalkylammonium arylcarbamates

Publications (1)

Publication Number Publication Date
US3849320A true US3849320A (en) 1974-11-19

Family

ID=23203951

Family Applications (1)

Application Number Title Priority Date Filing Date
US00310752A Expired - Lifetime US3849320A (en) 1972-11-30 1972-11-30 Organic compositions containing alkali metal arylcarbamates

Country Status (5)

Country Link
US (1) US3849320A (en)
JP (1) JPS5052105A (en)
FR (1) FR2208969B3 (en)
IT (1) IT1002008B (en)
NL (1) NL7316381A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126063A (en) * 1990-09-27 1992-06-30 Mobil Oil Corporation Borated hydroxyalkyl esters of dithiocarbamic acids as multifunctional additives for lubricant compositions
US5698498A (en) * 1993-06-28 1997-12-16 The Lubrizol Corporation Hydroxyalkyl dithiocarbamates, their borated esters and lubricants, functional fluids, greases and aqueous compositions containing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1026906B (en) * 1974-12-10 1978-10-20 Snam Progetti PROCEDURE FOR THE PREPARATION OF SALTS OF THE SUBSTITUTED CARBAMIC ACID N

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126063A (en) * 1990-09-27 1992-06-30 Mobil Oil Corporation Borated hydroxyalkyl esters of dithiocarbamic acids as multifunctional additives for lubricant compositions
US5698498A (en) * 1993-06-28 1997-12-16 The Lubrizol Corporation Hydroxyalkyl dithiocarbamates, their borated esters and lubricants, functional fluids, greases and aqueous compositions containing the same

Also Published As

Publication number Publication date
NL7316381A (en) 1974-06-04
FR2208969A1 (en) 1974-06-28
FR2208969B3 (en) 1976-10-08
JPS5052105A (en) 1975-05-09
IT1002008B (en) 1976-05-20

Similar Documents

Publication Publication Date Title
US3400140A (en) Sulfurized oxymolybdenum organophos-phorodithioates and process therefor
US3788993A (en) Lubricating compositions
US3791803A (en) Organic compositions containing n-acyl benzotriazoles
US4744912A (en) Sulfurized antiwear additives and compositions containing same
EP0135981B1 (en) Multifunctional additives
US4162224A (en) Solubilized borates of bis-oxazoline and lubricant compositions containing the same
US3557171A (en) Metal salts of reaction product of an alkyl phenol and an ethyleneamine
US4966721A (en) N-N'-dihydrocarbyl substituted phenylene diamine-derived condensation products as antioxidants and lubricant compositions
US3884822A (en) Lubricant composition containing 3-amidopyridine corrosion inhibitor
US3849320A (en) Organic compositions containing alkali metal arylcarbamates
US4626368A (en) Benzotriazole derivatives and organic compositions containing same
US3997597A (en) Alkali metal or tetraalkylammonium arylcarbamates
US4125472A (en) Lubricant compositions
CA1320214C (en) Lubricant additive comprising mixed hydroxyester of diol/phosphorodithioate-derived borates
US4187186A (en) Lubricant compositions containing esters of benzotriazolecarboxylic acid
US3494866A (en) Molybdenum compounds in lubricants
US4052324A (en) Reaction product of dialkyl alkanephosphonate, substituted imidazoline, and water in lubricant compositions
US4076639A (en) Lubricant compositions
US4599183A (en) Multifunctional additives
US3752765A (en) Dibenzimidazole diurea grease thickening agents
US3125524A (en) Lubricating greases containing salts of
US4025446A (en) Lubricant compositions containing nitrile antiwear additives
US3696036A (en) Organic compositions containing tetraoctyl-(dimethyl-amino) methylene diphosphonate as antiwear agent
US4162225A (en) Lubricant compositions of enhanced antioxidant properties
US3170879A (en) Lubricant