US3847915A - Bis-triazine textile softeners - Google Patents

Bis-triazine textile softeners Download PDF

Info

Publication number
US3847915A
US3847915A US00233343A US23334372A US3847915A US 3847915 A US3847915 A US 3847915A US 00233343 A US00233343 A US 00233343A US 23334372 A US23334372 A US 23334372A US 3847915 A US3847915 A US 3847915A
Authority
US
United States
Prior art keywords
group
compounds
textile material
bis
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00233343A
Inventor
D Bishop
R Morris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OCTROOIMAATSCHAPPIJ OCTROPA IN
Octrooimaatschappij Octropa Int Nv nl
Original Assignee
OCTROOIMAATSCHAPPIJ OCTROPA IN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OCTROOIMAATSCHAPPIJ OCTROPA IN filed Critical OCTROOIMAATSCHAPPIJ OCTROPA IN
Priority to US00233343A priority Critical patent/US3847915A/en
Priority to US05/446,981 priority patent/US3961892A/en
Application granted granted Critical
Publication of US3847915A publication Critical patent/US3847915A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/355Heterocyclic compounds having six-membered heterocyclic rings
    • D06M13/358Triazines

Definitions

  • compositions comprising a class of new chemical compounds which can be applied to a textile material preferably composed of fibres of cellulose, regenerated cellulose or a cellulose ester or ether, to contribute an attractive softening effect.
  • the new compounds possess a hydrophilic solubilising group linked to each of two triazine rings and an average of two hydrophobic groups and two halogen substituents per molecule. After impregnation with the compositions of the invention the compounds are fixed to the textile material by heating at l0O-l50 C.
  • the present invention relates to a class of new chemical compounds and to a process for softening a textile material by the application of a composition comprising these compounds.
  • the textile material usually in the form of yarn or fabric, which can be conditioned by compounds of the present invention consists entirely or partly of fibres having in their molecules free hydroxyl or amino groups or other suitably reactive groups.
  • the textile material is composed of fibres of cellulose, regenerated cellulose or a cellulose ester or ether.
  • the compounds of the invention contain two triazine rings, the carbon atoms of each such ring carrying at least one halogen substituent, which can form a covalent bond with the reactive group in the textile material.
  • the compounds of the present invention when applied to suitable textile materials, contribute a softening effect which is usefully resistant to washing and which is not accompanied by an excessive Water-repellency as found previously.
  • the present invention provides a compound of the general formula V Y I l r WC ⁇ /C--O(A) C /CZ N N (I) in which A represents an ethenoxy; propenoxy; 1,2 or 2,3 butenoxy group or a combination thereof,
  • VWYZ represent halogen, -OH, -NRR or -OR providing that at least one of VW and at least one of Y2 is halogen and at least one of VWYZ is OR or R represents hydrogen or a C C linear or branched chain alkyl group,
  • Ice R represents a C12-c30 linear or branched chain alkyl p, nr: l80.
  • halogen in this specification refers to either chlorine or bromine. It will be further understood that the term O(A) covers a polyethylene glycol, a polypropylene glycol, a polybutylene glycol residue or a copolymer residue containing any combination of ethenoxy, propenoxy or butenoxy units.
  • Preferred compounds possess the following structures:
  • R and R represent a G -C linear or branched chain alkyl group and n is 4-80.
  • the compounds of the present invention are prepared with the aid of a C -C alkylene glycol, a poly C -C alkylene glycol or a derivative thereof which is introduced directly into each of the two triazine rings.
  • the poly C -C alkylene glycol is preferably a polyethylene glycol having a molecular weight ranging from 600-1000 or a copolymer of similar molecular weight containing propylene oxide units together with a majority of ethylene oxide units.
  • the introduction of this intermediate increases the hydrophilic characteristics and reduces the water-repelency characteristics of the reaction product.
  • the softening effect achieved is resistant to repeated washing.
  • the softening elfect of the treated textile material is as sessed subjectively by a skilled panel who compare its handle with the handle of a similar untreated textile material and the handle of a further similar textile material which has been treated with a conventional cationic softener.
  • the above compounds of the present invention diifer from previously proposed compounds in having a hydrophilic solubilising group linked to each of the two triazine rings. These compounds also possess an average of two hydrophobic groups and two halogen substituents per molecule.
