US3845818A - Well tools - Google Patents

Well tools Download PDF

Info

Publication number
US3845818A
US3845818A US38734873A US3845818A US 3845818 A US3845818 A US 3845818A US 38734873 A US38734873 A US 38734873A US 3845818 A US3845818 A US 3845818A
Authority
US
United States
Prior art keywords
valve
housing
means
operator tube
equalizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
T Deaton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Co
Original Assignee
Otis Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otis Engineering Corp filed Critical Otis Engineering Corp
Priority to US38734873 priority Critical patent/US3845818A/en
Application granted granted Critical
Publication of US3845818A publication Critical patent/US3845818A/en
Anticipated expiration legal-status Critical
Assigned to HALLIBURTON COMPANY reassignment HALLIBURTON COMPANY MERGER (SEE DOCUMENT FOR DETAILS). Assignors: OTIS ENGINEERING CORPORATION
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/10Valve arrangements for boreholes or wells in wells operated by control fluid supplied from above ground
    • E21B34/105Valve arrangements for boreholes or wells in wells operated by control fluid supplied from above ground retrievable, e.g. wire line retrievable, i.e. with an element which can be landed into a landing-nipple provided with a passage for control fluid
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B2034/005Flapper valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86928Sequentially progressive opening or closing of plural valves
    • Y10T137/86936Pressure equalizing or auxiliary shunt flow

Abstract

A well tool in the form of a flapper-type safety valve for use in a well bore to provide flow control in the well bore operable from the surface. The valve is particularly characterized by a flow-cut protected equalizing valve assembly for reducing the pressure differential across the flapper valve preliminary to opening the valve. The safety valve includes a housing, a flapper-type valve at the lower end of the housing to control flow into the housing, a valve operator tube positioned for longitudinal movement in the housing for opening the flapper valve responsive to a controlled pressure from the surface, a piston on the valve tube, an annular chamber around the piston communicatable to the surface for applying a fluid pressure from the surface to the piston to bias the piston and valve tube downwardly, a spring between the valve tubing and the housing biasing the valve tubing upwardly, and an equalizing valve assembly for equalizing the pressure between the interior and exterior of the housing on opposite sides of the flapper valve preliminary to opening the flapper valve. The equalizing valve, which is shown in two forms, includes a first bubble tight valve having a resilient seal and a second valve using a metal-to-metal seal. The equalizing valve assembly is arranged to open and close in sequences which protect the resilient seal against flow cutting.

Description

United States Patent [191 Deaton [451 Nov. 5, 1974 WELL Toots [75] inventor: Thomas M. Deaton, Dallas, Tex.

[73] Assignee: Otis Engineering Company, Dallas,

Tex.

22 Filed: Aug. 10,1973

211 Appl. No.: 387,348

[52] US. Cl 166/224 S, 137/629 [51] Int. Cl. E211) 43/12, Fl6k 11/14 [58] Field of Search 166/224 S; 137/629, 630, 137/630.19

[56] References Cited UNITED STATES PATENTS 3,078,923 2/1963 Tausch 166/224 S 3,583,442 6/1971 Dollison l37/630.19

3,696,868 10/1972 Taylor, Jr. 166/224 S 3,703,193 11/1972 Raulins 166/224 S 3,741,249 6/1973 Leutuyler 166/224 S Primary Examiner-James A. Leppink Attorney, Agent, or Firm--l-l. Mathews Garland 57 ABSTRACT A well too] in the form of a flapper-type safety valve for use in a well bore to provide flowcontrol in the well bore operable from the surface. The valve is particularly characterized by a flow-cut protected equalizing valve assembly for reducing the pressure differential across the flapper valve preliminaryto opening the valve. The safety valve includes a housing, a flapper-type valve at the lower end of the housing to control flow into the housing, a valve operator tube positioned for longitudinal movement in the housing for opening the flapper valve responsive to a controlled pressure from the surface, a piston on the valve tube, an annular chamber around the piston communicatable to the surface for applying a fluid pressure from the surface to the piston to bias the piston and valve tube downwardly, a spring between the valve tubing and the housing biasing the valve tubing upwardly, and an equalizing valve assembly for equalizing the pressure between the interior and exterior of the housing on opposite sides of the flapper valve preliminary to opening the flapper valve. The equalizing valve, which is shown in two forms, includes a first bubble tight valve having a resilient seal and a second valve using a metal-to-metal seal. The equalizing valve assembly is arranged to open and close in sequences which protect the resilient seal against flow cutting.

8' Claims, 11 Drawing Figures PATENTEDNHV 5 I974 SIIEEIM; 5 3.845.818

Fig. IB

Fig. IA

PATENTEDNUY m I {3, sum m .818

wymug PATENTEDNUV Slam I Y mm w 5 3.845.818

Fig. 5A

Fig.

WELL TOOLS Thisinvention relates to well tools and more particularly relates to a downhole type safety valve for use in a well bore.

Downhole safety valves are common well tools used for the control of the flow of well fluids such as oil and gas so that hazardous conditions may be minimized at the surface by closing the valves to shut-in wells below the surface. Such valves may be operable responsive to flow conditions at the valve or may be remotely controlled from the surface responsive to various desired surface conditions, including such factors as temperature, pressure changes due to ruptured lines, and the like. The present invention is particularly concerned with valves which are remotely controlled from the surface. Where such valves are of the flapper type as in the present invention, the flapper valve element normally opens downwardly so that when closed a substantial pressure differential may exist across the valve element requiring a large downward force on the valve to open it unless some pressure equalization is effected. In

v equalizing the pressure between the interior and exterior of a valve under pressure differential conditions of large magnitude, fluid flow can occur which is damaging to the equalizing valve means used unless features are employed which minimize the abrasive effects of the fluid flow. At least one available type of flapper valve with equalizing means is known. It does 'not include a protective feature which reduces the effects of flow cutting on the valve member during the pressure equalization.

It is an object of the invention to provide a new and improved downhole safety valve for wells.

It is a particularly important object of the invention to provide a downhole safety valve of the flapper type which includes an equalization valve assembly having means for minimizing flow cutting of the resilient seal in the assembly.

It is another object of the invention to provide a downhole safety valve having pressure equalization means which includes a metal-to-metal seal and a separate resilient seal for effecting a bubble tight sealed relationship at the equalization valve means.

It is another object of the invention to provide one form of downhole safety valve which includes a first spring means biasing the valve closed and a second spring means biasing the flapper valve and one valve of the pressure equalizing valve assembly closed.

It is another object of the invention to provide a downhole safety valve of the flapper type which uses a valve operator tube provided with a piston portion exposed to the pressure of a control fluid variable from the surface for selectively operating the valve responsive to predetermined surface conditions.

It is another object of the invention to provide another form of flapper-type safety valve using a single spring to bias the flapper element closed and another spring which only biases one of the valves of the equalizing valve assembly closed.

