US3847606A - Protecting photoconductor surfaces - Google Patents

Protecting photoconductor surfaces Download PDF

Info

Publication number
US3847606A
US3847606A US00339084A US33908473A US3847606A US 3847606 A US3847606 A US 3847606A US 00339084 A US00339084 A US 00339084A US 33908473 A US33908473 A US 33908473A US 3847606 A US3847606 A US 3847606A
Authority
US
United States
Prior art keywords
polyurethane
photoconductive
coating
percent
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00339084A
Inventor
L Schwartz
G Spiegel
L Hecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pitney Bowes Inc
Original Assignee
Pitney Bowes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pitney Bowes Inc filed Critical Pitney Bowes Inc
Priority to US00339084A priority Critical patent/US3847606A/en
Priority to CA194,290A priority patent/CA1027000A/en
Priority to AU66388/74A priority patent/AU474532B2/en
Priority to GB1058474A priority patent/GB1458617A/en
Priority to JP2641274A priority patent/JPS5724541B2/ja
Priority to DE2411178A priority patent/DE2411178A1/en
Application granted granted Critical
Publication of US3847606A publication Critical patent/US3847606A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14747Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14769Other polycondensates comprising nitrogen atoms with or without oxygen atoms in the main chain

Definitions

  • This invention relates to xerography and electrophotography and more particularly to a method and composition for protecting and stabilizing the photoconductive insulating materials employed in connection therewith.
  • an electrostatic latent image on a member or plate which comprises a substantially electrically conductive backing member such as, for example,*a paper or metallic memher having a photoconductive insulating material applied to the surface thereof.
  • a suitable electrostatic image forming member for xerographic purposes is an electrically conductive backing member, for example, metal, which may be employed in the form of a sheet, drum or belt, having applied to the surface thereof, a photoconductive material, for example, selenium, inorganic materials, such as cadmium sulfo-selenide, cadmium sulfide, zinc oxide and mixtures thereof; organic materials such as complexed poly-N-vinyl carbazole, and other like photoconductive materials useful for such purpose.
  • These electrostatic image forming members are characterized by being capable of receiving electrostatic charge and selectively dissipating such charge when exposed to a light pattern.
  • our invention comprises the application to the photoconductive surface of an electrostatic image forming member, of a thin uniform coating of polyurethane to provide positive protection against abrasion and contamination.
  • the photoconductive surface of electrostatic image fonning members can' be protected from abrasion and contamination by the application thereto of a thin, uniform coating of a polyurethane.
  • the polyurethane coating which may be satisfactorily employed in the practice of this invention must have'a very high resistance to abrasion.
  • the polyurethane must have low surface leakage properties as indicated by a high dielectric strength and surface resis- 1 tance, so that the applied electrical charges will not be I dissipated by bypassing of the underlying photoconductive material.
  • the total surface leakage of the polyure thanes which are useful in the practice of this invention may be determined in the same manner as is done for photoconductors, i.e., a thin coating of the polyure-' thane, about 1 mil or less, is tested for charge acceptance.
  • the polyurethane when the polyurethane is tested by being charged in a Victoreen Electrostatic Paper Analyzer the polyurethane must accept a charge equivalent to at least 1,000 volts/mil of thickness and preferably at least 1,500 volts/mil, to yield satisfactory results hereunder.
  • the polyurethane coating must be inert to the photoconductive material upon which it is to be applied and must have good adhesion properties which will permit its permanent bonding to the photoconductive surface on which it is applied.
  • the adhesion properties of the polyurethane must provide a uniform coating and help prevent air pockets or other surface irregularities which could interfere with the photoconductive properties of the image forming member.
  • the polyurethane coating must have fast air drying properties to permit facile coating thereof on the photoconductive surface. In the practice of this invention we have found that a polyurethane capable of being cured by solvent evaporation provides satisfactory results. I
  • the electrically conductive backing member which may be employed in the electrostatic latent image forming member useful in the practice of the instant invention may be comprised of any material that has been previously found. to be satisfactory in the practice of xerography. Included among the electrically conductive materials whichmay be employed in the practice of this invention are metals, for example, aluminum or brass, conductive paper, graphitized Mylar, metallized Mylar and other like material.
  • the photoconductive insulating materials which may be satisfactorily employed in the practice of this invention are those photoconductive materials which have heretofore been so employed in the practice of xerography and which may be satisfactorily applied on the electrically conductive backing materials.
  • the photoconductive materials which may be employed in the practice of the instant invention are such materials as selenium, cadmium sulfo-selenide, cadmium sulfide, zinc oxide, poly-N-vinyl carbazole and other like materials.
  • a mixture of cadmium sulfo-selenide/zinc oxide is both protected and electrically stabilized by a thin, uniform coating of polyurethane.