  • the ratio of hydrophilic to hydrophobic groups can be selected to give to the compounds the property of dispersibility in water and textile softening without excessive water-repellency.
  • the longer the hydrophilic group (the greater the numerical value of n) the greater the water solubility and the less the water repellency.
  • the water-repellency effect is simply determined by placing a droplet of water on the conditioned textile material and noting the time for complete absorption. Preferably this time should not amount to more than 2 or 3 seconds.
  • the compounds of the present invention are conveniently formed by condensing 2 moles of a cyanuric halide, preferably cyanuric chloride, with 1-l.1 mole of an alkylene glycol, polyalkylene glycol or derivative thereof in the presence of an inert solvent and an acid binding agent.
  • the acid binding agent which neutralises the hydrogen chloride formed during this condensation reaction can be organic (such as pyridine or a tertimy amine base) or inorganic in nature (an alkali metal or alkaline earth metal carbonate, bicarbonate or hydroxide). Condensation conditions are so controlled that substantially only one halogen substituent of the cyanuric halide will react.
  • the reaction product is subsequently further condensed with 2 moles of a suitable amine or alcohol again in the presence of an acid binding agent. If desired, the condensation with the amine or alcohol can be cifected as a first stage.
  • the compounds of the present invention are applied to a textile material (yarn or fabric) in solution form or as a dispersion or emulsion.
  • Water is usually used as a diluent or solvent in forming the composition.
  • Other diluents or solvents which can be used include a chlorinated hydrocarbon such as trichloroethylene.
  • Any member of the conventional ranges of soaps, anionic or nonionic surfactants can be considered as a suitable dispersing agent or emulsifier for these compounds or their solutions.
  • the reactivity of the compounds of the invention with any dispersing agent or emulsifier which contains a primary hydroxyl group should be borne in mind in formulating the compositions for application to the textile material.
  • the dispersions or emulsions may also contain a thickening agent, for example alginic acid or sodium alginate.
  • a thickening agent for example alginic acid or sodium alginate.
  • Other textile finishing agents may also be added to the dispersion or emulsion if required, for example, other softening or lubricating agents, water-repellency agents, anti-static agents, soil release polymers, fungicides or bactericides.
  • the content of the compounds of the invention in the solutions, dispersions or emulsions used for conditioning textile materials can vary within wide limits. If solutions, dispersions or emulsions are prepared for direct application to textile materials they will contain 0.001 to 25 parts of the compound per 100 parts by weight of solution, dispersion or emulsion. With an aqueous or chlorinated hydrocarbon diluent it is advantageous to prepare solutions or dispersions with a high content of the compound, the solution or dispersion being diluted with water before use. Solutions, dispersions or emulsions requiring dilution can contain 5 to 80 parts of the compound per 100 parts by weight of the total composition.
  • the textile material may be impregnated by an immersion, spraying or coating process. It is preferably impregnated by immersion in the solution, emulsion or dispersion of the invention followed by expression to a controlled pick-up on a pad mangle. Typical pick-up of the solution, emulsion or dispersion varies from about 50150% by dry weight of the textile material, depending upon the textile material and the equipment used.
  • the textile material which can be optionally dried, is passed through a bath containing an aqueous solution of an acid binding agent.
  • This bath preferably contains a dilute aqueous solution of sodiumor potassium-carbonate, sodiumor potassium-bicarbonate or sodiumor potassium-hydroxide and has a pH of at least 7.5.
  • the textile material is further impregnated with this solution and dried.
  • the compounds of the invention are fixed by heating the impregnated textile material to -150 C. for a time varying from 30 seconds at C. to 10 minutes at 100 C.
  • the acid binding agents may be included in the impregnating bath with the compound of the invention, fixation being brought about by drying and heating in a similar way.
  • the treating bath or the fixing bath may also contain optical bleaching agents or fibre reactive dyestuiis which can be conveniently applied simultaneously with the compounds of this invention.