In accordance with the invention, there is provided a downhole safety valve for use in a well bore having a housing connectible into a tubing string or with a locking mandrel for use in a landing nipplein a well bore, a flapper valve at the lower end of the housing for controlling fluid entry into the housing, a valve operatingtube longitudinally movable in the housing and hav- 2 ing a piston portion exposed to an annular space in the housing around the operator tube communicating with a fluid pressure source for supplying a fluid pressure to bias the operator tube downwardly for selectively opening and closing the flapper valve from the surface, and a pressure equalizing valve assembly associated with the housing and valve operator tube for equalizing the pressure across the flapper valve preliminary to opening the valve to prevent flapper valve operation against a full well pressure differential across the valve.

The foregoing objects and advantages together with the specific details of preferred embodiments of a safety valve constructed in accordance with the invention will be understood from the following detailed description taken in conjunction with the accompanying drawings wherein:

FIGS. 1A through 1D taken together form a longitudinal view in section and elevation of a preferred form of flapper-type safety valve including the features of the invention and showing the valve closed;

FIG. 2 is a fragmentary view in section and elevation of the valve of FIGS. lA-1D showing particularly the pressure equalizing valve assembly at an intermediate stage in valve operation;

FIGS. 3A3C taken together form a longitudinal view in section and elevation showing the flapper valve 0 en;

FIG. 4 is a view in section taken along the lines 4-4 of FIG. 1C;

FIG. 5A is a fragmentary view in section and elevation of an alternate form of pressure equalizing valve assembly and showing the valve assembly closed;

FIG. 5B is a fragmentary view in section and elevation showing the equalizing valve assembly of FIG. 5A open.

Referring to the FIGS. lA-lD, a flapper-type downhole safety valve 10 embodying the features of the invention includes a valve housing 11 having a central bore 12, a flapper valve 13 at the lower end of the housing, a valve operator tube 14 including an operator piston l5, and a pressure equalizing valve assembly 20. The flapper valve is opened and closed by the operator tube 14 which is movable longitudinally responsive to fluid pressure applied from the surface to the piston 15. The pressure equalizing valve assembly 20 relieves the pressure differential across the flapper valve preliminary to opening the valve.

The valve housing 11 includes a top sub 21 which is internally threaded at 22 for connection with a tubing string extending to the surface end of a well bore in which the valve is installed on a locking mandrel for supporting the valve in a landing nipple as represented by the referencenumeral 23. The top sub is internally threaded along a lower portion 24 of reduced wall thickness which is secured on an upper external threaded end portion 25 of a packing mandrel section 30. The top sub 21 is further reduced in wall thickness along a lower end portion 32 which is provided with an internally threaded side port 33 located between the upper and lower internal ring seals 34 and 35 disposed within internal annular recesses above and below the side port. The seals 34 and 35 seal with the outer wall surface of the packing mandrel which is provided with a side port 40 located between the seals 34 and 35 communicating with the side port 33. The side port 33 may be connected with a control fluid line to the surface or may communicate directly to an annular space within a well bore such as within a landing nipple which is supplied with a control fluid for operating the safety valve. The packing mandrel section 30 has an internal flange 41 provided with an internal annular recess 42 in which a ring seal 43 is disposed to seal between the packing mandrel and the outer surface of the valve operator tube 14 defining the upper end of a control fluid annulus 44 between the packing mandrel and the valve operator tube below the seal 43. The packing mandrel section is enlarged at 45 providing an upwardly spacing stop shoulder 50 for supporting the lower end of an annular packing assembly 51 which is confined between the lower end face 52 of the top sub and the packing mandrel shoulder 50. In the particular form of the safety valve illustrated, the packing assembly 51 seals with the inner wall surface of a landing nipple in which the safety valve is supported from a suitable standard locking device, not shown, which includes a similar annular packing assembly for sealing with the landing nipple wall above the side port 33. Control fluid communicated to the landing nipple will be confined within an annular space around the valve above the packing assembly 51 on the valve housing and below the packing assembly of the locking device so that the control fluid is directed to the side port 33 for operating the safety valve from the surface. As shown in FIG. 1B, the enlarged portion 45 of the packing mandrel section has an internally threaded lower end portion 53 which is secured on the upper threaded end portion 54 of a housing adapter sub 55.

The flapper valve operator tube 14 comprises an upper tubular section 60 which is enlarged and internally threaded along a lower end portion 61 defining the operator piston provided with an external annular recess 62 carrying an external ring seal 63 to seal within the valve housing packing mandrel section 45 around the operator tube piston portion. The seal 63 is the lower end of the control fluid annulus 44. The valve operator tube section 60 is secured along the lower end portion 61 with a tubular shaped prong section 64 which comprises the major portion of the operator tube extending downwardly to open the flapper valve. The piston portion 15 has an internal recess 65 which holds a ring seal 66 to seal between the piston portion and the prong section 64. The valve housing packing mandrel section 45 and the prong section 64 are concentrically arranged in spaced relation defining a spring chamber 70 in which a biasing spring 71 is positioned confined between an upper end 72 of the sub 55 and a spring ring 73 on the upper end of the spring. The ring 73 bears against the lower end edge of the piston portion 15 of the valve operator tube so that the spring 71 biases the valve operator tube upwardly to the position of FIGS. 1A-1D at which the flapper valve is closed. A ring seal 74 in an external annular recess of the adapter sub 54 seals around the sub within the lower end portion of the packer mandrel 30 of the housing.

The adapter sub 55 has a side port 75 for admitting pressure to an annular space 80 within the adapter sub around the valve operator tube section 64 to equalize the pressure across the flapper valve when the equalizing valve assembly is open. The adapter sub is reduced and externally threaded along the lower end portion 81 which is engaged in the upper end portion of a lower housing section 82. A ring seal 83 in an external annular recess at the upper end of the lower threaded end portion of the adapter sub seals around the adapter sub within the housing section 82.

The adapter sub 55 has an internal annular flange 84 which supports an internal annular resilient seal 85 within an internal recess of the flange to effect a bubble tight seal with an external annular flange on the valve operator tube section 64 when the operator tube is in the valve-closed position of FIGS. lA-1D. The seal 85 and valve operator tube 90 comprise a first valve of the equalizing valve assembly 20. The lower end of the adapter sub has an internal downwardly and outwardly sloping valve seat surface 91 which is engageable by a similar downwardly and outwardly sloping valve seat 92 on a tubular valve member 93 forming the second valve of the equalizing valve assembly 20. The valve seats 91 and 92 are formed of a suitable metal alloy such as Colmonoy 5 providing a metal-tometal seal. The valve member 93 includes an upwardly and inwardly tapered head portion 94 and a tubular skirt portion 95. The lower end of the head portion 94 defines an internal stop shoulder which is engageable with the top surface of an external annular flange 101 on the valve operator tube section 64 spaced below the external flange 90 on the tube section. The flange 101 has an external annular recess provided with a ring seal 102 to seal around the flange with the internal wall surface of the skirt portion 95 of the valve member 93. The valve skirt 95 has an internal annular recess 103 in which three segments 104 of a split ring are retained by a stop ring 105 having a tubular body portion and a lower flange portion 111. The stop ring 105 which fits into the lower end of the valve member skirt 95 to hold the three ring segments 104 in place within the recess 103 to provide an upwardly facing flange for the lower end of the valve operator tube flange 101 to engage so that when the valve operator tube moves downwardly the flange 101 contacts the ring segments 104 pulling the valve member 93 downwardly with the valve operator tube.