  • the polyurethane protective coating employed in the practice of this invention must have the physical properties set forth hereinabove. In addition, we have found that satisfactory results are obtained when the polyurethane coating employed is possessed of a charge acceptance of at least 1,000 volts/mil of thickness. In the preferred practice of the instant invention, we have found that most satisfactory results are obtained when a polyurethane having a charge acceptance of at least 1,500 volts/mil is employed. The successful practice of this invention is dependent upon the characteristics and properties of the polyurethane employed and although many polyurethanes were tested it was unexpectedly found that only the polyurethanes possessing the specific properties set forth hereinabove provided satisfactory results.
  • the polyurethane protective coating must be applied to the photoconductive surface in such a manner as to avoid adversely affecting the photoconductive properties thereof.
  • the thickness of the polyurethane coating must be controlled to avoid masking the photoconductive response to the underlying photoconductive material, while at the same time providing a coating which is thick enough to provide the required protection.
  • satisfactory results are obtained when the coating is applied in a uniform thickness of from about 0.02 to about 01 mils; and preferably when the coating was applied uniformly in a thickness of from about 0.04 to about 0.08 mils.
  • the polyurethane coating may be applied in any manner which is known and convenient to the skilled worker, for example, spraying, painting, Mayer rod, doctor blade or reverse roller applicators, which will provide a uniform coating of the polyurethane in the required thickness.
  • solvents employed in the application of the polyurethane coating to the photoconductive surface so as to avoid interaction of the solvents with the underlying photoconductive materials or binders which may have been employed in connection therewith.
  • Satisfactory solvents which we have found to be employable in connection with the polyurethane coating material of this invention include such solvents as isopropanol, cellosolve acetate and methyl ethyl ketone. although other solvents may be employed as may be de-, termined by the worker skilled in the art.
  • the photoconductor composition should comprise a binder having a mixed pigment therein of from 20 percent to percent of cadmium sulfo-selenide and from 30 percent to percent zinc oxide by weight of total pigment.
  • the mole fraction ratio of selenium to selenium plus sulfur in the cadmium sulfo-selenide should be from 0.05 to 0.7 e.g. where n equals the number of atoms of sulfur and selenium the ratio (n(Se)/n(S)+n(Se)) is from 0.05 to 0.7.
  • Table A shows the necessity for particularly protecting the surface of a cadmium sulfo-selenide/zinc oxide photoconductor from bumishing.
  • the effects of burnishing were simulated by rubbing the surfaces with cotton.
  • Table A indicates that the mixed CdSSe/ZnO photoconductor shows a significant reduction in acceptance voltage as compared to either of the constituents when CdSSe and ZnO Crushed Together and ZnO particles interact when the surface is abraded.
  • Table B below illustrates the effects of changing the pigmentto binder ratio (P/B) and CdSSe/ZnO ratio.
  • EXAMPLE 1 A polyurethane resin having a charge acceptance of in excess of 1,500 volts/mil of thickness (commercially available from Cargill Co. as a percent solution under the designation Cargill-X-l 5 I 3-30" an aliphatic type urethane having a molecular weight of from 23,000 to 25,000) was-applied to the surface of a cadmium sulfo-selenide/zinc oxide mixed pigment photoconductor in different thicknesses of from 0.04 to 0.08 mils by diluting the polyurethane to various solid concentrations before coating. The higher the percentage of solids, the thicker the coating. The control had no top coating at all.
  • the respective photoconductor propv erties were measured by employment of a modified Victoreen Electrostatic Paper Analyzer and the results thereof are set forth in TableD below:
  • the pigment to binder ratio was 6:1 with a solvent t binder ratio of 7:1 for a total solids content of about 50 percent, of which the pigments were in the ratio of percent CdSSe and 75 percent ZnO by weight.
  • the photoconductive belt was installed in a commercial xerographic copier and'run for 2,500 copies with no'change in copy quality.
  • Example 1V The procedure of Example 1 was followed except that the photoconductive underlying material was poly-nvinyl carbazole/trinitrofluorenone complexed organic photoconductor.
  • Example v The procedure of Example I was followed except that the underlying photoconductor material employed was amorphous selenium. Equivalent results to those obtained in Example IV were experienced with the amorphous selenium photoconductor.
  • EXAMPLE 111 Another photoconductive belt was made using the same method as in Example 11 with the following changes.
  • a protective top coat both protects and stabilizes xerographic photoconductors, and particularly the mixture of cadmium sulfo-selenide and photoconductive zinc oxide as a photoconductor. It will also be seen that the top coating should have a charge acceptance of at least 1,000 volts per mil of top coat thickness and preferably 1,500 volts per mil.
  • the viscosity of the dispersion was The invention may be variously otherwise embodied.
  • composition defined in claim 1 wherein the polyurethane coating has a charge acceptance of at least 1,000 volts/mil of thickness.
  • composition defined in claim 1 wherein the polyurethane coating has a charge acceptance of at least 1,500 volts/mil of thickness.
  • said polyurethane coating having a charge acceptance of at least 1000 volts per mil of thickness.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

A method and composition for protecting the surface of photoconductors which are employed in electrophotography and xerography which comprises coating the photoconductor surface with a thin uniform layer of a polyurethane material to protect and stabilize the photoconductive properties of the photoconductor. The polyurethane layer should have a charge acceptance of at least 1,000 volts.