  • the textile material After fixation the textile material is normally scoured at the boil in a 12 g./1 non-ionic detergent solution, rinsed and dried.
  • EXAMPLE 2 37 parts cyanuric chloride was dissolved in 365 parts trichloroethylene. 63 parts polyethylene glycol 600 and 21 parts triethylamine were dissolved in 365 parts dry chloroethylene. The polyethylene glycol solution was added to the stirred solution of cyanuric chloride at such a rate that the temperature of the reaction mixture did not rise above 25 C. After the addition had been completed the reaction mixture was stirred for a further hour and then allowed to stand overnight at ambient temperature.
  • Examples '5-10 show that when fabrics are treated with a compound of the present invention, they have a soft handle which is retained after washing, without yellowing or increased soiling properties, at least over 6 washes. Softness is assessed subjectively by a skilled panel who compare the handle of the treated fabrics with the handle of untreated fabric of the same type and with the handle of fabric of the same type which has been treated with conventional cationic softener.
  • EXAMPLE 5 A cotton terry-towelling fabric was impregnated with an aqueous dispersion containing 1 part alpha, omegabis(4-distearylamino, 6-chloro-triazin-2-yl) polyethylene glycol 600 as prepared in Example 1, 1 part of a dispersing agent 2 parts sodium carbonate and 96 parts water. The sample of towelling was squeezed until it contained about 150% by weight of the dispersion based on the dry weight of fabric and subsequently heated at 100 C. for 10 minutes. The heated fabric was then washed at the boil in a solution containing 1 g./ litre of a non-ionic detergent and finally rinsed and dried. The average time taken for water droplets placed on the towelling to be completely absorbed was 2 seconds.
  • EXAMPLE 6 A cotton terry-towelling fabric was treated in an identical manner to that descibed in Example 5 with a dispersion containing 1 part alpha, omego-bis(4-distearylamino, 6-chlorotriazin-2-yl) polyethylene glycol (average mol. wt. 1000), 1 part dispersing agent, 2 parts sodium carbonate and 96 parts water. The heated fabric was subsequently washed, rinsed and dried. The average time taken for water droplets placed on the treated towelling to be completely absorbed was less than 1 second.
  • EXAMPLE 7 100 parts of a solution prepared as described in Example 2 was dispersed in 900 parts aqueous solution containing 3% sodium carbonate and 0.5% sodium stearate. A sample of cotton towelling fabric was wetted out with this dispersion and passed through a mangle to leave 100% of dispersion on weight of fabric. The impregnated towelling was subsequently dried on a pin frame at C. for 5 minutes and washed off at the boil in a solution containing 1 g./litre non-ionic detergent. The treated fabric was subsequently rinsed and dried. The treated fabric had a soft handle which was retained after 15 washes in a drumtype domestic washing machine while untreated towels included in the same washes became extremely harsh.
  • EXAMPLE 8 A cotton terry-towelling fabric was treated by a method as described in Example 5 with alpha, omega-bis(4- tallowyloxy, 6-chloro-triazin 2 yl)-polyethylene glycol 1000 which was prepared by a method as described in Example 4. The average time taken for water droplets placed on the towelling to be completely absorbed was 3 seconds.
  • EXAMPLE 9' A cotton terry-towelling fabric was treated by a method as described in Example 5 with alpha, omega-bis(4- alkoxy, 6-chloro-triazin-2-yl) polyethylene glycol 1000, the alkoxy group being derived from the commercially available linear 0 -0 alcohols sold under the trade name of Alfol 20+, the average time taken for water droplets placed on the towelling to be completely absorbed was less than 1 second.
  • EXAMPLE 10 A cotton terry-towelling fabric was treated by a method as described in Example 5 with alpha, omega-bis(4-monostearylamino, 6-chloro-triazin-2-yl) polyethylene glycol 600. The average time taken for water droplets placed on the towelling to be completely absorbed was less than 1 second.
  • the cotton terry-towelling may be replaced by natural or regenerated cellulosic yarns or fabrics when a similar durable softness property will be obtained.
  • V l C in which A represents a member selected from the group consisting of ethenoxy, propenoxy, 1,2 butenoxy and 2,3 butenoxy groups and mixtures therefore, VWYZ represent members selected from the group consisting of halogen, OH, NRR and OR providing that at least one of VWYZ is selected from the group consisting of -OR and NRR groups, R represents a member selected from the group consisting of hydrogen, 0 -0 linear alkyl and C -C branched chain alkyl groups, R represents a member selected from the group consisting of C C linear and Cu -C branched chain alkyl groups, n 435.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