The concentric spaced relationship of the valve housing section 82 and the valve operator tube section 64 below the adapter sub 55 defines an annulus 112 for fluid flow to equalize the pressure across the flapper valve and to house the spring 113 confined between the stop ring flange 111 at the upper end of the spring and an internal upwardly facing annular shoulder 114 in the housing section 82 at the lower end of the spring. The spring 113 biases the valve member 93 upwardly to a sealed seated relationship against the seat 91 when the safety valve is fully closed as in FIG. 1C and provides an upwardly directed force against the valve operator tube and the valve member 93 when the flapper valve is open as represented by FIGS. 3B and 3C. The lower end portion of the valve operator tube probe section 64 has a side port 115 to provide communication from within the tube into the annulus 112 for pressure equalization. The valve housing section 82 has a lower end portion provided with a first reduced bore portion 121 which is larger than the tube section 64 to permit communication into the operator tube side port 115 when the tube is at the position shown in FIG. 1D. The housing lower end portion 120 has a further reduced bore portion 122 which is sized to provide a slip fit relationship with the valve operator tube so that the tube may move down longitudinally for operating the flapper valve.

The lower end portion 120 of the valve housing section 82 is externally threaded at 123 and connected into a bottom section 124 which supports and encloses the flapper valve 13. The flapper valve includes a valve plate 125 formed integral with a hinge arm 130 which is pivotally mounted on a lateral hinge pin 13]. secured in a pair of aligned bores 132 through opposite wall portions of the valve housing section 124 near one side and aligned perpendicular to the longitudinal axis of the housing section. The outer opposite ends of the hinge pin are ground to the curvature of the outer cylindrical surface of the valve housing 124 to provide a smooth outer surface along the housing at the pin locations. The housing section 124 has a longitudinal slot 133 aligned between the two bores 132 to provide space for the hinge arm 130 and to allow the hinge arm to swing between the positions of FIG. 1D and FIG. 3C

for opening and closing the flapper valve. A spring 134 is wound about the hinge pin with one end of the spring engaged with the flapper valve plate 125 and the other end extending along the inner face of the valve housing below the slot 133 as seen in FIG. 1D to bias the flapper valve plate to the closed position of FIG. 1D. The flapper valve plate has an upwardly and inwardly tapered annular seat surface 135 which is engageable with a downwardly and outwardly tapered annular valve seat 140 of a hardened metal alloy secured at the lower end of the housing section 82. The lower end portion 141 of the housing section 124 is increased in wall thickness providing a reduced downwardly flared bore 142 and an upwardly facing tapered stop shoulder 143 engageable by the lower end edge 64a of the valve operator tube section 64 to limit the downward movement of the operator tube after flapper valve is opened as shown in FIG. 3C.

The safety valve in the particular form illustrated may be installed in a well bore in a landing nipple having a side port connected with a control line extending from the surface. The safety valve is supported from a suitable locking mandrel 23, not shown, which carries a packing assembly similar to the packing assembly 51 for cooperating with the packing assembly 51 to seal off an annular space in the landing nipple to direct the control fluid to side port 33 of the safety valve. Installations of this type are shown, for example, at Page 350l of the Composite Catalog of Oil Field Equipment and Services, l972-73 Edition, published by WORLD OIL, Houston, Texas. Locking mandrels of the type which may be used are shown at Page 3458 of the Composite Catalog of Oil Field Equipment and Services, supra. Additionally, a landing nipple arrangement which may be employed is illustrated in FIGS. 13 and 14 of U. S. Pat. No. 3,292,706 issued Dec. 20, 1966 to G. C. Grimmer, et al and assigned to Otis Engineering Corporation.

With the safety valve installed in a well bore and prior to the application of control fluid pressure through the side port 33 in the valve, the valve is closedwith the various component parts of the valve being positioned as illustrated in FIGS. lA-lD. The springs 71 and 113 are each expanded to the maximum length permitted by the relation of the various parts of the valve holding operator tube at an upper end position and the equalizing valve assembly closed. The lower end of the tube 14, as seen in FIG. ID, is spaced above the flapper valve plate 125 of the valve assembly 13. Both valves of the equalizing valve assembly are closed as seen in FIG. 1C. The valve seat 92 on the valve member 93 is engaged with the valve seat 91 within the lower end of the adapter sub 55. Since the valve member 93 is limited from any further upward movement and the top face of the flange 101 on the valve operating tube section 64 is engaging the downwardly facing shoulder 100 within the valve member 93, the valve operator tube 14 cannot move further upwardly. At this longitudinal position on the valve operator tube, the vale flange is aligned with and engages the ring seal 85 of the adapter sub thereby closing the first valve of the pressure equalizing valve assembly 20. The spring 134 together with any pressure differential that may exist across the flapper valve plate 125 holds the flapper valve tightly closed as shown in FIG. 1D. It will be recognized that the spring 71 bearing against the spring ring 73 at the lower end of the piston 15 on the valve operator tube 14 holds the operator tube at an upper end position limited by the engagement of the flange 101 with the internal shoulder surface of the valve member 93. The force of the spring 113 bearing against the ring engaging the lower end of the valve member 93 holds the valve member upwardly against the seat 91.

When the safety valve 10 is to be opened, the control fluid pressure as applied through side port 33 is increased so that the pressure within the annulus 44 between the seals 43 and 63 is raised. It is assumed for purposes of this discussion that a pressure differential exists across the flapper valve 13 so that effort to move the valve plate 125 downwardly is applied against well pressure. When the force of the control fluid pressure increase over the annular area on the piston and valve operator tube defined by the seals 62 and 43 exceeds upward forces of the spring 71 and the well pressure on the valve operator tube and piston as communicated into the safety valve housing through the side port 75, the valve operator tube 14 is moved downwardly. During the initial downward movement of the valve operator tube, the spring 71 is compressed and the flange 101 on the probe section moves downwardly away from the shoulder 100 within the valve member 93 leaving the valve member 93 in seated engagement with the valve seat 91. Because of the dual ofthe equalizing valve assembly and the proximity of valve function the seal 85 to the engaged valve seats 91 and 92, the fluid, if any, which may occur past the seal 85 when the flange 90 moves below the seal is considered negligible so that the seal is protected against flow cutting during equalization of pressures. FIG. 2 illustrates an intermediate stage in the opening of the valve showing the valve operator tube flange 90 disengaged from and below the seal 85 with the valve member 93, however, still closed. The valve operator tube continues downwardly with the lower end edge of the flange 101 engaging the split ring segments 104 to apply downward force to the valve member 93 which is thereafter carried downwardly by continued downward movement of the valve operator tube. When the flange 101 engages the split ring segments, the separation of the valve seats 91 and 92 begins.