Description

United States Patent [191 Schwartz et al.
1451 Nov. 12, 1974 PROTECTING PHOTOCONDUCTOR SURFACES Inventors: Leon J. Schwartz, Monsey, N.Y.;
Gerald M. Spiegel, Jr., Bridgeport; Leon N. Hecht, Jr., Stamford, both of Conn.
Assignee: Pitney-Bowes, Inc., Stamford, Conn.
Filed: Mar. 8, 1973 1 Appl. No.: 339,084
US. Cl. 96/l.5, 96/1.8 Int. Cl G03g 5/04 Field of Search 96/1, 1.5, 1.8;
References Cited UNITED STATES PATENTS 7/1964 Clark 96/l.8
2,860,048 11/1958 Deubner 96/15 3,743,609 7/1973 Hirata 96/15 3,682,632 8/1972 Fumiaki 96/1.5 3,726,838 4/1973 Eimer 117/161 KP Primary ExaminerDavid Klein Assistant Examiner-John L. Goodrow Attorney, Agent, or FirmWilliam D. Soltow, .lr.; Albert W. Scribner; Peter Vrahotes [57] ABSTRACT 8 Claims, N0 Drawings PROTECTING PI-IOTOCONDUCTOR SURFACES BACKGROUND OF THE INVENTION This invention relates to xerography and electrophotography and more particularly to a method and composition for protecting and stabilizing the photoconductive insulating materials employed in connection therewith.
In the art of xerography, it is usual to form an electrostatic latent image on a member or plate which comprises a substantially electrically conductive backing member such as, for example,*a paper or metallic memher having a photoconductive insulating material applied to the surface thereof. It has previously been found that a suitable electrostatic image forming member for xerographic purposes is an electrically conductive backing member, for example, metal, which may be employed in the form of a sheet, drum or belt, having applied to the surface thereof, a photoconductive material, for example, selenium, inorganic materials, such as cadmium sulfo-selenide, cadmium sulfide, zinc oxide and mixtures thereof; organic materials such as complexed poly-N-vinyl carbazole, and other like photoconductive materials useful for such purpose. These electrostatic image forming members are characterized by being capable of receiving electrostatic charge and selectively dissipating such charge when exposed to a light pattern.
In the practice of the art of xerography, employing such electrostatic imageforming members as hereinabove described, it has been found that said electrostatic image forming members suffer from various disadvantages. It has been found that handling of the light sensitive surface has a tendency to cause contamination thereof and the subsequent image reproduction capabilities of the member are adversely affected. In addition, the xerographic process is inherently abrasive to the surface of the image forming members employed which results in a wearing out of the photoconductive surface requiring frequent replacement of the image forming member.
Specifically, although there are some materials which are known to possess satisfactory photoconductive properties, they have not heretofore been capable of use in xerographic processes, and especially xerographic copying machines because of their high susceptibility to the abrasive wear encountered in the operation of such machines. For example, U.S. Pat. No. 3,658,523 discloses a cadmium sulfo-selenide/zinc oxide photo-conductor composition which cannot be employed in xerographic copying machines for this reason.
' Further, it has been found that superior xerographic results are obtained when a magnetic brush toning process is employed for image reproduction. However, this magnetic brush toner process is highly abrasive to the photoconductive surface of the image forming member resulting in xerographic reproductions of inferior quality and frequent replacement of the image forming member.
Attempts have been made to protect the surface of photoconductors, all with limited success. For example, overcoating of photoconductors has been suggested in Dessauer et al, U.S. Pat. No. 2,901,348; Deubner, U.S. Pat. No. 2,860,048; Kensella, U.S. Pat. No. 3,146,145 and Petruzella, U.S. Pat. No. 3,617,265. These prior art attempts have had limited success for a number of reasons. Initially, they are not universally applicable to the variety of photoconductive materials with which they are employed, either because of incompatability of the materials in their physical or chemical relationship or because inapplicability of the process employed in obtaining the desired protected photoconductor member. One manifestation of this latter disadvantage of the prior art teachings can be seen from a study of the process disclosed in U.S. Pat. No. 3,617,265 wherein a heating-quenching process is employed in preparing the desired protected photoconductor member. The application of such a process to various photoconductive materials having binders of organic resin materials, a widely employed practice, will result in a basic and detrimental alteration of the photoconductive member and its photoconductive properties.
We have now discovered a method of producing an electrostatic image forming member useful in the practice of xerography which overcomes the problems heretofore experienced with prior art image forming members which were susceptible to surface abrasion and contamination. More particularly, we have discovered a method whereby the abrasion susceptible surface of the photoconductive material employed in the electrostatic image forming member of the xerographic process may be protected which also tends to stabilize the photoconductive properties thereof.
SUMMARY OF THE INVENTION In general, our invention comprises the application to the photoconductive surface of an electrostatic image forming member, of a thin uniform coating of polyurethane to provide positive protection against abrasion and contamination. Specifically, we have found that the photoconductive surface of electrostatic image fonning members can' be protected from abrasion and contamination by the application thereto of a thin, uniform coating of a polyurethane.
The polyurethane coating which may be satisfactorily employed in the practice of this invention must have'a very high resistance to abrasion. In addition, the polyurethane must have low surface leakage properties as indicated by a high dielectric strength and surface resis- 1 tance, so that the applied electrical charges will not be I dissipated by bypassing of the underlying photoconductive material. The total surface leakage of the polyure thanes which are useful in the practice of this inventionmay be determined in the same manner as is done for photoconductors, i.e., a thin coating of the polyure-' thane, about 1 mil or less, is tested for charge acceptance. We have found that when the polyurethane is tested by being charged in a Victoreen Electrostatic Paper Analyzer the polyurethane must accept a charge equivalent to at least 1,000 volts/mil of thickness and preferably at least 1,500 volts/mil, to yield satisfactory results hereunder.