1. A COMPOUND OF THE FORMULA:

2-((4-W,6-V-S-TRIAZIN-2-YL)-0-(A)N-),4-Z-S-TRIAZINE

IN WHICH A REPRESENTS A MEMBER SELECTED FROM THE GROUP CONSISTING OF ETHENOXY, PROPENOXY, 1,2 BUTENOXY AND 2,3 BUTENOXY GROUPS AND MIXTURES THEREOFRE, VWYZ REPRESENT MEMBERS SELECTED FROM THE GROUP CONSISTING OF HALOGEN, -OH, NRR1 AND -OR1, PROVIDING THAT AT LEAST ONE OF VWYZ IS SELECTED FROM THE GROUP CONSISTING OF -OR1 AND -NRR1 GROUPS, R REPRESENTS A MEMBER SELECTED FROM THE GROUP CONSISTING OF HYDROGEN, C12-C30 LINEAR ALKYL AND C12-C30 BRANCHED CHAIN ALKYL GROUPS, R1 REPRESENTS A MEMBER SELECTED FROM THE GROUP CONSISTING OF C12-30 LINEAR AND C12-C30 BRANCHED CHAIN ALKYL GROUPS, N=4-35.

Description

United States Patent 3,847,915 BIS-TRIAZINE TEXTILE SOFTENERS David Paul Bishop and Ronald Meredith Morris, Wirral,
England, assignors to NV International Octrooimaatschappij Octropa, Rotterdam, Netherlands N0 Drawing. Filed Mar. 9, 1972, Ser. No. 233,343 Int. 'Cl. C07d 55/50 US. Cl. 260-248 CS 4 Claims ABSTRACT OF THE DISCLOSURE This invention relates to compositions comprising a class of new chemical compounds which can be applied to a textile material preferably composed of fibres of cellulose, regenerated cellulose or a cellulose ester or ether, to contribute an attractive softening effect. The new compounds possess a hydrophilic solubilising group linked to each of two triazine rings and an average of two hydrophobic groups and two halogen substituents per molecule. After impregnation with the compositions of the invention the compounds are fixed to the textile material by heating at l0O-l50 C.
The present invention relates to a class of new chemical compounds and to a process for softening a textile material by the application of a composition comprising these compounds.
The textile material, usually in the form of yarn or fabric, which can be conditioned by compounds of the present invention consists entirely or partly of fibres having in their molecules free hydroxyl or amino groups or other suitably reactive groups. Preferably, the textile material is composed of fibres of cellulose, regenerated cellulose or a cellulose ester or ether. The compounds of the invention contain two triazine rings, the carbon atoms of each such ring carrying at least one halogen substituent, which can form a covalent bond with the reactive group in the textile material.
Processes for improving textile characteristics which rely upon the formation of this covalent bond are well known. It has, in particular, been proposed to condition textile yarns and fabrics which compounds containing one triazine ring, the carbon atoms of which carry as substituents two halogen atoms and a residue of a primary or secondary amine bond via the nitrogen atom thereof. An excessive water-repellency is, however, often introduced into the material which has been treated in this way.
The compounds of the present invention, when applied to suitable textile materials, contribute a softening effect which is usefully resistant to washing and which is not accompanied by an excessive Water-repellency as found previously.
Accordingly, the present invention provides a compound of the general formula V Y I l r WC\ /C--O(A) C /CZ N N (I) in which A represents an ethenoxy; propenoxy; 1,2 or 2,3 butenoxy group or a combination thereof,
VWYZ represent halogen, -OH, -NRR or -OR providing that at least one of VW and at least one of Y2 is halogen and at least one of VWYZ is OR or R represents hydrogen or a C C linear or branched chain alkyl group,
3,847,915 Patented Nov. 12, 1974 "Ice R represents a C12-c30 linear or branched chain alkyl p, nr: l80.
The term halogen in this specification refers to either chlorine or bromine. It will be further understood that the term O(A) covers a polyethylene glycol, a polypropylene glycol, a polybutylene glycol residue or a copolymer residue containing any combination of ethenoxy, propenoxy or butenoxy units.
Preferred compounds possess the following structures:
in which R and R represent a G -C linear or branched chain alkyl group and n is 4-80.
(III) wherein 11:4-35 and R represents a G -C linear or branched chain alkyl group.
wherein n=4-35 and R represents a G -C linear or branched chain alkyl group.
The compounds of the present invention are prepared with the aid of a C -C alkylene glycol, a poly C -C alkylene glycol or a derivative thereof which is introduced directly into each of the two triazine rings. The poly C -C alkylene glycol is preferably a polyethylene glycol having a molecular weight ranging from 600-1000 or a copolymer of similar molecular weight containing propylene oxide units together with a majority of ethylene oxide units. The introduction of this intermediate increases the hydrophilic characteristics and reduces the water-repelency characteristics of the reaction product. Furthermore, once the compounds of this invention have been reacted with the free reactive groups in the textile material, the softening effect achieved is resistant to repeated washing. The softening elfect of the treated textile material is as sessed subjectively by a skilled panel who compare its handle with the handle of a similar untreated textile material and the handle of a further similar textile material which has been treated with a conventional cationic softener.