As soon as the valve member 93 moves downwardly off the seat 92, the well pressure as applied to the safety valve housing through the port 75 is communicated downwardly between the seats 9l and 92, around the valve member 93, and through the annulus 112 to the side port 115 to initiate pressure equalization between the well pressure exterior of the safety valve housing and the bore through the safety valve above the flapper valve 13. The lag between the opening of the second valve of the equalization valve assembly 20 by downward movement of the valve member 93 and the time when the lower end 64a of the valve operator tube probe section 64 engages the flapper valve is scaled to provide adequate time for substantial pressure equalization across the flapper valve so that essentially the only resistence to opening the flapper valve is provided by the spring 134. As the valve operator tube continues downwardly, the lower end edge 64a of the operator tube probe section engages the top face of the flapper valve plate 125 to pivot the valve plate downwardly on the pin 131. The concave configuration of the top surface of the flapper valve plate is designed to cause the lower end edge 64a of the valve operating tube to first engage the flapper valve plate along the opposite side of the plate from the hinge pin 131 so that maximum leverage is obtained by the downward force of the tube on the valve plate to start the opening of the valve. The valve operator tube continues downward movement until the lower end edge 64a of the tube engages the stop shoulder 143 within the valve housing bottom section 124 at which time the flapper valve is fully open. FIGS. 3A, 3B, and 3C show the relative positions of the valve parts when the valveis open. It will be noted in FIG. 3C that the flapper valve plate 125 swings fully downwardly and outwardly to a vertical position into an annular space defined between the tube section 64 and the housing section wall. It will be noted in FIG. 38 that the flange 90 and the valve member 93 of the equalizing valve assembly are substantially below the seal 85 and the seat 91. It will also be noted that the seal 85 engages the valve operator tube along a wall portion which would appear to form a seal between the housing and the operator tube. In practice the operator tube at this location along the tube is only about 0.006 to 0.0] inches larger than the outside diameter of the flange 90, so some sealing may occur with the seal 85, though it will be recognized that sealing is not essential when the valve is fully open as there is no pressure differential across the seal 85 and thus no tendency toward a fluid flow along the seal which might cut it. Well pressure is applied laterally inwardly into the housing in the port 74, and also well pressure exists in the valve upwardly around the valve operator tube and the valve member 93 to below the seal 85. It will be recognized that from the time the flange 101 engaged the ring segments 104 to move the valve member 93 downwardly, the spring 113 was compressed until the valve operator tube reached the lower end of the stroke as represented in FIG. 3C. Thus, with the valve fully open, the control fluid pressure applied through the side port 33 into the annulus must supply sufficient force on the piston to overcome the upward forces of the springs 71 and 113 and well pressure on the piston 15. The well pressure acts upwardly on the valve operator tube assembly over the annular area defined by the lines of sealing engagement of the seals 43 and 63. The safety valve remains open so long as the control fluid pressure is maintained at a sufficiently high level. The control fluid pressure will be maintained so long as well production is desired. The control fluid pressure may be reduced to close the safety valve at any time the well is to be shut in. Also the control fluid pressure may be supplied by surface means designed to respond to such conditions as fire,

line rupture, and the like to shut in the well under emergency conditions.

The safety valve 10 is closed by relieving the control fluid pressure applied through the side port 33. When the force upon the piston 15 from the control fluid pressure decreases below a value which exceeds the force of the springs 71 and 113 together with the well pressure, the valve operator tube 14 is lifted upwardly. The operator tube is raised by forces from both the springs and the well pressure until the tube and the associated parts of the valve including those forming the pressure equalizing valve means 20 are returned to the positions represented in FIGS. lA-lD. At the lower end position of the operator tube, both the springs 71 and 113 bias the tube upwardly. Both springs lift the tube from the position of FIGS. 3A-3C until the valve member 93 is closed as in FIG. 2. Thereafter, the spring 71 only lifts the operator tube. As the operator tube moves upwardly, the valve seat 92 on the valve member 93 engages the seat 91 in the valve housing before the operator tube flange contacts the seal 85. When the valve member 93 reaches the upper end position shown in FIG. 2, the valve operator tube then continues upward movement until the flange 101 engages the downwardly facing stop shoulder within the valve member 93 at which time the flange 90 has moved into a seated relationship within the seal 85. From the time that the seats 91 and 92 of the second valve of the pressure equalization assembly engage shutting off flow through the valve assembly, there is no fluid flow to cut the seal 85 during the step of moving the sealing flange 90 on the valve tube into engagement with the seal 85. As soon as the lower end edge 64a of the valve operator tube probe section moves above the seat 140, FIG. 1D, the spring 134 swings the flapper valve plate on the pin 131 upwardly toward the closed position at which the valve plate is engaged with the seat and is fully closed. It will be evident that if there is any flow in the wall, as soon as the flapper valve begins to restrict fluid entry into the safety valve developing a pressure differential across the valve, the valve plate will be rapidly closed by the fluid flow into the valve bore. The valve will remain closed so long as the control fluid pressure is below the level sufficient to overcome the springs and the well pressure.

An alternate form 20A of the pressure equalizing valve assembly is illustrated in FIGS. 5A and 5B. The valve assembly 20A discharges the same pressure equalizing functions as the valve assembly 20 without the use of the large spring 113. With the exception of the modification and elimination of parts required for the specific structure of the valve assembly 20A, a safety valve using such valve assembly is otherwise identical to the valve 10. Thus, the reference numerals used in describing the structure of FIGS. 5A and 5B shall be the same as those used in conjunction with the other figures with the exception that modified valve parts shall be referred to with the suffix A. The valve operator tube used with the modified equalization valve assembly 20A includes a tube probe section 64A having an external annular elongated flange 101A. Formed on the tubular section at the upper end of the flange 101A is an enlarged tubular portion which functions as a spring guide or centralizer. The upper end of the tubular portion 150 also serves as an upper end stop for the operator tube engaging the bottom face of the valve member head properly positioning the flange 90A aligned with the seal 85. A valve member 93A which is functionally identical to the valve member 93 is disposed around the flange 101A within the valve housing section 82 for movement between open and closed positions as shown in FIGS. A and 5B, respectively. The valve member 93A has a head portion 94A to which is secured the annular alloy seat 92 which is engageable with the seat 91 within the valve housing. The valve member has a skirt portion 95A to which are secured a plurality of circumferentially spaced dependent or downwardly extending L-shaped collet fingers 151 for retaining the valve member on the flange 101A and permitting the flange to pull the valve member downwardly. A spring 152 is confined between the internal downwardly facing shoulder 100A of the valve member head and the upper end face of the operator tube flange 101A for biasing the valve member 93A upwardly on the operator tube section thereby performing the same function relative to the valve member as the spring 113.

ln'operation the equalizing valve assembly A functions to equalize the pressure differential across the flapper valve 13 when the valve is closed preliminary to opening the flapper valve in the manner previously described. As the valve operator tube section 64A moves downwardly in the process of opening the flapper valve, the external flange 90A moves out of engagement with and below the seal 85 the distance permitted by the lag or spacing between the lower end edge of the flange 101A and the lower ends of the collet fingers 151. During the initial travel of the operator tube section 64A, prior to the engagement of the lower end edge of the flange 101A with the lower ends of the collet fingers 151, the spring 152 biases the valve member 93A upwardly holding the valve member seat 92 engaged with the valve housing seat 91. As soon as the downwardly moving operator tube engages the collet fingers 151 at the time of contact of the lower end edge of the flange 101A with the lower ends of the collet fingers, the downwardly moving tube pulls the valve member 93A downwardly with the tube to open the second valve of the valve equalizing assembly as the valve seat 92 moves downwardly from the valve seat 91. The valve member 93A is carried downwardly by the operator tube as the operator tube moves to the lower end position of FIG. 5B for fully opening the flapper valve.