DETAILED DESCRIPTION OF THE INVENTION The polyurethane coating must be inert to the photoconductive material upon which it is to be applied and must have good adhesion properties which will permit its permanent bonding to the photoconductive surface on which it is applied. The adhesion properties of the polyurethane must provide a uniform coating and help prevent air pockets or other surface irregularities which could interfere with the photoconductive properties of the image forming member. In addition to the foregoing, the polyurethane coating must have fast air drying properties to permit facile coating thereof on the photoconductive surface. In the practice of this invention we have found that a polyurethane capable of being cured by solvent evaporation provides satisfactory results. I
The electrically conductive backing member which may be employed in the electrostatic latent image forming member useful in the practice of the instant invention may be comprised of any material that has been previously found. to be satisfactory in the practice of xerography. Included among the electrically conductive materials whichmay be employed in the practice of this invention are metals, for example, aluminum or brass, conductive paper, graphitized Mylar, metallized Mylar and other like material.
The photoconductive insulating materials which may be satisfactorily employed in the practice of this invention are those photoconductive materials which have heretofore been so employed in the practice of xerography and which may be satisfactorily applied on the electrically conductive backing materials. Among the photoconductive materials which may be employed in the practice of the instant invention are such materials as selenium, cadmium sulfo-selenide, cadmium sulfide, zinc oxide, poly-N-vinyl carbazole and other like materials. In particular, we have found that a mixture of cadmium sulfo-selenide/zinc oxide is both protected and electrically stabilized by a thin, uniform coating of polyurethane.
The polyurethane protective coating employed in the practice of this invention must have the physical properties set forth hereinabove. In addition, we have found that satisfactory results are obtained when the polyurethane coating employed is possessed of a charge acceptance of at least 1,000 volts/mil of thickness. In the preferred practice of the instant invention, we have found that most satisfactory results are obtained when a polyurethane having a charge acceptance of at least 1,500 volts/mil is employed. The successful practice of this invention is dependent upon the characteristics and properties of the polyurethane employed and although many polyurethanes were tested it was unexpectedly found that only the polyurethanes possessing the specific properties set forth hereinabove provided satisfactory results.
The polyurethane protective coating must be applied to the photoconductive surface in such a manner as to avoid adversely affecting the photoconductive properties thereof. We have found that the thickness of the polyurethane coating must be controlled to avoid masking the photoconductive response to the underlying photoconductive material, while at the same time providing a coating which is thick enough to provide the required protection. We have found that satisfactory results are obtained when the coating is applied in a uniform thickness of from about 0.02 to about 01 mils; and preferably when the coating was applied uniformly in a thickness of from about 0.04 to about 0.08 mils.
The polyurethane coating may be applied in any manner which is known and convenient to the skilled worker, for example, spraying, painting, Mayer rod, doctor blade or reverse roller applicators, which will provide a uniform coating of the polyurethane in the required thickness. In addition, care must be exercised in the use of solvents employed in the application of the polyurethane coating to the photoconductive surface so as to avoid interaction of the solvents with the underlying photoconductive materials or binders which may have been employed in connection therewith. Satisfactory solvents which we have found to be employable in connection with the polyurethane coating material of this invention include such solvents as isopropanol, cellosolve acetate and methyl ethyl ketone. although other solvents may be employed as may be de-, termined by the worker skilled in the art. I
The effects of mechanical wear and bumishing have been found to be particularly pronounced with the use of a mixed pigment photoconductor system of cadmium sulfo-selenide and photoconductive zinc oxide. As set forth in copending application Ser. No. l34,730 and assigned to the assignee of this application, the photoconductor composition should comprise a binder having a mixed pigment therein of from 20 percent to percent of cadmium sulfo-selenide and from 30 percent to percent zinc oxide by weight of total pigment. The mole fraction ratio of selenium to selenium plus sulfur in the cadmium sulfo-selenide should be from 0.05 to 0.7 e.g. where n equals the number of atoms of sulfur and selenium the ratio (n(Se)/n(S)+n(Se)) is from 0.05 to 0.7.
When a photoconductive insulating composition of cadmium sulfo-selenide/zinc oxide is used in a xerographic machine without a top coating there are substantial changes in the electrical properties of the photoconductor which reduce its useful life below commercially acceptable levels. With a thin top coating of a polyurethane having a charge acceptance of at least 1,000 volts per mil of thickness, however, the photoconductor is commercially usable.
Table A shows the necessity for particularly protecting the surface of a cadmium sulfo-selenide/zinc oxide photoconductor from bumishing. The effects of burnishing were simulated by rubbing the surfaces with cotton.
Table A indicates that the mixed CdSSe/ZnO photoconductor shows a significant reduction in acceptance voltage as compared to either of the constituents when CdSSe and ZnO Crushed Together and ZnO particles interact when the surface is abraded.
Table B below illustrates the effects of changing the pigmentto binder ratio (P/B) and CdSSe/ZnO ratio.
TABLE B Fraction of Acceptance Voltage Remaining Aftcr Burnishing Table C below illustrates the mechanism of burnishing by simulating particle interaction by crushing the dry pigment powders before formulating.
' TABLE ,c
This invention is illustrated by the following examples.
, EXAMPLE 1 A polyurethane resin having a charge acceptance of in excess of 1,500 volts/mil of thickness (commercially available from Cargill Co. as a percent solution under the designation Cargill-X-l 5 I 3-30" an aliphatic type urethane having a molecular weight of from 23,000 to 25,000) was-applied to the surface of a cadmium sulfo-selenide/zinc oxide mixed pigment photoconductor in different thicknesses of from 0.04 to 0.08 mils by diluting the polyurethane to various solid concentrations before coating. The higher the percentage of solids, the thicker the coating. The control had no top coating at all. The respective photoconductor propv erties were measured by employment of a modified Victoreen Electrostatic Paper Analyzer and the results thereof are set forth in TableD below:
Acceptance Voltage I Sample Range (Volts) (fc CdSSe 625 720 0.24 0.32 Crushed CdSSe 615 630 0.33 0.43 CdSSe ZnO 575 580 0.13 0.19 Crushed CdSSe ZnO 590 630 0.19 0.26 CdSSe Crushed ZnO 510 555 0.10 0.17
Crushed CdSSe Crushed ZnO 485 .540
. TABLE D (fcs) (avg.)
It is indicated from Table C that simple mechanical action alone on the CdSSe does not account for the significant differences observed, as is the case when the much harder ZnO particles abrade the surface of the CdSSe particles in the mixed pigment system. Lubricants such as diphenylamine and clay addedto the mixture have somewhat helped resistance to bumishing by reducing the interaction of the particles, but top coating with a thin layer of polyurethane provides more effective protection. In the above example there was no evidence of increased dark decay as a result of crushing. This is very evident in burnished coatings and probably operates by electrostatic charge injection into the binder surface as a result of friction. A thin uniform top coating of polyurethane in accordance with the present invention provides positive protection against h ffe s, i
The materials of Table D were then subjected to 2500 cycles of simulated magnetic brush bumishing and were again tested producing the results set forth in Table B below.
EXAMPLE n A photoconductive test belt was made using the following formulation for the photoconductor composi: tion:
Pigments 90 gms, CdSSe (Dark Red pigment available from Ferro' Corp. containing a Se/S+Se mole fraction ratio of 0.36 270 gms, ZnO (Photox 801 from New Jersey Zinc Cu) v I Binder 133.4' gms 45 percent polyurethane '(Estane 5715 from B. F. Goodrich) solution in methyl ethyl ketone. r I Solvents 136.6 gms methyl ethyl ketone and 1 210.0 gms methyl isobutyl ketone. t The pigment to binder ratio was 6:1 with a solvent t binder ratio of 7:1 for a total solids content of about 50 percent, of which the pigments were in the ratio of percent CdSSe and 75 percent ZnO by weight.
Because of the limited wetability of the pigments by the polyurethane binder solution the following was done to produce a smooth dispersion: 1. The 90 gms CdSSe, 136.6 gms methyl ethyl ketone, 2l0 gms methyl isobutyl ketone and 5 gms polyurethane/methyl ethyl ketone solution were milled for four minutes in a Kady mill. 2. The 270 gms of ZnO and 5 more gms polyurethane/methyl 1 ethyl ketone solution were-added to the above'and Kady milled for 5 more minutes. 3. The remaining (123.4 gms) polyurethane/methyl ethyl ketone solution was added to the above and Kady milled for 5 more minutes. 4. The above mixture was then charged into aball' mill, milled for 30 minutes and filtered twicethrough cheesecloth. A A
. 8 1. A CdSSe Maroon pigment from Ferro Corp. containing 'Se in a mole ratio of 0.51 Se to Se+S was used instead of the Dark Red pigment. 2. Pigments were in the ratio 35 percent CdSSe to 65 about 1500 cps after 1.5 hours of ball milling. Coating and top coating were accomplished in the same way as in Example 11, poly-N-vinyl in a final coming thickness of 2.0 mils. The photoconductive belt was installed in a commercial xerographic copier and'run for 2,500 copies with no'change in copy quality.
EXAMPLE 1V The procedure of Example 1 was followed except that the photoconductive underlying material was poly-nvinyl carbazole/trinitrofluorenone complexed organic photoconductor. The photoconductive: properties of the image forming member were not adversely affected.
while the reuse capacity of the photoconductor was increased significantly.
EXAMPLE v The procedure of Example I was followed except that the underlying photoconductor material employed was amorphous selenium. Equivalent results to those obtained in Example IV were experienced with the amorphous selenium photoconductor.
EXAMPLE Vl A comparative test was run to demonstrate the satis factory resultsobtained with the polyurethanes of'the instant invention. A polyurethane whichhas a chargev acceptance of less than 1,000 volts/mil, (and is available from the K1 Quinn Co. under the designation Quinn 2780") was subjected to the same procedures as set forth in Example 1. The results obtained are set (fcs) (avg) Polyurethane diluted 10:
The above procedure yielded a very smooth dispersion with a viscosity of about 2,000 cps after wetting out over night. After filtering again through cheesecloth the above dispersion was coated onto a metallized Mylar belt using a laboratory knife coater. After air drying for one-half hour, a top coat of Cargill-X1513- 30 polyurethane solution diluted to 11.5 percent solids was applied using the same coating technique. The resulting coating was very smooth to the touch and had an average thickness-of 1.7 mils.
After air drying over night the belt was installed in a commercial xerographic copying machine and successfully made 13,000 high contrast copies.
EXAMPLE 111 Another photoconductive belt was made using the same method as in Example 11 with the following changes.
1t will thus be seen from the above that a protective top coat both protects and stabilizes xerographic photoconductors, and particularly the mixture of cadmium sulfo-selenide and photoconductive zinc oxide as a photoconductor. It will also be seen that the top coating should have a charge acceptance of at least 1,000 volts per mil of top coat thickness and preferably 1,500 volts per mil.
having a mixture of cadmium sulfoselenide and photoconductive zinc oxide for electrostatic imaging and a thin, uniform top coating of polyurethane having a thickness from 0.02 to 0.1 mil closely bonded to and substantially over the entire surface of said photoconductive insulating material.
percent ZnO. 3. The viscosity of the dispersion was The invention may be variously otherwise embodied.
2. The composition defined in claim 1 wherein the polyurethane coating has a charge acceptance of at least 1,000 volts/mil of thickness.
3. The composition defined in claim 1 wherein the polyurethane coating has a charge acceptance of at least 1,500 volts/mil of thickness.
a. wherein the proportion of cadmium sulfoselenide is 20 percent to percent and the proportion of zinc oxide is 30 percent to percent by weight of total pigment; and
C. a thin uniform top coating of polyurethane is adhered to said composition,
1. said polyurethane coating having a charge acceptance of at least 1000 volts per mil of thickness.
6. The xerographic plate defined in claim 5 wherein said binder is polyurethane.
7. The xerographic plate defined in claim 5 wherein said polyurethane coating has a thickness of from 0.02 to 0.1 mil.
8. The xerographic plate defined in claim Swherein the mole fraction ratio of selenium to sulfur in said cadmium sulfo-selenide is from 0.05 to 0.7.