The above compounds of the present invention diifer from previously proposed compounds in having a hydrophilic solubilising group linked to each of the two triazine rings. These compounds also possess an average of two hydrophobic groups and two halogen substituents per molecule. The ratio of hydrophilic to hydrophobic groups can be selected to give to the compounds the property of dispersibility in water and textile softening without excessive water-repellency. In general, the longer the hydrophilic group (the greater the numerical value of n) the greater the water solubility and the less the water repellency. There is an upper limit to the size of the hydrophilic group beyond which softening will diminish. This limit depends on the nature of R and R and occurs when n has a value ranging from 40 to 80.
The water-repellency effect is simply determined by placing a droplet of water on the conditioned textile material and noting the time for complete absorption. Preferably this time should not amount to more than 2 or 3 seconds.
The compounds of the present invention are conveniently formed by condensing 2 moles of a cyanuric halide, preferably cyanuric chloride, with 1-l.1 mole of an alkylene glycol, polyalkylene glycol or derivative thereof in the presence of an inert solvent and an acid binding agent. The acid binding agent which neutralises the hydrogen chloride formed during this condensation reaction can be organic (such as pyridine or a tertimy amine base) or inorganic in nature (an alkali metal or alkaline earth metal carbonate, bicarbonate or hydroxide). Condensation conditions are so controlled that substantially only one halogen substituent of the cyanuric halide will react. The reaction product is subsequently further condensed with 2 moles of a suitable amine or alcohol again in the presence of an acid binding agent. If desired, the condensation with the amine or alcohol can be cifected as a first stage.
The compounds of the present invention are applied to a textile material (yarn or fabric) in solution form or as a dispersion or emulsion. Water is usually used as a diluent or solvent in forming the composition. Other diluents or solvents which can be used include a chlorinated hydrocarbon such as trichloroethylene. Any member of the conventional ranges of soaps, anionic or nonionic surfactants can be considered as a suitable dispersing agent or emulsifier for these compounds or their solutions. However, the reactivity of the compounds of the invention with any dispersing agent or emulsifier which contains a primary hydroxyl group should be borne in mind in formulating the compositions for application to the textile material. The dispersions or emulsions may also contain a thickening agent, for example alginic acid or sodium alginate. Other textile finishing agents may also be added to the dispersion or emulsion if required, for example, other softening or lubricating agents, water-repellency agents, anti-static agents, soil release polymers, fungicides or bactericides.
The content of the compounds of the invention in the solutions, dispersions or emulsions used for conditioning textile materials can vary within wide limits. If solutions, dispersions or emulsions are prepared for direct application to textile materials they will contain 0.001 to 25 parts of the compound per 100 parts by weight of solution, dispersion or emulsion. With an aqueous or chlorinated hydrocarbon diluent it is advantageous to prepare solutions or dispersions with a high content of the compound, the solution or dispersion being diluted with water before use. Solutions, dispersions or emulsions requiring dilution can contain 5 to 80 parts of the compound per 100 parts by weight of the total composition.
It is desirable to obtain a pick-up of the compounds of this invention on the textile material of at least 0.05% by weight of the textile material. The optimum efiect is achieved at about 0.3%.
The textile material (yarns or fabrics) may be impregnated by an immersion, spraying or coating process. It is preferably impregnated by immersion in the solution, emulsion or dispersion of the invention followed by expression to a controlled pick-up on a pad mangle. Typical pick-up of the solution, emulsion or dispersion varies from about 50150% by dry weight of the textile material, depending upon the textile material and the equipment used. After impregnation, the textile material, which can be optionally dried, is passed through a bath containing an aqueous solution of an acid binding agent. This bath preferably contains a dilute aqueous solution of sodiumor potassium-carbonate, sodiumor potassium-bicarbonate or sodiumor potassium-hydroxide and has a pH of at least 7.5. The textile material is further impregnated with this solution and dried.