The valve member 93A remains in the position of FIG. 58 until closure of the flapper valve. when the valve operator tube moves back upwardly to close the flapper valve, the spring 152 retains the valve member 93A at the upper end position of FIG. 58 until the seat 92 on the valve member engages the valve housing seat 91 which is substantially in advance of the movement of the valve tube flange 90A into engagement with the ring seal 85. With the valve member 93A closed, the valve operator tube continues moving upwardly compressing the spring 152 until the upper limit of travel of the operator tube is reached at which position the operator tube flange 90A is engaged with the ring seal thereby fully reclosing both valve portions of the equalizing valve assembly. The engagement of the upper end of the flange portion 150 with the bottom face of the valve member head 94A stops the upward movement of the operator tube and correctly positions the flange A aligned with the seal 85.

While the safety valve 10 has been discussed in terms of use in a landing nipple in a well bore supported from a locking mandrel engaged with locking recesses of the landing nipple, it will be understood that the safety valve is also usuable as an integral part of a tubing string to which a control line is run from the surface. In this form, the safety valve may be referred to as a tubing retrievable type safety valve connected in the general arrangement illustrated at Page 3503 of the Composite Catalog of Well Field Equipment and Services, supra. In this arrangement the safety valve functions identically as previously described with the control line extending from the surface connecting into the side port 33 through a suitable fitting of the type illustrated at the reference.

It will be seen that a new and an improved form of flapper-type downhole safety valve has been described and illustrated. It will be further seen that the safety valve includes a pressure equalizing valve assembly to reduce the pressure differential across the flapper valve element preliminary to opening the valve so that the valve is not opened against a full well pressure. The equalizing valve assembly essentially comprises two valves, one of which uses a metal-to-metal seal arrangement while the other includes a resilient member providing a bubble tight seal. In both forms of the equalizing valve assembly illustrated and described, the closing and opening of the two valves of the assembly during both the closing and opening of the safety valve occur in an order which essentially eliminates fluid flow across the resilient valve seal. Thus, during the opening of the safety valve the resilient valve opens first followed by the opening of the metal-to-metal valve. During the closing of the safety valve, the metal-to-metal valve closes first followed by the closing of the resilient valve. With this arrangement, there is no metering of fluid past the resilient seal so that the seal is protected from flow cutting.

What is claimed is:

1. A well tool for controlling fluid flow in a tubing string in a well bore comprising: a housing having a longitudinal bore therethrough for flow of fluids; a valve secured at the lower end of said housing for movement between open and closed positions for controlling the flow of fluids into said bore of said housing; a valve operator tube supported for longitudinal movement in said housing, a lower end of said operator tube being engageable with said valve for moving said valve from a closed to an open position responsive to downward movement of said operator tube; means associated with said operator tube for biasing said tube upwardly to an upper position at which said valve is closed; means for selectively urging said operator tube downwardly to a lower position for opening and holding said valve open; and means associated with said operator tube in said housing for equalizing the pressure across said valve when said valve is closed to reduce the force required for opening said valve including first and second equalizing valve means, said first and second equalizing valve means being opened and closed in a sequence adapted to prevent flow cutting of said first equalizing valve means. i

2. A well tool in accordance with claim 1 wherein said second equalizing valve means opens after the opening of said first equalizing valve means during the opening of said valve and said second equalizing'valve means closes in advance of the closing of said first equalizing valve means during the closing of said valve.

3. A well tool in accordance with claim 2 wherein said first equalizing valve means comprises an annular resilient ring seal disposed in an internal annular recess of said housing and an external annular flange on said operator tube engageable with said resilient seal when said tube is at a position at which said valve is closed and said second equalizing valve means includes an annular tapered valve seat within said housing around said operator tube between said first equalizing valve means and said valve and a sleeve member having an annular tapered seat engageable with said seat of said housing, means biasing said sleeve member toward said housing seat, and means on said operator tube for engaging and retracting said sleeve to open said second equalizing valve means by pulling said sleeve valve seat away from said housing valve seat after said first equalizing valve means is opened.

4. A well tool in accordance with claim 3 including a spring around said operator tube within said housing engaged at one end with a flange in said housing and at the other end with said sleeve member of said second equalizing valve means comprising said means for biasing said sleeve member toward said valve seat in said housing whereby said sleeve remains engaged with said seat until said flange on said valve operator tube is disengaged from said resilient seal during the opening of said valve and said sleeve member re-engages said valve seat in said housing in advance of the engagement of said valve operator tube flange with said resilient seal during the closing of said valve.

5. A well tool in accordance with claim 3 including a spring on said valve operator tube engaged between said sleeve member of said second equalizing valve means and said valve operator tube comprising said means for biasing said sleeve member toward said valve seat of said housing whereby said second equalizing valve means remains closed until said first equalizing valve means is opened and said second equalizing valve means closes in advance of the closing of said first equalizing valve means.

6. A well tool in accordance with claim 1 wherein: said means for urging said operator tube downwardly includes a piston on said valve operator tube, an annular control fluid chamber around said valve operator tube within said housing, said piston being movable in said control fluid chamber, and means for supplying a control fluid into said chamber for applying a control fluid pressure to said piston for moving said valve operator tube toward said valve to open said valve; and said means for equalizing the pressure across said valve when said valve is closed includes means defining a side port in said housing to communicate with a well bore around said well tool, means providing a port in said valve operator tube communicating with the bore of said well tool, means defining an annular flow space around said operator tube within said housing between said side port in said housing and said side port in said operator tube, said first and second equalizing valve means being positioned along said annular space between said side ports for controlling flow between said ports within said annular space to equalize the pressure between the bore of said well tool above said valve and a well bore around said well tool housing, said first and second equalizing valve means being operable responsive to longitudinal movement of said valve operator tube and including a resilient internal annular seal within an annular recess of said housing around said valve operator tube, an external annular tapered first flange on said valve operator tube engageable with said resilient seal when said flange is longitudinally aligned with said seal forming said first valve means, an internal annular tapered metal valve seat within said housing between said resilient seal and said valve, a valve sleeve member movably disposed on said operator tube within said annular space and having an annular tapered valve seat engageable with said housing valve seat forming said second equalizing valve means, a second external annular flange on said valve operator tube spaced from said first flange and movable within said valve sleeve member for actuating said valve sleeve member relative to said housing seat, said sleeve member having an internal annular operator shoulder facing said valve engageable by said second flange on said operator tube limiting movement of said operator tube away from said valve at a position to align said first flange within said resilient seal, said sleeve member having means providing internal operating surfaces facing away from said valve for engagement by said second flange on said operator tube to move said sleeve member toward said valve to open said second equalizing valve means, the distance between said operator shoulder of said member and said operator surfaces being greater than the length of said second flange on said second flange on said operator tube whereby said first equalizing valve means opens before said second flange engages said valve sleeve member to open said second equalizing valve means and a spring engaged with said valve sleeve member biasing said valve sleeve away from said valve toward said valve housing seat.