Claims (9)

1. A PHOTOCONDUCTIVE INSULATING COMPOSITION COMPRISING A LAYER OF PHOTOCONDUCTIVE INSULATING MATERIAL HAVING A MIXTURE OF CADMIUM SULFOSELENIDE AND PHOTOCONDUCTIVE ZINC OXIDE FOR ELECTROSTATIC IMAGING AND A THIN, UNIFORM TOP COATING OF POLYURETHANE HAVING A THICKNESS FROM 0.02 TO 0.1 MIL CLOSELY BONDED TO AND SUBSTANTIALLY OVER THE ENTIRE SURFACE OF SAID PHOTOCONDUCTIVE INSULATING MATERIAL.
2. a pigment comprising a mixture of cadmium sulfo-selenide and photoconductive zinc oxide, a. wherein the proportion of cadmium sulfo-selenide is 20 percent to 70 percent and the proportion of zinc oxide is 30 percent to 80 percent by weight of total pigment; and C. a thin uniform top coating of polyurethane is adhered to said composition,
2. The composition defined in claim 1 wherein the polyurethane coating has a charge acceptance of at least 1,000 volts/mil of thickness.
3. The composition defined in claim 1 wherein the polyurethane coating has a charge acceptance of at least 1,500 volts/mil of thickness.
4. The protective top coating defined in claim 1 wherein said polyurethane is an aliphatic type urethane applied from a solvent taken from the group consisting of isopropanol, cellosolve acetate and methylethyl ketone.
5. A xerographic plate comprising A. an electrically conductive substrate; B. a photoconductive electrically insulating composition adhered to said substrate, said composition comprising
6. The xerographic plate defined in claim 5 wherein said binder is polyurethane.
7. The xerographic plate defined in claim 5 wherein said polyurethane coating has a thickness of from 0.02 to 0.1 mil.
8. The xerographic plate defined in claim 5 wherein the mole fraction ratio of selenium to sulfur in said cadmium sulfo-selenide is from 0.05 to 0.7.
US00339084A 1973-03-08 1973-03-08 Protecting photoconductor surfaces Expired - Lifetime US3847606A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US00339084A US3847606A (en) 1973-03-08 1973-03-08 Protecting photoconductor surfaces
CA194,290A CA1027000A (en) 1973-03-08 1974-03-07 Protecting photoconductor surfaces
AU66388/74A AU474532B2 (en) 1973-03-08 1974-03-07 Protecting photoconductor surfaces
GB1058474A GB1458617A (en) 1973-03-08 1974-03-08 Protecitng photoconductor surfaces of electrophotoconductive elements
JP2641274A JPS5724541B2 (en) 1973-03-08 1974-03-08
DE2411178A DE2411178A1 (en) 1973-03-08 1974-03-08 PHOTOCONDUCTIVE LAYER STRUCTURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00339084A US3847606A (en) 1973-03-08 1973-03-08 Protecting photoconductor surfaces