The compounds of the invention are fixed by heating the impregnated textile material to -150 C. for a time varying from 30 seconds at C. to 10 minutes at 100 C. Alternatively, the acid binding agents may be included in the impregnating bath with the compound of the invention, fixation being brought about by drying and heating in a similar way. The treating bath or the fixing bath may also contain optical bleaching agents or fibre reactive dyestuiis which can be conveniently applied simultaneously with the compounds of this invention.
After fixation the textile material is normally scoured at the boil in a 12 g./1 non-ionic detergent solution, rinsed and dried.
This invention is further illustrated with reference to the following Examples, in which all parts and percentages are by weight.
EXAMPLE 1 Preparation of alpha, omega-bis(4-distearylamino,6- chlorotriazin-2-yl) polyethylene glycol 600 12.2 g. cyanuric chloride (0.066 mole) was dissolved in 50 ml. dry acetone and the solution cooled to 5 C. in an ice/water bath. 20 g. (0.033 mole) polyethylene glycol having an average molecular weight of 600 (referred to henceforth as polyethylene glycol 600) and 8.0 g. collidine (0.066 mole) were dissolved in 50 ml. dry acetone and the solution added dropwise to the cyanuric chloride solution with stirring over a period of 2 hours.
The temperature was slowly raised to ambient, the precipitate of collidine hydrochloride was filtered oif and the acetone solution was evaporated on a rotary evaporator at 30 C. An oily liquid remained (29.0 g., 98% yield) which analysed as: C, 45.5%; H, 6.3%; N, 9.1%; Cl, 14.4%. The desired intermediate, alpha, omega-bis (4,6-di-chloro-triazin-2-yl) polyethylene glycol 600 requires: C, 42.6%; H, 5.7%; N, 9.9%; and Cl, 16.8%.
4.5 g. of the above product (0.005 mole) was dissolved in 20 ml. pure dry chloroform. 5.2 g. distearylamine (0.01 mole) and 1.2 g. collidine (0.01 mole) were dissolved in 20 ml. pure dry chloroform and added dropwise with stirring over a period of 30 minutes at 25 The reaction mixture was then stirred for 2 hours at 35 40 C. and the chloroform then distilled off under vacuum. 50 ml. acetone was added to the residue, the insoluble collidine hydrochloride was filtered off and the acetone subsequently evaporated from the filtrate. The resulting product (8.8 g., 100% yield) analysed as: C, 69.7%; H, 10.4%; N, 6.8%; Cl, 4.7%. Alpha, omega-bis (4-distearylamino,6-chloro-triazin-2-yl) polyethylene glycol 600 requires: C, 67.0%; H, 10.7%; N, 6.4%; Cl, 4.0%.
EXAMPLE 2 37 parts cyanuric chloride was dissolved in 365 parts trichloroethylene. 63 parts polyethylene glycol 600 and 21 parts triethylamine were dissolved in 365 parts dry chloroethylene. The polyethylene glycol solution was added to the stirred solution of cyanuric chloride at such a rate that the temperature of the reaction mixture did not rise above 25 C. After the addition had been completed the reaction mixture was stirred for a further hour and then allowed to stand overnight at ambient temperature.
104 parts distearylamine were added to the reaction mixture together with a solution of 20 parts triethylamine in 730 parts trichloroethylene. The temperature of the reaction mixture was then increased to 55 C. and maintained at this temperature with stirring for 3 hours. The reaction mixture was subsequently cooled to ambient temperature and the precipitate of triethylamine hydrochloride was removed by filtration: The reaction product was recovered in 90% yield as a 17% w./v. solution in trichloroethylene. This solution could conveniently be dispersed in water and applied to textile materials.
EXAMPLE 3 A compound of the general formula (V) where (n+m)=l4 was prepared by the method described in Example 1. 0.066 mole cyanuric chloride was condensed with 0.033 mole of a polypropylene glycol of formula HO(C-HCH CH O),H which had been condensed with 14 moles ethylene oxide. The condensation product EXAMPLE 4 Preparation of alpha, omegabis(4-tallowyloxy, 6-chlorotriazin-Z-yl) polyethylene glycol 600' 9.0 g. alpha, omega-bis(4,6-dichloro-triazin-2-yl) polyethylene glycol 600 (0.01 mole), 5.3 g. hardened tallow alcohol (0.02 mole) and 2.4 g. collidine (0.02 mole) were heated together on the steam bath for 2 hours. The reaction mixture was cooled to ambient temperature and shaken with 50 ml. acetone. The insoluble collidine hydrochloride was filtered otf (3.1 g., 100% yield) and the acetone was evaporated.
Yield=13.4 g. (98.5%
Elemental Analysis.-Found: C, 62.8%; H, 9.8%; N, 6.2%; Cl, 5.5%. Theory: C, 60.3%; H, 9.1%; N,6.5%; Cl, 5.5%.
The following Examples '5-10 show that when fabrics are treated with a compound of the present invention, they have a soft handle which is retained after washing, without yellowing or increased soiling properties, at least over 6 washes. Softness is assessed subjectively by a skilled panel who compare the handle of the treated fabrics with the handle of untreated fabric of the same type and with the handle of fabric of the same type which has been treated with conventional cationic softener.