7. A well tool in accordance with claim 6 wherein said spring is confined between a shoulder in said housing facing away from said valve and the end of said valve sleeve member facing said valve.

8. A well tool in accordance with claim 6 wherein said valve sleeve member is provided with resilient collet fingers projecting toward the valve, said collet fingers having inwardly turned collet heads defining said internal operating shoulder in said valve sleeve member and a spring confined within said valve sleeve member around said valve operator tube between said flange on said operator tube and said operator shoulder in said valve sleeve member facing said valve providing means biasing said valve sleeve toward said housing seat on said valve operator tube.

Claims (8)

1. A well tool for controlling fluid flow in a tubing string in a well bore comprising: a housing having a longitudinal bore therethrough for flow of fluids; a valve secured at the lower end of said housing for movement between open and closed positions for controlling the flow of fluids into said bore of said housing; a valve operator tube supported for longitudinal movement in said Housing, a lower end of said operator tube being engageable with said valve for moving said valve from a closed to an open position responsive to downward movement of said operator tube; means associated with said operator tube for biasing said tube upwardly to an upper position at which said valve is closed; means for selectively urging said operator tube downwardly to a lower position for opening and holding said valve open; and means associated with said operator tube in said housing for equalizing the pressure across said valve when said valve is closed to reduce the force required for opening said valve including first and second equalizing valve means, said first and second equalizing valve means being opened and closed in a sequence adapted to prevent flow cutting of said first equalizing valve means.
2. A well tool in accordance with claim 1 wherein said second equalizing valve means opens after the opening of said first equalizing valve means during the opening of said valve and said second equalizing valve means closes in advance of the closing of said first equalizing valve means during the closing of said valve.
3. A well tool in accordance with claim 2 wherein said first equalizing valve means comprises an annular resilient ring seal disposed in an internal annular recess of said housing and an external annular flange on said operator tube engageable with said resilient seal when said tube is at a position at which said valve is closed and said second equalizing valve means includes an annular tapered valve seat within said housing around said operator tube between said first equalizing valve means and said valve and a sleeve member having an annular tapered seat engageable with said seat of said housing, means biasing said sleeve member toward said housing seat, and means on said operator tube for engaging and retracting said sleeve to open said second equalizing valve means by pulling said sleeve valve seat away from said housing valve seat after said first equalizing valve means is opened.
4. A well tool in accordance with claim 3 including a spring around said operator tube within said housing engaged at one end with a flange in said housing and at the other end with said sleeve member of said second equalizing valve means comprising said means for biasing said sleeve member toward said valve seat in said housing whereby said sleeve remains engaged with said seat until said flange on said valve operator tube is disengaged from said resilient seal during the opening of said valve and said sleeve member re-engages said valve seat in said housing in advance of the engagement of said valve operator tube flange with said resilient seal during the closing of said valve.
5. A well tool in accordance with claim 3 including a spring on said valve operator tube engaged between said sleeve member of said second equalizing valve means and said valve operator tube comprising said means for biasing said sleeve member toward said valve seat of said housing whereby said second equalizing valve means remains closed until said first equalizing valve means is opened and said second equalizing valve means closes in advance of the closing of said first equalizing valve means.
6. A well tool in accordance with claim 1 wherein: said means for urging said operator tube downwardly includes a piston on said valve operator tube, an annular control fluid chamber around said valve operator tube within said housing, said piston being movable in said control fluid chamber, and means for supplying a control fluid into said chamber for applying a control fluid pressure to said piston for moving said valve operator tube toward said valve to open said valve; and said means for equalizing the pressure across said valve when said valve is closed includes means defining a side port in said housing to communicate with a well bore around said well tool, means providing a port in said valve operator tube communicating with the bore of said well tool, means defining an annular flow space aroUnd said operator tube within said housing between said side port in said housing and said side port in said operator tube, said first and second equalizing valve means being positioned along said annular space between said side ports for controlling flow between said ports within said annular space to equalize the pressure between the bore of said well tool above said valve and a well bore around said well tool housing, said first and second equalizing valve means being operable responsive to longitudinal movement of said valve operator tube and including a resilient internal annular seal within an annular recess of said housing around said valve operator tube, an external annular tapered first flange on said valve operator tube engageable with said resilient seal when said flange is longitudinally aligned with said seal forming said first valve means, an internal annular tapered metal valve seat within said housing between said resilient seal and said valve, a valve sleeve member movably disposed on said operator tube within said annular space and having an annular tapered valve seat engageable with said housing valve seat forming said second equalizing valve means, a second external annular flange on said valve operator tube spaced from said first flange and movable within said valve sleeve member for actuating said valve sleeve member relative to said housing seat, said sleeve member having an internal annular operator shoulder facing said valve engageable by said second flange on said operator tube limiting movement of said operator tube away from said valve at a position to align said first flange within said resilient seal, said sleeve member having means providing internal operating surfaces facing away from said valve for engagement by said second flange on said operator tube to move said sleeve member toward said valve to open said second equalizing valve means, the distance between said operator shoulder of said member and said operator surfaces being greater than the length of said second flange on said second flange on said operator tube whereby said first equalizing valve means opens before said second flange engages said valve sleeve member to open said second equalizing valve means and a spring engaged with said valve sleeve member biasing said valve sleeve away from said valve toward said valve housing seat.
7. A well tool in accordance with claim 6 wherein said spring is confined between a shoulder in said housing facing away from said valve and the end of said valve sleeve member facing said valve.
8. A well tool in accordance with claim 6 wherein said valve sleeve member is provided with resilient collet fingers projecting toward the valve, said collet fingers having inwardly turned collet heads defining said internal operating shoulder in said valve sleeve member and a spring confined within said valve sleeve member around said valve operator tube between said flange on said operator tube and said operator shoulder in said valve sleeve member facing said valve providing means biasing said valve sleeve toward said housing seat on said valve operator tube.
US38734873 1973-08-10 1973-08-10 Well tools Expired - Lifetime US3845818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US38734873 US3845818A (en) 1973-08-10 1973-08-10 Well tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US38734873 US3845818A (en) 1973-08-10 1973-08-10 Well tools

Publications (1)

Publication Number Publication Date
US3845818A true US3845818A (en) 1974-11-05

Family

ID=23529492

Family Applications (1)

Application Number Title Priority Date Filing Date
US38734873 Expired - Lifetime US3845818A (en) 1973-08-10 1973-08-10 Well tools