Publications (1)

Publication Number Publication Date
US3847606A true US3847606A (en) 1974-11-12

Family

ID=23327422

Family Applications (1)

Application Number Title Priority Date Filing Date
US00339084A Expired - Lifetime US3847606A (en) 1973-03-08 1973-03-08 Protecting photoconductor surfaces

Country Status (6)

Country Link
US (1) US3847606A (en)
JP (1) JPS5724541B2 (en)
AU (1) AU474532B2 (en)
CA (1) CA1027000A (en)
DE (1) DE2411178A1 (en)
GB (1) GB1458617A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966471A (en) * 1973-12-25 1976-06-29 Ricoh Co., Ltd. Electro photosensitive materials with a protective layer
US4006020A (en) * 1974-06-03 1977-02-01 Xerox Corporation Overcoated electrostatographic photoreceptor
US4168165A (en) * 1976-05-15 1979-09-18 Mita Industrial Company Limited Electrophotographic photosensitive material suitable for offset printing and lithography and process for production thereof
US4190445A (en) * 1975-03-20 1980-02-26 Canon Kabushiki Kaisha Electrophotographic photosensitive media and process for manufacturing thereof
US4256823A (en) * 1975-03-20 1981-03-17 Canon Kabushiki Kaisha Electrophotographic photosensitive media
US4346159A (en) * 1977-02-14 1982-08-24 Fuji Xerox Co., Ltd. Photosensitive element for electrophotography
US4666780A (en) * 1985-08-08 1987-05-19 Minnesota Mining And Manufacturing Company Dielectric coating for recording member
US4733255A (en) * 1986-05-01 1988-03-22 Minnesota Mining And Manufacturing Company Dielectric coating for recording member
US5064715A (en) * 1986-11-12 1991-11-12 Minnesota Mining And Manufacturing Company Dielectric coating for recording member containing hydrophobic silica

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2533371C2 (en) * 1974-07-27 1983-09-22 Canon K.K., Tokyo Electrophotographic recording material
JPS5324840A (en) * 1976-08-19 1978-03-08 Stanley Electric Co Ltd Photosensitive plate for electrophtography
JPS58139054A (en) * 1982-02-13 1983-08-18 Ishikawa Seisakusho:Kk Measuring method for concentration of combustible gas in liquid and device thereof
US4477548A (en) * 1982-09-02 1984-10-16 Eastman Kodak Company Radiation-curable overcoat compositions and toner-imaged elements containing same
US5166018A (en) * 1985-09-13 1992-11-24 Minolta Camera Kabushiki Kaisha Photosensitive member with hydrogen-containing carbon layer
EP0238095A1 (en) * 1986-03-20 1987-09-23 Minolta Camera Kabushiki Kaisha Photosensitive member composed of charge transporting layer and charge generating layer
US4801515A (en) * 1986-07-08 1989-01-31 Minolta Camera Kabushiki Kaisha Photosensitive member having an overcoat layer
JPS6373259A (en) * 1986-09-16 1988-04-02 Minolta Camera Co Ltd Photosensitive body
US5000831A (en) * 1987-03-09 1991-03-19 Minolta Camera Kabushiki Kaisha Method of production of amorphous hydrogenated carbon layer
US4994337A (en) * 1987-06-17 1991-02-19 Minolta Camera Kabushiki Kaisha Photosensitive member having an overcoat layer
JP2595635B2 (en) * 1988-03-24 1997-04-02 富士電機株式会社 Electrophotographic photoreceptor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2860048A (en) * 1955-06-13 1958-11-11 Haloid Xerox Inc Xerographic plate
US3140174A (en) * 1955-01-19 1964-07-07 Xerox Corp Process for overcoating a xerographic plate
US3682632A (en) * 1968-06-14 1972-08-08 Ricoh Kk Copying material for use in electrophotography
US3726838A (en) * 1970-12-09 1973-04-10 Bayer Ag Polyurethane based coating compositions
US3743609A (en) * 1970-12-26 1973-07-03 Konishiroku Photo Ind Process for producing photoconductive materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135146B2 (en) * 1972-07-24 1976-09-30