EXAMPLE 5 A cotton terry-towelling fabric was impregnated with an aqueous dispersion containing 1 part alpha, omegabis(4-distearylamino, 6-chloro-triazin-2-yl) polyethylene glycol 600 as prepared in Example 1, 1 part of a dispersing agent 2 parts sodium carbonate and 96 parts water. The sample of towelling was squeezed until it contained about 150% by weight of the dispersion based on the dry weight of fabric and subsequently heated at 100 C. for 10 minutes. The heated fabric was then washed at the boil in a solution containing 1 g./ litre of a non-ionic detergent and finally rinsed and dried. The average time taken for water droplets placed on the towelling to be completely absorbed was 2 seconds.
EXAMPLE 6 A cotton terry-towelling fabric was treated in an identical manner to that descibed in Example 5 with a dispersion containing 1 part alpha, omego-bis(4-distearylamino, 6-chlorotriazin-2-yl) polyethylene glycol (average mol. wt. 1000), 1 part dispersing agent, 2 parts sodium carbonate and 96 parts water. The heated fabric was subsequently washed, rinsed and dried. The average time taken for water droplets placed on the treated towelling to be completely absorbed was less than 1 second.
EXAMPLE 7 100 parts of a solution prepared as described in Example 2 was dispersed in 900 parts aqueous solution containing 3% sodium carbonate and 0.5% sodium stearate. A sample of cotton towelling fabric was wetted out with this dispersion and passed through a mangle to leave 100% of dispersion on weight of fabric. The impregnated towelling was subsequently dried on a pin frame at C. for 5 minutes and washed off at the boil in a solution containing 1 g./litre non-ionic detergent. The treated fabric was subsequently rinsed and dried. The treated fabric had a soft handle which was retained after 15 washes in a drumtype domestic washing machine while untreated towels included in the same washes became extremely harsh.
EXAMPLE 8 A cotton terry-towelling fabric was treated by a method as described in Example 5 with alpha, omega-bis(4- tallowyloxy, 6-chloro-triazin 2 yl)-polyethylene glycol 1000 which was prepared by a method as described in Example 4. The average time taken for water droplets placed on the towelling to be completely absorbed was 3 seconds.
EXAMPLE 9' A cotton terry-towelling fabric was treated by a method as described in Example 5 with alpha, omega-bis(4- alkoxy, 6-chloro-triazin-2-yl) polyethylene glycol 1000, the alkoxy group being derived from the commercially available linear 0 -0 alcohols sold under the trade name of Alfol 20+, the average time taken for water droplets placed on the towelling to be completely absorbed was less than 1 second.
EXAMPLE 10 A cotton terry-towelling fabric was treated by a method as described in Example 5 with alpha, omega-bis(4-monostearylamino, 6-chloro-triazin-2-yl) polyethylene glycol 600. The average time taken for water droplets placed on the towelling to be completely absorbed was less than 1 second.
In the foregoing Examples 5-10 the cotton terry-towelling may be replaced by natural or regenerated cellulosic yarns or fabrics when a similar durable softness property will be obtained.
What is claimed is:
1. A compound of the formula:
V l C in which A represents a member selected from the group consisting of ethenoxy, propenoxy, 1,2 butenoxy and 2,3 butenoxy groups and mixtures therefore, VWYZ represent members selected from the group consisting of halogen, OH, NRR and OR providing that at least one of VWYZ is selected from the group consisting of -OR and NRR groups, R represents a member selected from the group consisting of hydrogen, 0 -0 linear alkyl and C -C branched chain alkyl groups, R represents a member selected from the group consisting of C C linear and Cu -C branched chain alkyl groups, n=435.
2. The compound according to Claim 1, in which A represents an ethenoxy group, V and Y represent a 7 chlorine atom, W and Z represent the group NRR wherein R and R represent a member selected from the group consisting of (I -C linear alkyl and G -C branched chain alkyl groups and n=4-35.
3. The compound according to Claim 1, in which A respresents an ethenoxy group, V and Y represent a chlorine atom, W and I represent the group -NHR wherein R represents a member selected from the group consisting of O -C linear alkyl and G -C branched chain alkyl groups and n=435.
4. The compound according to Claim 1, in which A represents an etheno xy group, V and Y represent a chlorine atom, W and Z represent the group -OR R represents a member selected from the group consisting of G -C linear alkyl groups and C -C branched chain alkyl groups and rz=435.
8 References Cited UNITED STATES PATENTS 3,454,551 7/1969 Mangini et a1. 260248 X 3,651,056 3/1972 Muruyama et a1. 260249.8 2,202,828 6/1940 Bruson 2 6024 9.8
FOREIGN PATENTS 1,085,492 1/1958 West Germany. 10 1,077,885 8/1967 Great Britain.
JOHN M. FORD, Primary Examiner US. Cl. X.R.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,847,915 Dated November 12, 1974 n David Paul Bishop and Ronald Meredith Morris It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 1, after line 6, add the following:
-Claims priority application Great Britain,
March 18, 1971, 7l79/7l--.
Signed and sealer.- this 22nd day of April 1975.
(33-21. attest Commissioner of. Patents and Trademarks RUTH C. 313x30}? -attesting Officer F ORM PO-lOSO (10-69) USCOMM-DC 60376-F'69 u.s. eovnnnzu'r PRINTING OFFICE mu o-sse-au