Country Status (1)

Country Link
US (1) US3845818A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999574A (en) * 1974-02-06 1976-12-28 Societe Nationale Des Petroles D'aquitaine Hydraulic safety stop-valve
US4100969A (en) * 1977-03-28 1978-07-18 Schlumberger Technology Corporation Tubing tester valve apparatus
FR2393926A1 (en) * 1977-06-10 1979-01-05 Otis Eng Co Device for positioning an equipment in a well
US4141418A (en) * 1977-09-06 1979-02-27 Schlumberger Technology Corporation Safety valve hydraulically operated by telescopic drill stem movement
US4449587A (en) * 1983-01-06 1984-05-22 Otis Engineering Corporation Surface controlled subsurface safety valves
US4452310A (en) * 1981-11-17 1984-06-05 Camco, Incorporated Metal-to-metal high/low pressure seal
US4452311A (en) * 1982-09-24 1984-06-05 Otis Engineering Corporation Equalizing means for well tools
US4457376A (en) * 1982-05-17 1984-07-03 Baker Oil Tools, Inc. Flapper type safety valve for subterranean wells
US4597449A (en) * 1984-04-20 1986-07-01 Keeney L W Method and apparatus for preventing fluid runovers from a well
US4629002A (en) * 1985-10-18 1986-12-16 Camco, Incorporated Equalizing means for a subsurface well safety valve
US4632184A (en) * 1985-10-21 1986-12-30 Otis Engineering Corporation Submersible pump safety systems
US4703805A (en) * 1986-09-26 1987-11-03 Camco, Incorporated Equalizing means for a subsurface well safety valve
US4706933A (en) * 1985-09-27 1987-11-17 Sukup Richard A Oil and gas well safety valve
US4709762A (en) * 1985-10-18 1987-12-01 Camco, Incorporated Variable fluid passageway for a well tool
FR2602849A1 (en) * 1986-07-29 1988-02-19 Diamant Boart Sa Safety valve for an oil well
US4921003A (en) * 1984-04-06 1990-05-01 Den norske stats olkeselskap Shut-down valve
US6209663B1 (en) * 1998-05-18 2001-04-03 David G. Hosie Underbalanced drill string deployment valve method and apparatus
US6666271B2 (en) 2001-11-01 2003-12-23 Weatherford/Lamb, Inc. Curved flapper and seat for a subsurface saftey valve
US20060124320A1 (en) * 2003-09-24 2006-06-15 Smith Roddie R Non-elastomer cement through tubing retrievable safety valve
US20070246225A1 (en) * 2006-04-20 2007-10-25 Hailey Travis T Jr Well tools with actuators utilizing swellable materials
US20070246213A1 (en) * 2006-04-20 2007-10-25 Hailey Travis T Jr Gravel packing screen with inflow control device and bypass
US20080041588A1 (en) * 2006-08-21 2008-02-21 Richards William M Inflow Control Device with Fluid Loss and Gas Production Controls
US20080041580A1 (en) * 2006-08-21 2008-02-21 Rune Freyer Autonomous inflow restrictors for use in a subterranean well
US20080041582A1 (en) * 2006-08-21 2008-02-21 Geirmund Saetre Apparatus for controlling the inflow of production fluids from a subterranean well
US20080185158A1 (en) * 2007-02-06 2008-08-07 Halliburton Energy Services, Inc. Swellable packer with enhanced sealing capability
US20080283238A1 (en) * 2007-05-16 2008-11-20 William Mark Richards Apparatus for autonomously controlling the inflow of production fluids from a subterranean well
US20090151925A1 (en) * 2007-12-18 2009-06-18 Halliburton Energy Services Inc. Well Screen Inflow Control Device With Check Valve Flow Controls
US20110079394A1 (en) * 2009-10-07 2011-04-07 Plunkett Kevin R Multi-stage Pressure Equalization Valve Assembly for Subterranean Valves
US20110083858A1 (en) * 2009-10-09 2011-04-14 Schlumberger Technology Corporation Downhole tool actuation devices and methods
US8490702B2 (en) 2010-02-18 2013-07-23 Ncs Oilfield Services Canada Inc. Downhole tool assembly with debris relief, and method for using same
US20130341050A1 (en) * 2012-06-25 2013-12-26 Schlumberger Technology Corporation Device having a hard seat support
US8931559B2 (en) 2012-03-23 2015-01-13 Ncs Oilfield Services Canada, Inc. Downhole isolation and depressurization tool
US20150300124A1 (en) * 2015-07-07 2015-10-22 Tejas Research & Engineering, Llc Surface Controlled Downhole Valve with Supplemental Spring Closing Force for Ultra Deep Wells
US9303486B2 (en) 2011-11-29 2016-04-05 NCS Multistage, LLC Tool assembly including an equalization valve
US10167700B2 (en) * 2016-02-01 2019-01-01 Weatherford Technology Holdings, Llc Valve operable in response to engagement of different engagement members
WO2019070360A1 (en) * 2017-10-06 2019-04-11 Baker Hughes, A Ge Company, Llc Sub-surface safety valve flapper sleeve