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140174A (en) * 1955-01-19 1964-07-07 Xerox Corp Process for overcoating a xerographic plate
US2860048A (en) * 1955-06-13 1958-11-11 Haloid Xerox Inc Xerographic plate
US3682632A (en) * 1968-06-14 1972-08-08 Ricoh Kk Copying material for use in electrophotography
US3726838A (en) * 1970-12-09 1973-04-10 Bayer Ag Polyurethane based coating compositions
US3743609A (en) * 1970-12-26 1973-07-03 Konishiroku Photo Ind Process for producing photoconductive materials

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966471A (en) * 1973-12-25 1976-06-29 Ricoh Co., Ltd. Electro photosensitive materials with a protective layer
US4006020A (en) * 1974-06-03 1977-02-01 Xerox Corporation Overcoated electrostatographic photoreceptor
US4190445A (en) * 1975-03-20 1980-02-26 Canon Kabushiki Kaisha Electrophotographic photosensitive media and process for manufacturing thereof
US4256823A (en) * 1975-03-20 1981-03-17 Canon Kabushiki Kaisha Electrophotographic photosensitive media
US4168165A (en) * 1976-05-15 1979-09-18 Mita Industrial Company Limited Electrophotographic photosensitive material suitable for offset printing and lithography and process for production thereof
US4346159A (en) * 1977-02-14 1982-08-24 Fuji Xerox Co., Ltd. Photosensitive element for electrophotography
US4666780A (en) * 1985-08-08 1987-05-19 Minnesota Mining And Manufacturing Company Dielectric coating for recording member
US4733255A (en) * 1986-05-01 1988-03-22 Minnesota Mining And Manufacturing Company Dielectric coating for recording member
US5064715A (en) * 1986-11-12 1991-11-12 Minnesota Mining And Manufacturing Company Dielectric coating for recording member containing hydrophobic silica

Also Published As

Publication number Publication date
AU474532B2 (en) 1976-07-22
DE2411178A1 (en) 1974-09-12
GB1458617A (en) 1976-12-15
CA1027000A (en) 1978-02-28
AU6638874A (en) 1975-09-11
JPS5724541B2 (en) 1982-05-25
JPS5030526A (en) 1975-03-26

Similar Documents

Publication Publication Date Title
US3847606A (en) Protecting photoconductor surfaces
US4007293A (en) Mechanically viable developer materials
JPS63113460A (en) Re-usable electronic photographic element
US3434832A (en) Xerographic plate comprising a protective coating of a resin mixed with a metallic stearate
US2937944A (en) Xerographic light-sensitive member and process therefor
US3640710A (en) Phthalocyanine photoconductive elements containing multiple binder materials
US4018602A (en) Method for in situ fabrication of photoconductive composite
US7427462B2 (en) Photoreceptor layer having rhodamine additive
US20070077505A1 (en) Imaging member
JP2507190B2 (en) Electrophotographic photoreceptor
EP1672007B1 (en) Imaging member
US3667943A (en) Quinacridone pigments in electrophotographic imaging
US3667944A (en) Quinacridone pigments in electrophotographic recording
US3951654A (en) Method for enhancement in the rate and efficiency of photodischarge of electrostatographic imaging members comprising phthalocyanine
JPS59223445A (en) Electrophotographic sensitive body
US3174856A (en) Electrolytic recording sheets
JPS63158556A (en) Electrophotographic sensitive body
JP2507194B2 (en) Electrophotographic photoreceptor
JP2507187B2 (en) Electrophotographic photoreceptor
US3615409A (en) Electrophotographic plate and process employing a photoconductive pigment of general formula r2n4s3
JPH073599B2 (en) Electrophotographic photoreceptor
JPS63301054A (en) Electrophotographic sensitive body
JPS6165252A (en) Electrophotographic sensitive body
JPH04278958A (en) Electrophotographic sensitive body
JPS63157161A (en) Electrophotographic sensitive body