Claims (1)

1. A COMPOUND OF THE FORMULA:
US00233343A 1971-03-18 1972-03-09 Bis-triazine textile softeners Expired - Lifetime US3847915A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00233343A US3847915A (en) 1972-03-09 1972-03-09 Bis-triazine textile softeners
US05/446,981 US3961892A (en) 1971-03-18 1974-02-28 Textile softening agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00233343A US3847915A (en) 1972-03-09 1972-03-09 Bis-triazine textile softeners

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/446,981 Division US3961892A (en) 1971-03-18 1974-02-28 Textile softening agents

Publications (1)

Publication Number Publication Date
US3847915A true US3847915A (en) 1974-11-12

Family

ID=22876842

Family Applications (1)

Application Number Title Priority Date Filing Date
US00233343A Expired - Lifetime US3847915A (en) 1971-03-18 1972-03-09 Bis-triazine textile softeners

Country Status (1)

Country Link
US (1) US3847915A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962241A (en) * 1973-07-31 1976-06-08 U.S. Philips Corporation Light-sensitive polymeric compounds
US4069380A (en) * 1975-09-24 1978-01-17 Imperial Chemical Industries Limited Triazine compositions
US4082556A (en) * 1973-07-31 1978-04-04 U.S. Philips Corporation Light-sensitive polymeric compounds
US4187377A (en) * 1977-06-17 1980-02-05 Asahi Glass Company, Ltd. Halogen-containing s-triazine compound
JP2000290264A (en) * 1999-03-03 2000-10-17 Ausimont Spa Fluorinated triazine compound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962241A (en) * 1973-07-31 1976-06-08 U.S. Philips Corporation Light-sensitive polymeric compounds
US4082556A (en) * 1973-07-31 1978-04-04 U.S. Philips Corporation Light-sensitive polymeric compounds
US4069380A (en) * 1975-09-24 1978-01-17 Imperial Chemical Industries Limited Triazine compositions
US4187377A (en) * 1977-06-17 1980-02-05 Asahi Glass Company, Ltd. Halogen-containing s-triazine compound
JP2000290264A (en) * 1999-03-03 2000-10-17 Ausimont Spa Fluorinated triazine compound

Similar Documents

Publication Publication Date Title
US3854871A (en) Textile cleaning process for simultaneous dry cleaning and finishing with stain repellent
JPS6124557A (en) Fluorochemical allophanate
US4014857A (en) Fluorinated oily soil release agents
US3775051A (en) Surfactants for solvent/water systems and textile treating compositions
US7858539B2 (en) Processes for generating halamine compounds on textile substrates to produce antimicrobial finish
US3595886A (en) Novel fluorocarbon derivatives
US2304113A (en) Treated textile product
US4281196A (en) Quaternary ammonium compounds, their preparation, and their use as softening agents
US3847915A (en) Bis-triazine textile softeners
US3961892A (en) Textile softening agents
US3510494A (en) Certain perfluoro alkanamido-,perfluoro alkanoyloxy-,perfluoroalkyloxy and perfluoro mercapto - quaternary ammonium compounds,the corresponding pyridinium compounds and derivatives thereof
US2956898A (en) Certification of correction
AU656527B2 (en) A method for the treatment of wool
US3510247A (en) Modification of cellulosic materials with tertiary bis-acrylamides
US3772292A (en) N-hydroxymethyl compounds,compositions containing such compounds and cellulose-containing textile materials treated therewith
US3468697A (en) Method of treating textile articles which are usually laundered
US4195105A (en) Fluorinated polyalkylene polyamides as stain repellents
US3510246A (en) Treatment of cellulosic fibers with certain quaternary ammonium compounds
US3510248A (en) Treatment of cellulosic fibers with certain chloroamines and chloroquaternaries
JPS62174042A (en) Di-quaternary ammonium salt, manufacture and use as fiber finisher
US3639296A (en) Antistatic compositions and method of rendering textiles antistatic
US3510452A (en) Antistatic materials
US3896088A (en) Fluorinated oily soil release agents
US2926062A (en) Water repellent compositions, products and processes for making same
US3766083A (en) Fluorescent whitening compositions