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999574A (en) * 1974-02-06 1976-12-28 Societe Nationale Des Petroles D'aquitaine Hydraulic safety stop-valve
US4100969A (en) * 1977-03-28 1978-07-18 Schlumberger Technology Corporation Tubing tester valve apparatus
FR2385956A1 (en) * 1977-03-28 1978-10-27 Schlumberger Technology Corp Valve for leakage testing of production tubing
FR2393926A1 (en) * 1977-06-10 1979-01-05 Otis Eng Co Device for positioning an equipment in a well
US4141418A (en) * 1977-09-06 1979-02-27 Schlumberger Technology Corporation Safety valve hydraulically operated by telescopic drill stem movement
FR2402137A1 (en) * 1977-09-06 1979-03-30 Schlumberger Technology Corp Safety valve for stem testing
US4452310A (en) * 1981-11-17 1984-06-05 Camco, Incorporated Metal-to-metal high/low pressure seal
US4457376A (en) * 1982-05-17 1984-07-03 Baker Oil Tools, Inc. Flapper type safety valve for subterranean wells
US4452311A (en) * 1982-09-24 1984-06-05 Otis Engineering Corporation Equalizing means for well tools
US4449587A (en) * 1983-01-06 1984-05-22 Otis Engineering Corporation Surface controlled subsurface safety valves
US4921003A (en) * 1984-04-06 1990-05-01 Den norske stats olkeselskap Shut-down valve
US4597449A (en) * 1984-04-20 1986-07-01 Keeney L W Method and apparatus for preventing fluid runovers from a well
US4706933A (en) * 1985-09-27 1987-11-17 Sukup Richard A Oil and gas well safety valve
US4709762A (en) * 1985-10-18 1987-12-01 Camco, Incorporated Variable fluid passageway for a well tool
US4629002A (en) * 1985-10-18 1986-12-16 Camco, Incorporated Equalizing means for a subsurface well safety valve
US4632184A (en) * 1985-10-21 1986-12-30 Otis Engineering Corporation Submersible pump safety systems
FR2602849A1 (en) * 1986-07-29 1988-02-19 Diamant Boart Sa Safety valve for an oil well
US4703805A (en) * 1986-09-26 1987-11-03 Camco, Incorporated Equalizing means for a subsurface well safety valve
US6209663B1 (en) * 1998-05-18 2001-04-03 David G. Hosie Underbalanced drill string deployment valve method and apparatus
US6666271B2 (en) 2001-11-01 2003-12-23 Weatherford/Lamb, Inc. Curved flapper and seat for a subsurface saftey valve
US20060124320A1 (en) * 2003-09-24 2006-06-15 Smith Roddie R Non-elastomer cement through tubing retrievable safety valve
US7543651B2 (en) * 2003-09-24 2009-06-09 Weatherford/Lamb, Inc. Non-elastomer cement through tubing retrievable safety valve
US20070246213A1 (en) * 2006-04-20 2007-10-25 Hailey Travis T Jr Gravel packing screen with inflow control device and bypass
WO2007124374A2 (en) * 2006-04-20 2007-11-01 Halliburton Energy Services, Inc. Well tools with actuators utilizing swellable materials
US20070246225A1 (en) * 2006-04-20 2007-10-25 Hailey Travis T Jr Well tools with actuators utilizing swellable materials
US8453746B2 (en) * 2006-04-20 2013-06-04 Halliburton Energy Services, Inc. Well tools with actuators utilizing swellable materials
WO2007124374A3 (en) * 2006-04-20 2008-11-06 Halliburton Energy Serv Inc Well tools with actuators utilizing swellable materials
US7708068B2 (en) 2006-04-20 2010-05-04 Halliburton Energy Services, Inc. Gravel packing screen with inflow control device and bypass
US20080041588A1 (en) * 2006-08-21 2008-02-21 Richards William M Inflow Control Device with Fluid Loss and Gas Production Controls
US20080041582A1 (en) * 2006-08-21 2008-02-21 Geirmund Saetre Apparatus for controlling the inflow of production fluids from a subterranean well
US20080041580A1 (en) * 2006-08-21 2008-02-21 Rune Freyer Autonomous inflow restrictors for use in a subterranean well
US20080185158A1 (en) * 2007-02-06 2008-08-07 Halliburton Energy Services, Inc. Swellable packer with enhanced sealing capability
US9488029B2 (en) 2007-02-06 2016-11-08 Halliburton Energy Services, Inc. Swellable packer with enhanced sealing capability
US9303483B2 (en) 2007-02-06 2016-04-05 Halliburton Energy Services, Inc. Swellable packer with enhanced sealing capability
US20080283238A1 (en) * 2007-05-16 2008-11-20 William Mark Richards Apparatus for autonomously controlling the inflow of production fluids from a subterranean well
US20090151925A1 (en) * 2007-12-18 2009-06-18 Halliburton Energy Services Inc. Well Screen Inflow Control Device With Check Valve Flow Controls
US8474535B2 (en) 2007-12-18 2013-07-02 Halliburton Energy Services, Inc. Well screen inflow control device with check valve flow controls
US20110079394A1 (en) * 2009-10-07 2011-04-07 Plunkett Kevin R Multi-stage Pressure Equalization Valve Assembly for Subterranean Valves
US8534361B2 (en) * 2009-10-07 2013-09-17 Baker Hughes Incorporated Multi-stage pressure equalization valve assembly for subterranean valves
US20110083858A1 (en) * 2009-10-09 2011-04-14 Schlumberger Technology Corporation Downhole tool actuation devices and methods
US9334714B2 (en) 2010-02-18 2016-05-10 NCS Multistage, LLC Downhole assembly with debris relief, and method for using same
US8490702B2 (en) 2010-02-18 2013-07-23 Ncs Oilfield Services Canada Inc. Downhole tool assembly with debris relief, and method for using same
US9303486B2 (en) 2011-11-29 2016-04-05 NCS Multistage, LLC Tool assembly including an equalization valve
US9140098B2 (en) 2012-03-23 2015-09-22 NCS Multistage, LLC Downhole isolation and depressurization tool
US8931559B2 (en) 2012-03-23 2015-01-13 Ncs Oilfield Services Canada, Inc. Downhole isolation and depressurization tool
US20130341050A1 (en) * 2012-06-25 2013-12-26 Schlumberger Technology Corporation Device having a hard seat support
US9212536B2 (en) * 2012-06-25 2015-12-15 Schlumberger Technology Corporation Device having a hard seat support
US20150300124A1 (en) * 2015-07-07 2015-10-22 Tejas Research & Engineering, Llc Surface Controlled Downhole Valve with Supplemental Spring Closing Force for Ultra Deep Wells
US10167700B2 (en) * 2016-02-01 2019-01-01 Weatherford Technology Holdings, Llc Valve operable in response to engagement of different engagement members
WO2019070360A1 (en) * 2017-10-06 2019-04-11 Baker Hughes, A Ge Company, Llc Sub-surface safety valve flapper sleeve

Similar Documents

Publication Publication Date Title
US3375874A (en) Subsurface well control apparatus
CA2403866C (en) Tubing hanger with annulus bore
US6684950B2 (en) System for pressure testing tubing
US4805699A (en) Method and apparatus for setting, unsetting, and retrieving a packer or bridge plug from a subterranean well
US6244348B1 (en) Well production system with a hydraulically operated safety valve
US5012865A (en) Annular and concentric flow wellhead isolation tool
US4869325A (en) Method and apparatus for setting, unsetting, and retrieving a packer or bridge plug from a subterranean well
EP1278933B1 (en) Internal gate valve for flow completion systems
US4708208A (en) Method and apparatus for setting, unsetting, and retrieving a packer from a subterranean well
US4291722A (en) Drill string safety and kill valve
AU2003234673B2 (en) Method and apparatus to reduce downhole surge pressure using hydrostatic valve
AU737708B2 (en) Valve operating mechanism
US7654333B2 (en) Downhole safety valve
US4160478A (en) Well tools
US6227299B1 (en) Flapper valve with biasing flapper closure assembly
EP0477452B1 (en) Downhole force generator
EP0204619B1 (en) Subsea master valve for use in well testing
US7025132B2 (en) Flow completion apparatus
US4440221A (en) Submergible pump installation
US6209663B1 (en) Underbalanced drill string deployment valve method and apparatus
US3882935A (en) Subsurface safety valve with auxiliary control fluid passage openable in response to an increase in control fluid pressure
US4432417A (en) Control pressure actuated downhole hanger apparatus
US6695049B2 (en) Valve assembly for hydrocarbon wells
US4534414A (en) Hydraulic control fluid communication nipple
US5310005A (en) Flapper valve assembly with floating hinge

Legal Events

Date Code Title Description
AS Assignment

Owner name: HALLIBURTON COMPANY, TEXAS

Free format text: MERGER;ASSIGNOR:OTIS ENGINEERING CORPORATION;REEL/FRAME:006779/0356

Effective date: 19930624